
Fast Subtrajectory Similarity Search in Road Networks
under Weighted Edit Distance Constraints

Satoshi Koide
Toyota Central R&D Labs.

koide@mosk.tytlabs.co.jp

Chuan Xiao
Osaka University and Nagoya

University

chuanx@nagoya-u.jp

Yoshiharu Ishikawa
Nagoya University

ishikawa@i.nagoya-
u.ac.jp

ABSTRACT
In this paper, we address a similarity search problem for spatial
trajectories in road networks. In particular, we focus on the
subtrajectory similarity search problem, which involves finding
in a database the subtrajectories similar to a query trajectory. A
key feature of our approach is that we do not focus on a specific
similarity function; instead, we consider weighted edit distance
(WED), a class of similarity functions which allows user-defined
cost functions and hence includes several important similarity
functions such as EDR and ERP. We model trajectories as strings,
and propose a generic solution which is able to deal with any
similarity function belonging to the class of WED. By employing
the filter-and-verify strategy, we introduce subsequence filtering
to efficