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ABSTRACT
Outlier detection (OD) is a key machine learning task for finding
rare and deviant data samples, with many time-critical applications
such as fraud detection and intrusion detection. In this work, we
propose TOD, the first tensor-based system for efficient and scalable
outlier detection on distributed multi-GPU machines. A key idea
behind TOD is decomposing complex OD applications into a small
collection of basic tensor algebra operators. This decomposition
enables TOD to accelerate OD computations by leveraging recent
advances in deep learning infrastructure in both hardware and
software. Moreover, to deploy memory-intensive OD applications
on modern GPUs with limited on-device memory, we introduce
two key techniques. First, provable quantization speeds up OD
computations and reduces its memory footprint by automatically
performing specific floating-point operations in lower precision
while provably guaranteeing no accuracy loss. Second, to exploit
the aggregated compute resources and memory capacity of multiple
GPUs, we introduce automatic batching, which decomposes OD
computations into small batches for both sequential execution on a
single GPU and parallel execution across multiple GPUs.

TOD supports a diverse set of OD algorithms. Evaluation on
11 real-world and 3 synthetic OD datasets shows that TOD is on
average 10.9× faster than the leading CPU-based OD system PyOD
(with a maximum speedup of 38.9×), and can handle much larger
datasets than existing GPU-based OD systems. In addition, TOD
allows easy integration of new OD operators, enabling fast proto-
typing of emerging and yet-to-discovered OD algorithms.
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1 INTRODUCTION
Outlier detection (OD) is a crucial machine learning task for identi-
fying data points deviating from a general distribution [4, 56, 99].
OD has numerous real-world applications, including anti-money
laundering [48], rare disease detection [74], rumor detection [88],
and network intrusion detection [45]. OD algorithms have been
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serving a critical role in large cloud services for monitoring server
abnormality at Microsoft [80] and Amazon [11], as well as for fraud
detection at eBay [2] and Alibaba [54].
Scalability challenges of OD. Numerous OD algorithms have
been proposed recently to detect outliers for different types of
data (e.g., tabular data [4, 41, 53, 104], time series [16, 18, 23, 44],
and graphs [5, 17]). Although there is no shortage of detection algo-
rithms, OD applications face challenges in scaling to large datasets,
both in terms of execution time and memory consumption, which
prevents OD algorithms from being deployed in data-intensive
and/or time-critical tasks such as real-time credit card fraud de-
tection. To address these challenges, recent work focuses on both
developing distributed OD algorithms on CPUs [8, 13, 61, 71, 73,
90, 97, 101, 103] and accelerating certain OD algorithms on GPUs
[9, 46]. However, existing GPU-based OD solutions only target
specific (families of) OD algorithms and cannot support generic
OD computations. For instance, Angiulli et al. [9] showcases an
example of using GPUs for distance-based algorithms, while how
to handle linear and probabilistic OD algorithms remains unclear
in the proposed solution.
Advances in systems for deep neural networks. On the other
hand, deep neural networks (DNNs) have revolutionized computer
vision, natural language processing, and various other fields [32]
over the last decade. This success is largely due to the recent devel-
opment of DNN systems (e.g., TensorFlow [1] and PyTorch [76]).
These systems enable fast tensor algebra computations (e.g., matrix
multiplication, convolution, etc.) on modern hardware accelerators
(e.g., GPUs and TPUs) and use efficient parallelization strategies
(e.g., data, model, and pipeline parallelism [39, 68, 92]) to aggre-
gate the compute resources across multiple accelerators, enabling
efficient and scalable DNN computations.

This paper explores a new approach to building GPU-accelerated
OD systems. Instead of following the methodology used in existing
GPU-based OD frameworks (i.e., providing efficient GPU imple-
mentations tailored to specific OD applications), we ask: can we
leverage the compilation and optimization techniques in DNN systems
to minimize the time and memory consumption of a wide range of
common OD computations?

1.1 Our Approach
In this paper, we present TOD, a tensor-based outlier detection
system that abstracts OD applications into tensor algebra operations
for efficient GPU acceleration. TOD leverages both the software
and hardware optimizations in modern DNN frameworks to enable
efficient and scalable OD computations on distributed multi-GPU
clusters. To the best of our knowledge, TOD is the first GPU-based
system for generic OD applications. Fig. 1 shows an overview of
TOD. Building a tensor-based OD system requires addressing three
major obstacles.

546

https://doi.org/10.14778/3570690.3570703
https://github.com/yzhao062/pytod
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3570690.3570703
https://www.acm.org/publications/policies/artifact-review-and-badging-current


An Outlier Detection Task

Programming Model

Basic tensor 
operator 1

Function 
operator 1

Function 
operator 2 …

Basic tensor 
operator 2

Basic tensor 
operator 3 …

Provable Quantization

Data 
Quantization

Low-precision 
Evaluation

Exactness 
Verification

Automatic Batching Multi-GPU Support

GPU 1

GPU 2

…

Section 4

Section 5

Section 6

Decomposed to optimized operators

Save GPU memory without accuracy loss

Divide and conquer with single or multi-GPUs

Outlier Scores of the Input Task

Result 
Aggr.

Figure 1: TOD’s overview. TOD decomposes an OD task into
fine-grained tensor operators and optimizes OD computa-
tions acrossmultiple GPUs using provable quantization and
automatic batching.

Representing OD computations using tensor operations. Un-
like DNN models, which are represented as a pipeline of tensor al-
gebra operators (e.g., matrix multiplication), many OD applications
involve a diverse collection of operators that have traditionally not
been implemented in terms of tensor operations, such as proximity-
based algorithms, statistical approaches, and linear methods (see
an overview of OD applications in §2.1). Implementing OD appli-
cations one at a time and accounting for software and hardware
optimizations is labor-intensive. To address this obstacle, TOD in-
troduces a new programming model for OD that decomposes a
broad set of OD applications into a small collection of basic tensor
operators and functional operators, which significantly reduces the
implementation and optimization effort and opens the possibility
of easily supporting new OD algorithms.
Quantizing OD computations. Quantization is commonly used
in existing DNN frameworks to reduce the run time and mem-
ory consumption of DNN computations by computing intermediate
results in a DNNmodel using a lower-precision floating-point repre-
sentation. Quantization in general does not preserve the end-to-end
equivalence of a DNN model and therefore may introduce poten-
tial accuracy losses. To apply quantization, the current practice is
fine-tuning a quantized DNN model on the training dataset in a
supervised fashion and assessing the accuracy loss; however, this
approach is not directly applicable to OD, since most OD algorithms
are unsupervised and thus lack a direct way for measuring accuracy.
To address this challenge, TOD introduces a novel quantization
technique called provable quantization, which leverages the numer-
ical insensitivity of OD algorithms (e.g., 𝑘-nearest-neighbors may
return identical results for some samples when computing with dif-
ferent floating-point precisions) and automatically performs specific
OD operators in lower precision. In contrast to prior quantization

techniques that use lower precision calculations at the expense of
accuracy, provable quantization guarantees no accuracy loss.
Enabling scalable OD computations. Existing DNN frameworks
cannot directly support large-scale OD applications, since mod-
ern DNN systems are designed to iteratively process a small batch
of training samples even though the entire training dataset can
be large. For example, to train ResNet-50 [35] on the ImageNet
dataset [25], existing DNN systems only handle small mini-batches
(e.g., 256 samples) in each training iteration, while the dataset con-
tainsmore than 14million samples. However, manyOD applications
involve operating on all samples, such as computing distances be-
tween all sample pairs. Executing such an application on a single
GPU would typically run out of memory because GPUs nowadays
have limited memory capacities (e.g., compared to those of CPU
DRAM). To overcome the difficulty of executing OD applications
in iterations and the resource limits of a single GPU, TOD uses an
automatic batching mechanism to execute memory-intensive OD
operators in small batches, which are distributed across multiple
GPUs in parallel in a pipeline fashion. The automatic batching and
multi-GPU support allow TOD to scale to datasets as large as those
commonly encountered in deep learning tasks.

We compare TOD against existing CPU- and GPU-based OD sys-
tems on both real-world and synthetic datasets. TOD is on average
10.9× faster than PyOD, a state-of-the-art comprehensive CPU-
based OD system [105], and can process a million samples within
an hour while PyOD cannot. Compared to existing GPU-based OD
systems, TOD can handle much larger datasets, while the GPU
baselines run out of GPU memory. Our evaluation further shows
that provable quantization, automatic batching, and multi-GPU
support are all critical for efficient and scalable OD computations.

In summary, this paper makes the following contributions:
• We propose TOD, the first tensor-based system for generic outlier
detection, enabling efficient and scalable OD computations on
distributed multi-GPU machines.

• TOD uses a new programming model that abstracts complex OD
applications into a small collection of basic tensor operators for
efficient GPU acceleration.

• We introduce provable quantization that accelerates unsuper-
vised OD computations by performing specific floating-point
operators in lower precision while provably guaranteeing no
accuracy loss.

Extensibility and integration. TOD is open-sourced1 (see Appx.
§D for an API demonstration), which enables easy development of
newOD algorithms by leveraging highly optimized tensor operators
or including new operators (see examples in §7.1). This extensibility
yields a large number of yet-to-be-discovered OD methods. Thus,
we believe that TOD also provides a platform that enables rapid
research and development of new OD methods.

2 BACKGROUND AND RELATED WORK
In this section, §2.1 summarizes existing OD algorithms for tab-
ular data, §2.2 introduces existing DNN infrastructure, which is
leveraged by TOD to accelerate OD computations, and §2.3 de-
scribes modern OD systems. In §2.4, we review additional systems,
algorithms, and applications for other data formats in addition to

1Open-sourced library and online appendix: https://github.com/yzhao062/pytod
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Table 1: Key OD algorithms for tabular data and their time
and space complexitywith a brute-force implementation (ad-
ditional optimization is possible but not considered here),
where 𝑛 is the number of samples, and 𝑑 is the number of di-
mensions. Note that ensemble-based methods’ complexities
depend on the underlying base estimators. Algorithms that
can be accelerated in TOD are marked with ✓.

Category Algorithm Time
Compl.

Space
Compl.

Optimized
in TOD

Proximity 𝑘NNOD 𝑂 (𝑛2) 𝑂 (𝑛2) ✓

Proximity COF 𝑂 (𝑛3) 𝑂 (𝑛2) ✓

Proximity LOF 𝑂 (𝑛2) 𝑂 (𝑛2) ✓

Proximity LOCI 𝑂 (𝑛2) 𝑂 (𝑛2) ✓

Statistical KDE 𝑂 (𝑛3) 𝑂 (𝑛2) ✗

Statistical HBOS 𝑂 (𝑛𝑑) 𝑂 (𝑛𝑑) ✓

Statistical COPOD 𝑂 (𝑛𝑑) 𝑂 (𝑛𝑑) ✓

Statistical ECOD 𝑂 (𝑛𝑑) 𝑂 (𝑛𝑑) ✓

Ensemble LODA N/A N/A ✓

Ensemble FB N/A N/A ✓

Ensemble iForest N/A N/A ✗

Ensemble LSCP N/A N/A ✓

Linear PCA 𝑂 (𝑛𝑑) 𝑂 (𝑛) ✓

Linear OCSVM 𝑂 (𝑛3) 𝑂 (𝑛2) ✗

tabular data (e.g., time series and graphs). Note that TOD primarily
focuses on OD in tabular data due to its popularity [4]; TOD can
be extended to support OD in other data types with modifications.

2.1 Existing OD Algorithms and Scalability
Outlier detection (also called anomaly detection) is a key machine
learning task that aims to find data points that deviate from a gen-
eral distribution [4, 56, 99]. As shown in Table 1, non-deep-learning
OD algorithms are grouped into four categories (see the book by
Aggarwal [4] for more details on algorithms): (i) proximity-based
algorithms that rely on measuring sample similarity including 𝑘NN
[10], ABOD [43], COF [89], LOF [19], and LOCI [75]; (ii) statisti-
cal approaches including KDE [84], HBOS [31], COPOD [52], and
ECOD [53]; (iii) ensemble-based methods that build a collection of
detectors for aggregation like iForest [55], LODA [78], and LCSP
[104]; and (iv) linear models such as PCA [85].

Many OD algorithms suffer from scalability issues [72, 103]. For
example, Table 1 shows that various proximity-basedOD algorithms
have at least 𝑂 (𝑛2) time and space complexities—they all require
estimating and storing pairwise distances among all 𝑛 samples.
The high time complexities of many OD algorithms limit their
applicability in real-world applications that require either real-time
responses (e.g., fraud detection [59]) or the concurrent processing
of millions of samples [106]. As shown in the table, TOD supports
nearly all the OD algorithms mentioned.

2.2 DNN Infrastructure and Acceleration
Deep neural networks have dramatically improved the accuracy of
artificial intelligence systems across numerous fields [28, 32, 74].
Its success is fueled by recent advances in both DNN hardware
and software [47]. Specifically, DNN systems depend on tensor

operations that can often be parallelized and executed in small
batches. These operations are well-suited for GPUs, especially as
a single GPU nowadays often has many more cores than a single
CPU; while GPU cores are not as general purpose as CPU cores,
they suffice in executing the tensor operations of deep learning.
Moreover, the maturity of DNN programming frameworks such
as PyTorch [76] and TensorFlow [1] makes developing machine
learning models easy with a wide range of GPUs. Multiple works
attempt to leverage DNN systems for accelerating training data
science and ML tasks, including Hummingbird [67], Tensors [42],
and AC-DBSCAN [37].

Differently, TOD for the first time, extends the acceleration us-
age of DNN systems to OD algorithms. We build TOD using the
DNN ecosystem, taking advantage of its established hardware ac-
celeration and software accessibility. This design choice also opens
the opportunity for unifying classical OD algorithms (see §2.1) and
DNN-based OD algorithms on the same platform—this emerging
direction has gained increasing attention in OD research [82].

2.3 Outlier Detection Systems
CPU-based systems . Over the years, comprehensive OD systems
on CPUs that cover a diverse group of algorithms have been de-
veloped in different programming languages, including ELKI Data
Mining [3] and RapidMiner [81] in Java, and PyOD [105] in Python.
Among these, PyOD is the state-of-the-art (SOTA) with deep op-
timization including just-in-time compilation and parallelization.
It is widely used in both academia and industry, with hundreds of
citations [102] and millions of downloads per year [86]. Recently,
the PyOD team proposed an acceleration system called SUOD to
further speed up the training and prediction in PyOD with a large
collection of heterogeneous OD models [103]. Specifically, SUOD
uses algorithmic approximation and efficient parallelization to re-
duce the computational cost and therefore runtime. There are other
distributed/parallel systems designed for specific (family of) OD
algorithms with non-GPU nodes (e.g., CPUs): (i) Parallel Bay, Paral-
lel LOF, DLOF for local OD algorithms [61, 71, 97], (ii) DOoR for
distance-based OD [13], (iii) distributed OD for mixed-attributed
data [73] (iv) PROUD for stream data [90] and (v) Sparx for Apache
Spark [101]. These distributed non-GPU systems do not constitute
as baselines as TOD is a comprehensive system covering differ-
ent types OD algorithms, while the specialized systems only cover
specific algorithms. Thus, we consider the SOTA comprehensive
system, PyOD, as the primary baseline (see exp. results in §7.3).

GPU-based systems . There are efforts to use GPUs for fast OD
calculations for LOF [6], distance-based methods [9], KDE [12],
and data stream [46]. These approaches rely on exploring the char-
acteristics of a specific OD algorithm for GPU acceleration. This
limits their generalization to a wide collection of OD algorithms.
Furthermore, none has direct multi-GPU support, leading to lim-
ited scalability. To the best of our knowledge, there is no existing
comprehensive GPU-based OD system that covers a diverse group
of algorithms. Thus, we use direct GPU implementations of OD
algorithms and selected works above as GPU baselines when ap-
propriate (see details in §7.2 and Table 3).
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Outlier Detection Algorithms as Combinations of BTOs and FOs
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Figure 2: With algorithmic abstraction, more than 20 OD algorithms (denoted by ) are abstracted into eight basic tensor
operators (in ) and six functional operators (in ). This abstraction reduces the implementation and optimization effort, and
opens the possibility of including new algorithms. All operators are executed on GPUs using automatic batching (see §6), and
operators marked with⋆ are further accelerated using provable quantization (see §5).

2.4 Systems for Other Data Types and Scenarios
Over the years, various algorithms and systems have been devel-
oped for OD with different types of data other than tabular, in-
cluding time-series/sequence (TOP [23], NETS [98], GraphAn [17],
CPOD [91], Series2graph [16], SAND [18], etc.), and graph (e.g.,
Elle [41], PyGOD [57, 58], etc.). Also, different input data are also
assumed in streaming and feature-evolving fashions (e.g., xStream
[62], etc.). Meanwhile, emphasis has also been given to building
systems for explaining outliers (VSOutlier [22] and Exathlon [36],
etc.) and outlier repairing (IMR [100], etc.), other than detecting
them. In this paper, we focus on the detection task in the most
prevalent setting (i.e., static tabular data) [4], while future works
may extend to other data types and scenarios.

3 OVERVIEW
3.1 Definition and Problem Formulation
AnOD system supports a collection of ODmodelsM = {𝑀1, ..., 𝑀𝑚}
such that given a user-specified OD model 𝑀 ∈ M and an input
dataset X ∈ R𝑛×𝑑 without ground truth labels (rows of X are data
points, while columns are features), the system outputs outlier
scores O := 𝑀 (X) ∈ R𝑛 , which should be roughly determinis-
tic and irrespective of the underlying system (higher values in O
correspond to data points more likely to be identified as outliers;
threshold on outlier scores can be used to determine which points
are outliers). Given a hardware configuration C (e.g., CPUs and
GPUs), the system’s performance can be measured in efficiency
(both runtime and memory consumption).

3.2 TOD’s Overview
TOD is a comprehensive (i.e., covering a diverse group of methods)
OD system as outlined in Fig. 1 and Table 1. For an outlier detection

task, TOD decomposes it into a combination of predefined tensor
operators via the proposed programming model for direct GPU
acceleration (§4). Notably, TOD opportunistically performs provable
quantization on tensor operators to enable faster computation and
reduce memory requirements, while provably maintaining model
accuracy (§5). To overcome the resource limitation of a single GPU,
we further introduce automatic batching and multi-GPU support in
TOD (§6).

4 PROGRAMMING MODEL
Motivation. As a comprehensive system, TOD aims to include a
diverse collection of OD algorithms, including proximity-based
methods, statistical methods, and more (see §2.1). However, not
all algorithms can be directly converted into tensor operations for
GPU acceleration. A key design goal of TOD is to support various
OD algorithms by piecing together commonly recurring building
blocks. In particular, rather than manually implementing many OD
algorithms, which is a labor-intensive process, we instead define
OD algorithms as compositions of basic OD building blocks, each of
which only needs to be implemented once. Moreover, the building
blocks can be optimized independently.

4.1 Algorithmic Abstraction
The key idea of our programming model is to decompose existing
OD algorithms into a set of low-level basic tensor operators (BTOs),
which can directly benefit from GPU acceleration. On top of these
BTOs, we introduce higher-level OD operators called functional
operators (FOs) with richer semantics. Consequently, OD algorithms
can be constructed as combinations of BTOs and FOs.

Fig. 2 shows the hierarchy of TOD’s programming abstraction
in a bottom-up way, with increasing dependency: 8 BTOs are first
constructed as the foundation of TOD (shown at the bottom in gray),
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Figure 3: Examples of building complex OD algorithms with
FO and BTO conveniently.

while 6 FOs are then created on top of them (shown in the middle).
Finally, OD algorithms and key functions on the top of the figure can
be assembled using BTOs and FOs. In other words, TOD represents
an OD algorithm using a tree-structured dependency graph, where
the BTOs (as leaves of the tree) are fully independent for deep
optimization, and all the algorithms depending on these BTOs can
be collectively optimized. Clearly, this abstraction process reduces
the repetitive implementation and optimization effort, and improves
TOD’s efficiency and generalizability. Additionally, it also facilities
fast prototyping and experimentation with new algorithms.

4.2 Building End-to-end OD Algorithms
It is easy to build an end-to-end OD application by constructing
its computation graph using FOs and BTOs. For instance, angle-
based outlier detection (ABOD) is a classical OD algorithm [43],
where each sample’s outlier score is calculated as the average cosine
similarity of its neighbors. Fig. 3(a) highlights an implementation
of ABOD that uses an FO (i.e., 𝑘NN) to obtain a list of neighbors for
each sample and then applies another FO (i.e., cosine sim.) for
calculating cosine similarity. Note that each FO is a combination
of BTOs. For example, 𝑘NN is implemented as calculating pairwise
sample distance using cdist and then identifying the 𝑘 “neighbor”
with smallest distances using topk. Additionally, Fig. 3(b) shows
the abstraction graph of copula-based outlier detection (COPOD)
[52]. Other OD algorithms follow the same abstraction protocol
and are represented as combinations of BTOs and FOs.

5 PROVABLE QUANTIZATION
Motivation. OD operators mainly depend on floating-point arith-
metic, namely {+,−,×, /}. For these operations, the main source
of imprecision is rounding [50]. Rounding errors enlarge when
storing numbers using fewer bits, e.g., 16-bit floating-points lead
to more inaccuracy than 64-bit floating-points. Therefore, many
machine learning algorithms use high-precision floating-points
when possible to minimize the impact of rounding errors. However,
using high-precision floating-points can increase computation time
and memory consumption. This is especially critical for GPUs with
limited memory.

To reduce memory usage and run time, quantization has been
applied to many machine learning algorithms [14] and data-driven
applications [7, 95, 96]. Simply put, it refers to executing an opera-
tor (function) with lower-precision floating representations. If we
denote the original function by 𝑟 (𝑥) and its quantization by 𝑟𝑞 (𝑥),

the rounding error Err(·) of quantization is defined as the output dif-
ference between 𝑟 (𝑥) and 𝑟𝑞 (𝑥), namely Err(𝑟𝑞 (𝑥)) = 𝑟 (𝑥) − 𝑟𝑞 (𝑥).
Intuitively, quantization can save memory at the cost of accuracy.
How to balance the tradeoff between thememory cost and algorithm
accuracy is a key challenge for quantizing in machine learning [24].
In supervised ML, one may measure the inaccuracy caused by quan-
tization using ground truth labels. However, this is infeasible under
unsupervised OD settings, where no ground truth labels is avail-
able for evaluation as described in §3. Thus, existing quantization
techniques for supervised ML do not suit the need of unsupervised
OD.

In TOD, we design a correctness-preserving quantization tech-
nique for (unsupervised) OD applications, termed provable quanti-
zation. The key idea behind provable quantization is that depending
on the operator used, it is possible to apply quantization to reduce
memory consumption with no loss in accuracy. As a motivating
example, consider the sign function 𝑟 (𝑥) that returns “+” if 𝑥 > 0
and returns “−” otherwise. Clearly, even if we quantize 𝑥 to have a
single bit (that precisely indicates the sign of 𝑥 ), we can achieve an
exact answer for 𝑟 (𝑥) that is the same as if instead 𝑥 had more bits.
Similarly, the ranking between two floating-point numbers often
only depends on the most significant digits. Building on this simple
intuition, we introduce provable quantization for a collection of OD
operators, where the output and accuracy of the operators remain
provably unchanged before and after quantization.

5.1 (1 + 𝜖)-property for Rounding Errors
Provable quantization relies on a standard analysis technique for
floating-point numbers called the “(1 + 𝜖)-property” [50]. Let F
denote the set of 64-bit floating-point numbers. For 𝑥,𝑦 ∈ F, we
define the floating-point operation “⊛” as 𝑥 ⊛ 𝑦 ≜ fl(𝑥 ∗ 𝑦), where
∗ ∈ {+,−,×, /} and fl(·) refers to the IEEE 754 standard for rounding
a real number to a 64-bit floating-point number [40]. For example, ⊕
is floating-point addition and ⊗ is floating-point multiplication. The
standard technique for calculating the rounding errors in floating-
point operations is the (1 + 𝜖)-property [50], which is formally
defined as follows.

Theorem 1 (Theorem 3.2 of Lee et al. 50). Let 𝑥,𝑦 ∈ F, and
∗ ∈ {+,−,×, /}. Suppose that |𝑥 ∗𝑦 | ≤ maxF. Then when we compute
𝑥 ∗ 𝑦 in floating-point, there exist multiplicative and additive error
terms 𝛿 ∈ R and 𝛿 ′ ∈ R respectively such that

𝑥 ⊛ 𝑦 = (𝑥 ∗ 𝑦) (1 + 𝛿) + 𝛿 ′, where |𝛿 | ≤ 𝜖, |𝛿 ′ | ≤ 𝜖 ′. (1)

In the above equation, 𝜖 and 𝜖 ′ are constants that do not depend on 𝑥
or 𝑦. For instance, when working with 64-bit floating-point numbers,
𝜖 = 2−53 and 𝜖 ′ = 2−1075.

As discussed by Lee et al. [50, Section 5], this property can be
further simplified when the exact result of the floating operation is
not in the so-called “subnormal” range: the addictive error term 𝛿 ′

can be soundly removed, leading to a simplified (1 + 𝜖)-property:

𝑥 ⊛ 𝑦 = (𝑥 ∗ 𝑦) (1 + 𝛿), where |𝛿 | ≤ 𝜖. (2)

5.2 Provable Quantization in TOD
TOD applies provable quantization for an applicable operator 𝑟 (·)
with input 𝑥 in three steps: (i) input quantization, (ii) low-precision
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evaluation, and (iii) exactness verification and, if needed, recalcula-
tion. In a nutshell, the input is first quantized into a lower precision,
and then the operator is evaluated in the lower precision, where
𝑟 (𝑥) is evaluated as 𝑟𝑞 (𝑥). To verify the exactness of the quantiza-
tion, we calculate the rounding error Err(𝑟𝑞 (𝑥)) by the simplified
(1+𝜖)-property in eq. (2) and then check whether the result of 𝑟 (𝑥)
may change with the rounding error. If it passes the verification,
then we output Err(𝑟𝑞 (𝑥)) as the final result; otherwise, we use
the original precision of 𝑥 to recalculate 𝑟 (𝑥). Note that we apply
this technique to the entire input data X ∈ R𝑛×𝑑 , and only need
to recalculate on the subset of X where the verification fails. A
limitation of provable quantization is that it does not apply to all
operators; we elaborate on this criteria in §5.4.

5.3 Case Study: Neighbors Within Range
We show the usage of provable quantization in TOD on neighbors
within range (NWR, one of the FOs of our programming model), a
common step in many OD algorithms, e.g., LOF [19] and LOCI [75].
NWR identifies nearest neighbors within a preset distance thresh-
old (usually a small number), which may be considered as a vari-
ant of 𝑘 nearest neighbors. More formally, given an input tensor
X := [𝑋1, 𝑋2, ..., 𝑋𝑛] ∈ R𝑛×𝑑 (𝑛 samples and 𝑑 dimensions) and
the distance threshold 𝜙 , NWR first calculates the pairwise distance
among each sample via the cdist operator, yielding a distance
matrix D ∈ R𝑛×𝑛 , where D𝑖, 𝑗 is the pairwise distance between
𝑋𝑖 and 𝑋 𝑗 . Then, each pairwise distance in D is compared with
𝜙 , and NWR outputs the indices of samples where D𝑖, 𝑗 ≤ 𝜙 . As the
pairwise distance calculation in NWR requires𝑂 (𝑛2) space, provable
quantization can provide significant GPU memory savings.

NWR meets the criterion we outline in §5.2, where eq. (2) can be
applied to estimate the rounding errors. Recall that the pairwise
Euclidean distance between two samples is

D𝑖 𝑗 =


𝑋𝑖 − 𝑋 𝑗



2
2 = ∥𝑋𝑖 ∥22 +



𝑋 𝑗



2
2 − 2𝑋𝑇

𝑖 𝑋 𝑗 . (3)

We shall compute this in floating-point. Importantly, in our analy-
sis to follow, the ordering of floating-point operations matters in
determining rounding errors. To this end, we calculate distance
using the right-most expression in eq. (3) (note that we do not first
compute the difference 𝑋𝑖 − 𝑋 𝑗 and then compute its squared Eu-
clidean norm). When calculating the first term in the RHS of eq. (3)
via floating-point operations, we get

fl(∥𝑋𝑖 ∥22)= (𝑋𝑖,1 ⊗ 𝑋𝑖,1) ⊕ (𝑋𝑖,2 ⊗ 𝑋𝑖,2) ⊕ · · · ⊕ (𝑋𝑖,𝑑 ⊗ 𝑋𝑖,𝑑 )
= (𝑋 2

𝑖,1 (1+𝛿1)) ⊕ (𝑋 2
𝑖,2 (1+𝛿2)) ⊕ · · · ⊕ (𝑋 2

𝑖,𝑑
(1+𝛿𝑑 )),

where the second equality uses eq. (2) and we note that the errors
𝛿1, . . . , 𝛿𝑑 across the floating-point multiplications (for squaring)
need not be the same (in fact, these need not be the same across sam-
ples 𝑖 = 1, 2, . . . , 𝑛 but we omit this indexing to keep the equation
from getting cluttered).

Next, by defining 𝑥max ≜ max𝑖∈{1,...,𝑛},𝑘∈{1,...,𝑑 } |𝑋𝑖,𝑘 | and re-
calling from Theorem 1 that each of 𝛿1, 𝛿2, . . . , 𝛿𝑑 above is at most

𝜖 , we get

fl(∥𝑋𝑖 ∥22)= (𝑋 2
𝑖,1 (1+𝛿1)) ⊕ (𝑋 2

𝑖,2 (1+𝛿2)) ⊕ · · · ⊕ (𝑋 2
𝑖,𝑑

(1+𝛿𝑑 ))

≤ [𝑥2max (1 + 𝜖)] ⊕ [𝑥2max (1 + 𝜖)] ⊕ · · · ⊕ [𝑥2max (1 + 𝜖)]︸                                                                 ︷︷                                                                 ︸
𝑑 terms added via floating-point addition

≤𝑑 · 𝑥2max (1 + 𝜖)1+⌈log2 𝑑 ⌉ ,

where for the last step, log2 𝑑 shows up since summation of 𝑑
elements in lower-level programming languages is implemented in
a divide-and-conquer manner that reduces to ⌈log2 𝑑⌉ operations
(there is still a “1+” term in the exponent for the floating-point
multiplication/squaring). The rounding error is bounded as follows:

Err(∥𝑋𝑖 ∥22) = ∥𝑋𝑖 ∥22 − fl(∥𝑋𝑖 ∥22)
≤ 𝑑 · 𝑥2max − fl(∥𝑋𝑖 ∥22)
≤
��𝑑 · 𝑥2max − fl(∥𝑋𝑖 ∥22)

��
≤ 𝑑 · 𝑥2max [(1 + 𝜖)1+⌈log2 𝑑 ⌉ − 1] .

This same analysis can be used to bound the floating-point errors
of the other terms in eq. (3). Overall, we get

Err(D𝑖 𝑗 ) ≤ 4𝑑 · 𝑥2max [(1 + 𝜖)1+⌈log2 𝑑 ⌉+2 − 1], (4)

where the “+2” shows up in the exponent due to the addition and
subtraction in the RHS of (3) that we compute in floating-point.

Inequality (4) provides a numerical way for checking whether a
single entry D𝑖 𝑗 is within the range of 𝜙 as |D𝑖 𝑗 − 𝜙 | > Err(D𝑖 𝑗 ).
More conveniently, we could scale the input X into the range of
[0, 1] before the distance calculation [79], so that 𝑥max ≤ 1 and
the implementation complexity can be further reduced. With this
treatment, a large amount of GPU memory can be saved in NWR
operations (see §7.5 for results).

5.4 Applicability and Opportunities of
Provable Quantization

Not all operators can benefit from provable quantization. To benefit
from provable quantization, an operator needs to satisfy two criteria.
First, the operator’s output values cannot require a floating-point
representation in the original precision, otherwise the exactness
verification would require executing the operator in the original
precision, resulting in no memory or time savings. For example,
provable quantization is not applicable to cdist since its outputs
are raw floating-point pairwise distances, and verifying its exact-
ness requires calculating cdist in the original precision. Second,
the performance gain in low-precision evaluation of the operator
needs to be larger than the overhead of verification. Based on these
two criteria, we mark the operators generally applicable for prov-
able quantization by ⋆ in Fig. 2. Also see §7.5 for experimental
results on this. Although the design of provable quantization is
motivated by unsupervised OD algorithms with extensive ranking
and selecting operations, other ML algorithms can also benefit if
they meet the above criteria. For OD algorithms in which provable
quantization does not apply, they could still benefit from TOD’s
other optimizations such as automatic batching (§6).
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6 AUTOMATIC BATCHING AND MULTI-GPU
SUPPORT

Motivation. Unlike CPU nodes with up to terabytes of DRAM, to-
day’s GPU nodes face much more stringent memory limitations [30,
49, 65, 66]—modern GPUs are mostly equipped with 4-40 GB of
on-device memory [63, 87]. Out-of-memory (OOM) errors have
thus become common in GPU-based systems for machine learning
tasks [29]. To overcome this challenge, we design an automatic
batching mechanism to decompose memory-intensive BTOs into
multiple batches, which are executed on GPUs in a pipeline fash-
ion. Automatic batching also allows TOD to equally distribute OD
computation across multiple GPUs. TOD applies different mech-
anisms to decompose an operator into batches based on its data
dependency. Specifically, an operator has inter-sample dependency
if the computation of each sample requires accessing other samples,
such as cdist. On the other hand, an operator has inter-feature
dependency if the computation of each feature depends on other
features, such as Feat. sampler. Fig. 4 summarizes TOD batching
mechanisms for operators with and without these dependencies.
Direct batching. TOD automatically decomposes an operator into
small batches if the operator is: (i) sample-independent: the estima-
tion of each sample is independent, or (ii) feature-independent: the
contribution of each feature is independent. When either condition
holds, TOD directly partitions the operator into multiple batches
by splitting along the sample or feature dimension, computes these
batches in a pipeline fashion, and aggregates individual batches
to produce the final output, as shown in Fig. 5. For instance, topk
is a sample-independent operator. For an input tensor X ∈ R𝑛×𝑑 ,
topk outputs the indices of the largest 𝑘 values for each sample
(i.e., row), resulting in an output tensor IX := topk(X, 𝑘) ∈ R𝑛×𝑘 .
Therefore, we could split X into batches with full features, each
with 𝑏 samples (i.e.„ {X1,X2, ...} ∈ R𝑏×𝑑 ). As another example,
Histogram outputs the frequencies of each feature’s values, which
is feature-independent. Thus, we could partition X into blocks of 𝑏
features, e.g., {X1,X2, ...} ∈ R𝑛×𝑏 .
Customized batching. For operators with both inter-sample and
inter-feature dependencies, the computation of each data point
involves all samples and features, and therefore cannot be directly
decomposed into batches along the same or feature dimension. TOD
provides customized batching strategies for these operators. For
example, to automatically batch cdist, TOD uses the approach
introduced in Neeb and Kurrus [69], which splits an input dataset
across samples and calculates the pairwise distance of each pair of
split in batches.

6.1 Sequential Batching and Operator Fusion
Simple concatenation. Since BTOs are independent from each
other, executing a sequence of BTOs in batches is straightforward,
i.e., simply feed the output of a batch operator as an input to another
one. For example, 𝑘NN (see Fig. 2) finds the 𝑘 nearest neighbors by
first calculating pairwise distances of input samples via the cdist
BTO and then returns the index of𝑘 itemswith the smallest distance
via the topk BTO. Thus, 𝑘NN batching is achieved by running cdist
and topk sequentially, where each uses automatic batching and
the output of the former is the input of the latter. Note that simple
concatenation applies to all BTOs and FOs as the default choice.

Direct batching 
across samples

Direct batching 
across features

Direct batching 
across samples

Customized
batching strategies

w/ inter-
sample dep.

w/ inter-
feature dep.

w/o inter-
sample dep.

w/o inter-
feature dep.

Figure 4: TOD applies automatic batching to operators with-
out inter-sample or inter-feature dependency, and uses cus-
tomized batching strategies for operators with both data de-
pendencies.

𝑓(batch 1)

𝑓(batch 1)

𝑓 is feature-independent

𝑓(batch 2)

𝑓(batch 3)

𝑓 is sample-independent

𝑓(batch 2) 𝑓(batch 3)

Input Dataset 

Operator 𝑓

Aggregated 
results 

from indep. 
batches

Figure 5: Direct batchingwith independence assumption cre-
ates batches along the sample or feature index.

Input Dataset Create Batches by 
Pairing Data Splits

split 1

split 2

cdist( 
split 1, 
split 1)

cdist( 
split 1, 
split 2)

cdist( 
split 2, 
split 1)

cdist( 
split 2, 
split 2)cdist

Split by Samples

Figure 6: Customized batching solution for cdist in TOD.
Operator fusion. Although the simple concatenation discussed
above is straightforward, a closer look unlocks deeper optimization
opportunities in automatic batching with a sequence of operators.
Notably, the output of 𝑘NN is the indices of the 𝑘 nearest neigh-
bors of an input dataset, where the pairwise distance generated
by cdist is only used in an intermediate step but not returned.
If we could prevent moving this large distance matrix between
operators (i.e., cdist and topk), space efficiency can be improved.
In deep learning systems, operator fusion is a common optimiza-
tion technique to fuse multiple operators into a single one in a
computational graph [15, 60, 64, 70, 93]. Fig. 7 compares simple
concatenation (subfigure a) and operator fusion (subfigure b) on
𝑘NN. Specifically, the latter executes the topk BTO on the cdist
BTO’s individual batches separately rather than running topk on
the full distance matrix outputted by cdist. Note that the global
𝑘 nearest neighbors (of the full dataset) can be identified from the
𝑘 local neighbor candidates from batches in the final aggregation,
so the result is still exact. This prevents moving the entire 𝑛 × 𝑛

distance matrix between operators, which often causes OOM. TOD
uses a rule-based approach to opportunistically fusing operators
to reduce the kernel launch overhead and data transfers between
CPUs and GPUs. TOD provides an interface that allows users to
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Input Dataset cdist: Calculate 
Pairwise Distance 𝐃

split 1

split 2

cdist( 
split 1, 
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cdist( 
split 2, 
split 1)

cdist( 
split 2, 
split 2)cdist+topk

Split by Samples topk: Return the 𝑘
neighbors by topk(𝐃)

(a) Simple concatenation: topk is invoked on the full result of cdist—
we need to communicate the large distance matrix D.

Input Dataset topk+cdist: Get 𝑘 neighbor 
candidates on batches

split 1

split 2

topk(cdist
(split 1, 
split 1))

topk(cdist
(split 1, 
split 2))

topk(cdist
(split 2, 
split 1))

topk(cdist
(split 2, 
split 2))

cdist+topk

Split by Samples Final 
Aggregation

(b) Operator fusion: topk is directly invoked on the batch result of
cdsit, preventing the communication of distance matrix D.

Figure 7: The comparison of automatic batching for 𝑘NN be-
tween simple concatenation and operator fusion. The latter
has better scalability by not creating and moving large dis-
tance matrix D.

add fusion rules for new OD operators. Appx. C.3 provides a case
study on the effectiveness of operator fusion.

6.2 Multi-GPU Support
To further reduce the execution time of OD algorithms on GPUs,
TOD also supports multi-GPU execution, which is important for
time-critical OD applications and has been widely used for other
data-intensive applications such as graph neural networks [38].
Intuitively, if there is only one GPU, TOD iterates across multiple
batches sequentially and aggregates the results. When multiple
GPUs are available, we could achieve better performance by execut-
ing OD computations concurrently onmultiple homogeneous GPUs.
Specifically, TOD first applies automatic batching to an underly-
ing task—multiple subtasks are created and assigned to available
GPUs. TOD creates a subprocess for each available GPU to execute
the assigned subtasks and a shared global container to store the re-
sults returned from each GPU. Since we equally distribute subtasks
across GPUs, we deem the runtime of each GPU is close. Once all
the subtasks are complete, the final output is generated by aggregat-
ing the results in the global container. For example, automatically
batching cdist in Fig. 6 leads to 4 subtasks, each of which calculates
the pairwise distances for a pair of splits (denoted as blue blocks in
the figure). Each of the four available GPUs executes an assigned
subtask and sends the cdist results to the global container. Finally,
the full cdist result is obtained by aggregating the intermediate
results in the global container. Note that the multi-GPU execution
is at the operator level (e.g., cdist). §7.7 evaluates TOD’s scalability
across multiple GPUs.

7 EXPERIMENTAL EVALUATION
Our experiments answer the following questions:
(1) Is TODmore efficient (in time and space) than SOTA CPU-based

OD system (i.e., PyOD) and selected GPU baselines? (§7.3)
(2) How scalable is TODwhile handling more and more data? (§7.4)

(3) How effective are provable quantization and automatic batch-
ing), in comparison to PyTorch implementation? (§7.5 & 7.6)

(4) How much performance gain can TOD achieve on the multiple
GPUs? (§7.7)

7.1 Implementation and Environment
TOD is implemented on top of PyTorch [76]. We extend PyTorch in
the following aspects to support efficient OD. First, we implement
a set of BTOs and FOs (see Fig. 2) for fast tensor operations in OD.
Second, for operators that support provable quantization (see §5)
and batching (see §6), we create corresponding versions of them to
improve scalability. Additionally, we enable specialized multi-GPU
support in TOD by leveraging PyTorch’s multiprocessing. The
usage and APIs of the open-sourced system can be found in §D.
Adding new operators . In addition to the BTOs and FOs listed in
Fig. 2, users can add new operators in TOD by defining the oper-
ator’s interface (i.e., the input and output tensors of the operator)
and providing an implementation of the operator in PyTorch. This
implementation will be used by TOD to decompose the operator
into PyTorch’s tensor algebra primitives and execute these primi-
tives in parallel on multiple GPUs. For operators that do not have
inter-sample or inter-feature dependency (see §6), TOD automati-
cally decomposes the operator’s computation into multiple batches.
For operators that involve both inter-sample and inter-feature de-
pendencies, TOD require users to provide a customized strategy to
decompose the operator into batches.
Implementing new OD algorithms . One notable characteristic
of OD is that most algorithms involve only straightforward compu-
tation, which can be decomposed into 2-3 BTOs and FOs. Therefore,
we expect that implementing new OD algorithms in TOD should
only involve low cognitive complexity. Appx. A demonstrates an
implementation of a recent ECOD [53] detection algorithm in TOD
in less than ten lines of code.
Experimental setup. All the experiments were performed on an
Amazon EC2 cluster with an Intel Xeon E5-2686 v4 CPU, 61GB
DRAM, and an NVIDIA Tesla V100 GPU. For the multi-GPU support
evaluation, we extend it to multiple NVIDIA Tesla V100 GPUs with
the same CPU node.

7.2 Datasets, Baselines, and Evaluation Metrics
Datasets. Table 2 shows the 11 real-world benchmark datasets
used in this study, which are widely evaluated in OD research
[21, 52, 82, 104] and available in the latest ADBench1 [33]. Given the
limited size of real-world OD datasets, we also build data generation
function in TOD to create larger synthetic datasets (up to 1.5 million
samples) to evaluate the scalability of TOD (see §7.4 for details).
OD algorithms and operators. Throughout the experiments, we
compare the performance of five representative but diverse OD
algorithms across different systems (see §2.1): proximity-based al-
gorithms including LOF [19], ABOD [43], and 𝑘NN [10]; statistical
method HBOS [31], and linear model PCA [85]. We also provide an
operator-level analysis on selected BTOs and FOs to demonstrate
the effectiveness of certain techniques.
Evaluation metrics. Since TOD and the baselines do not involve
any approximation, the output results are exact and consistent

1Datasets available at ADBench: https://github.com/Minqi824/ADBench
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Table 2: Real-world OD datasets used in the experiments. To
demonstrate the results on larger datasets, we also create
and use synthetic datasets throughout the experiments.

.

Dataset Pts (n) Dim (d) % Outlier

musk 3,062 166 3.17
speech 3,686 400 1.65
mnist 7,603 100 9.21
mammography 11,183 6 2.32
ALOI 49,534 27 3.04
fashion-mnist 60,000 784 10
cifar-10 60,000 3072 10
celeba 202,599 39 2.24
fraud 284,807 29 0.17
census 299,285 500 6.20
donors 619,326 10 5.93

across systems. Therefore, we omit the accuracy evaluation, and
compare the wall-clock time and GPU memory consumption as
measures of time and space efficiency.
Baselines. As discussed in Section 2, there is no existing GPU sys-
tem that covers a diverse group of OD algorithms (not even the
above five algorithms) for a fair comparison. Therefore, we use
the SOTA comprehensive system PyOD [105] as a CPU baseline in
§7.3 and 7.4, which is deeply optimized with JIT compilation and
parallelization. Regarding GPU baselines, we compare two repre-
sentative OD algorithms (i.e., 𝑘NN-CUDA [9] and LOF-CUDA [6])
that have GPU support in §7.3, and direct implementation of opera-
tors in PyTorch in §7.5, 7.6, and 7.7. Note that the implementation
of 𝑘NN-CUDA and LOF-CUDA are not open-sourced, so we follow
the original papers to implement.

7.3 End-to-end Evaluation
TOD is significantly faster than the leading CPU-based sys-
tem. We first present the runtime comparison between TOD and
PyOD in Fig. 8 using seven real datasets (ALOI, fashion-mnist, and
cifar-10) and Appx. Fig. C3 with three synthetic datasets (where
Synthetic 1 contains 100,000 samples, Synthetic 2 contains 200,000
samples, and Synthetic 3 contains 400,000 samples (all are with 200
features). The results show that TOD is on average 10.9× faster
than PyOD on the five benchmark algorithms (13.0×, 15.9×, 9.3×,
7.2×, and 8.9× speed-up on LOF, 𝑘NN, ABOD, HBOS, and PCA,
respectively). For proximity-based algorithms, a larger speed-up
is observed for datasets with a higher number of dimensions: LOF
and 𝑘NN are 28.1× and 38.9× faster on cifar-10 with 3,072 features.
This is expected as GPUs are well-suited for dense tensor multipli-
cation, which is essential in proximity-based methods. Separately, a
larger improvement can be achieved for HBOS and PCA on datasets
with larger sample sizes. For instance, HBOS is 11.83× faster on
Synthetic 1 (100,000 samples), while the speedup is 17.16× on Syn-
thetic 2 (200,000 samples). This is expected as HBOS treats each
feature independently for density estimation on GPUs, so a large
number of samples with a small number of features should yield
a significant speed-up. In summary, all the OD algorithms tested
are significantly faster in TOD than in the SOTA PyOD system,
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Figure 8: Runtime comparison between PyOD and TOD in
seconds on both real-world and synthetic datasets (see Appx.
Fig C3 for synthetic data results). TOD significantly outper-
forms PyOD in all w/ much smaller runtime, where the
speedup factor is shown in parenthesis by each algorithm.
On avg., TOD is 10.9× faster than PyOD (up to 38.9×).
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Table 3: Runtime comparison among selectedGPUbaselines
(𝑘NN-CUDA [9] and LOF-CUDA [6]; neither supports multi-
GPU directly), and TOD (single GPU) and TOD-8 (8 GPUs).
The first column shows three synthetic datasets with an in-
creasing number of samples (100 dimensions), and the most
efficient result is highlighted in bold for each setting. TOD-
8 outperforms in all cases due to multi-GPU support, while
TODwith a single GPU is faster or on par with the baselines.
Note that the GPU baselines run out-of-memory (OOM) on
large datasets (e.g., the last row), while TOD does not.

Dataset 𝑘NN-CUDA TOD TOD-8 LOF-CUDA TOD TOD-8

500,000 205.33 208.84 28.59 312.55 209 28.64
1,000,000 850.12 827 112.35 OOM 819 113.72
2,000,000 OOM 3173.39 430.29 OOM 3174.05 434.18

with the precise amount of speed improvement varying across algo-
rithms. Appx. C.2 shows that GPU computation takes most of the
run time for various OD algorithms, explaining the significant time
reduction by TOD. We also provide ablation studies to evaluate
provable quantization and automatic batching in Appx. C.4.
TOD can handle larger datasets than the GPU baselines. Due
to the absence of GPU systems that support all five OD algorithms,
we specifically compare the performance of TOD to specialized
GPU algorithms 𝑘NN-CUDA [9] and LOF-CUDA [6]. Table 3 shows
that TOD with 8-GPUs outperforms in all three datasets due to the
multi-GPU support, which enables it to handle data more efficient
than the baselines and TOD with a single GPU. By focusing on the
use of a single GPU, we find that TOD is faster or on par with both
baselines due to provable quantization (e.g., 33.13% speedup to LOF-
CUDA). Also note that the GPU baselines face the out-of-memory
issue (OOM) on large datasets (e.g., the last row of the table with
2,000,000 samples), while TOD can still handle it due to automatic
batching. In comparison to these specialized GPU baselines, TOD
does not only provide more coverage of diverse algorithms, but
also yields better efficiency and scalability.

7.4 Scalability of TOD
We now gauge the scalability of TOD on datasets of varying sizes,
including ones larger than fashion-mnist and cifar-10. In Fig. 9,
we plot TOD’s runtime with five OD algorithms on the synthetic
datasets with sample sizes ranging from 50,000 to 1,500,000 (all with
200 features). To the best of our knowledge, none of the existing
comprehensive OD systems can handle datasets with more than
a million samples within a reasonable amount of time [4, 103],
as most of the OD algorithms are associated with quadratic time
complexity. Fig. 9 shows that TOD can process million-sample OD
datasets within an hour, providing a scalable approach to deploying
OD algorithms in many real-world tasks.

7.5 Provable Quantization
Provable quantization (§5) in TOD can optimize the operator mem-
ory usage while provably preserving correctness (i.e., no accuracy
degradation). To demonstrate its effectiveness, we compare the GPU
memory consumption of two applicable operators, nwr and topk,
with and without provable quantization using the GPU baseline.

Table 4: Comparison of operator runtime (in seconds) with
provable quantization (i.e., 16-bit and 32-bit) and without
quantization (i.e., 64-bit) for nwr and topk. The best model
is highlighted in bold (per column), where provable quanti-
zation in 16-bit outperforms the rest in most cases.

Prec. mammog. mnist musk 10k 20k 30k
16-bit 2.66 0.54 0.06 0.87 3.02 6.56
32-bit 2.92 1.51 0.09 2.57 10.09 22.51
64-bit 3.31 1.53 0.09 3.49 12.7 27.32
(a) For nwr, 16-bit provable quantization outperforms in all

Prec. cifar-10 f-mnist speech 1M 2M 5M
16-bit 0.31 0.09 0.0054 0.58 1.16 2.90
32-bit 0.32 0.1 0.0048 0.70 1.40 3.52
64-bit 0.34 0.07 0.0038 0.71 1.73 3.88
(b) For topk, 16-bit provable quantization wins for large data

Multiple real-world and synthetic datasets are used in the compari-
son (see Table 2), where synthetic datasets’ names, such as “10k”
and “1M”, denote their sample sizes. We deem the 64-bit floating
point as the ground truth, and evaluate the provable quantization
results in 32- and 16-bit floating-point.

The results demonstrate that provable quantization always leads
to memory savings. Specifically, Fig. 10 (a-b) shows nwr with prov-
able quantization on average saves 71.27% (with 16-bit precision)
and 47.59% (with 32-bit precision) of the full 64-bit precision GPU
memory. Similarly, Fig. 10 (c-d) shows that topk with provable
quantization saves 73.49% (with 16-bit precision) and 49.58% (with
32-bit precision) of the full precision memory. Regarding the run-
time comparison, operating in lower precision may also lead to
an edge. Table 4 shows the operator runtime comparison between
using provable quantization (in 16-bit and 32-bit precision) and
using the full 64-bit precision. It shows that provable quantization
in 16-bit precision is faster than the computations in full preci-
sion in most cases, especially for large datasets (e.g., the last three
columns of Table 4). This empirical finding can be attributed to
lower-precision operations typically being faster, and this speed
improvement outweighs the overhead of post verification (see §5.4).
For small datasets (the first three columns of Table 4), provable
quantization does not necessarily improve the run time due to the
additional verification and data movement, both of which finish in
0.1 seconds.
Case study on runtime breakdown . In addition to comparing the
total runtime of an operator with or without provable quantization
(§7.5), it is interesting to see the time breakdown of each phase of
provable quantization. Specifically, the runtime of provable quanti-
zation can be divided into (i) operator evaluation in lower precision,
(ii) result verification and (iii) recalculation in the original precision
for the ones that fail in the verification. Taking nwr on 30k samples
as an example (the last column of Table 4a), we show the time break-
down of (i) low-precision evaluation (ii) correctness verification
and (iii) recalculation in higher precision in Table 5. In this case, the
performance improvement of provable quantization comes from
the reduced evaluation time in lower precision, which outweighs

555



50
00

0

20
00

00

50
00

00

75
00

00

10
00

00
0

12
50

00
0

15
00

00
0

0

1000

2000

3000

W
al

l T
im

e 
in

 S
ec

on
ds

TOD runtime

(a) LOF (quadratic)

50
00

0

20
00

00

50
00

00

75
00

00

10
00

00
0

12
50

00
0

15
00

00
0

0

1000

2000

3000

4000

W
al

l T
im

e 
in

 S
ec

on
ds

TOD runtime

(b) ABOD (quadratic)

50
00

0

20
00

00

50
00

00

75
00

00

10
00

00
0

12
50

00
0

15
00

00
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

W
al

l T
im

e 
in

 S
ec

on
ds

TOD runtime

(c) HBOS (linear)

50
00

0

20
00

00

50
00

00

75
00

00

10
00

00
0

12
50

00
0

15
00

00
0

0

500

1000

1500

2000

2500

3000

W
al

l T
im

e 
in

 S
ec

on
ds

TOD runtime

(d) 𝑘NN (quadratic)
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Figure 9: Scalability plot of selected algorithms in TOD, where it scales well with an increasing number of samples.
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Figure 10: GPU memory consumption comparison between using provable quantization (16-bit and 32-bit) and the full preci-
sion (64-bit). Clearly, provable quantization leads to significant memory consumption saving on nwr and topk.

Table 5: Runtime breakdown of using provable quantiza-
tion on nwr operator with a 30,000 sample synthetic dataset.
Column 1 shows the runtime for low-precision evaluation,
where column 2 and 3 show the runtime for correctness
verification and recalculation, respectively. It shows the pri-
mary speed-up comes from low-precision evaluation, while
the overhead of verification and recalculation is marginal.

Prec. Low Prec. Verification Recalculation Total

16-bit 5.91 0.05 0.61 6.56
32-bit 22 0.05 0.47 22.51
64-bit N/A N/A N/A 27.32

the cost of verification and recalculation. To further demonstrate
the necessity of post-verification, we also measure the accuracy
variation (e.g., ROC-AUC [4]) by simply running 𝑘NN detector
on fraud, census, and donors datasets in 16-bit precision without
post-verification, which leads to −3.48%, +1.05%, −4.27% accuracy
variation. These results show the merit of provable quantization
over direct quantization.

7.6 Automatic Batching
To evaluate the effectiveness of automatic batching, we compare
the runtime of multiple BOs and FOs under (i) an Numpy imple-
mentation on a CPU [34], (ii) a direct PyTorch GPU implementation
without batching [76], and (iii) TOD’s automatic batching.

Table 6 compares the three implementations of key operators in
OD systems. Clearly, TOD with automatic batching achieves the
best balance of efficiency and scalability, leading to 7.22×, 17.46×,
and 11.49× speedups compared to a highly optimized NumPy im-
plementation on CPUs. TOD can also handle more than 10× larger
datasets where the direct PyTorch implementation faces out of
memory (OOM) errors. TOD is only marginally slower than Py-
Torch when the input dataset is small (see the first row of each
operator). In this case, batching is not needed, and TOD is equiva-
lent to PyTorch; TOD is slightly slower due to the overhead of TOD
deciding whether or not to enable automatic batching.

7.7 Multi-GPU Results
We now evaluate the scalability of TOD on multiple GPUs on a
single compute node. Specifically, we compare the run time of three
compute-intensive OD algorithms (i.e., LOF, ABOD, and 𝑘NN) with
1,2,4, and 8 NVIDIA Tesla V100 GPUs.
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Table 6: Operator runtime comparison among implementa-
tions in NumPy (no batching), PyTorch (no batching) and
TOD (with automatic batching); the most efficient result is
highlighted in bold per row. Automatic batching in TOD
prevents out-of-memory (OOM) errors yet shows great effi-
ciency, especially on large datasets.

Operator Size NumPy PyTorch TOD
topk 10,000,000 7.88 1.08 1.09
topk 20,000,000 15.77 OOM 2.44
topk 100,000,000 OOM OOM 10.83

intersect 20,000,000 1.99 0.12 0.14
intersect 100,000,000 11 0.63 0.63
intersect 200,000,000 21.65 OOM 2.11

𝑘NN 50,000 20.15 0.27 0.28
𝑘NN 200,000 194.43 OOM 19.65
𝑘NN 400,000 818.32 OOM 71.22
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Figure 11: Runtime comparison of using different numbers
of GPUs (top: LOF; middle: ABOD; bottom: 𝑘NN). TOD can
efficiently leverage multiple GPUs for faster OD.

Fig. 11 shows that for three OD algorithms tested, TOD can
achieve nearly linear speed-upwithmore GPUs—the GPU efficiency
is mostly above 90%. For instance, the 𝑘NN result shows that using
2, 4, and 8 GPUs are 1.91×, 3.73×, and 7.34× faster than the single-
GPU performance. As a comparison, using 2, 4, and 8 GPUs with
ABOD and LOF are 1.85×, 3.63×, 7.14× faster and 1.91×, 3.70×,
7.27× faster, respectively. First, there is inevitably a small overhead
in multi-processing, causing the speed-up to not exactly be linear.
Second, the minor efficiency difference between 𝑘NN and ABOD
is due to most OD operations in the former being executed on
multiple GPUs, while the latter involves several sequential steps
that have to be run on CPUs. To sum up, TOD can leverage multiple
GPUs efficiently to process large datasets.

8 LIMITATIONS AND FUTURE DIRECTIONS
Tree-based OD algorithms. One limitation of TOD is that it does
not support tree-based OD algorithms such as isolation forests [55].
Tree-based operations involve random data access [51], which is not
friendly for GPUs designed for batch operations. Future work can
consider converting trees to tensor operations [67] for acceleration.
Approximate solutions. Our focus in this paper has been on exact
efficient, scalable implementations of OD algorithms. In particular,
we have not considered implementations that intentionally are
meant to be approximate, where for instance, one could trade off
between accuracy, computation time, and memory usage. Note
that even with our provable quantization technique, we ask for the
lower-precision computation to yield the correct (exact) output. A
future research direction is to extend TOD to support approximate
solutions for even better scalability and efficiency when reduced
accuracy is acceptable. For instance, exact nearest neighbor search
in can be switched to approximate nearest neighbor search [27, 94].
Heterogeneous GPUs. Thus far, we have not studied the use of
TOD with heterogeneous GPUs. In this setting, incorporating a
cost model could be helpful in balancing the workload between the
different GPUs, accounting for their different characteristics such
as varying memory capacities.
Gradient-based operators. Currently, TOD does not support op-
erators that involve solving an optimization problem via gradient
descent. Future work may consider incorporating optimization-
based operators to support (a small group of) optimization-based
OD algorithms, e.g., OCSVM [83].
Extension to classification. It is possible to use TOD to build
classification models, as the operators in TOD are generic and
may serve the tasks beyond OD. We provide an example of using
TOD to construct 𝑘 nearest neighbor classifier in Appx. B, which
also exhibits a significant performance improvement over the CPU
implementation in scikit-learn [77]. Note that classification tasks
often involve optimization (e.g., via gradient descent), which we
already pointed out that TOD does not yet support. Thus, only
calculation-based classifiers can be implemented by TOD for now.

9 CONCLUSION
In this paper, we propose the first comprehensive GPU-based outlier
detection system called TOD, which is on average 10.9 times faster
than the leading system PyOD and is capable of handling larger
datasets than existing GPU baselines. The key idea is to decompose
complex outlier detection algorithms into a combination of tensor
operations for effective GPU acceleration. Our system enables many
large-scale real-world outlier detection applications that could have
stringent time constraints. With the ease of extensibility, TOD can
prototype and implement new detection algorithms.
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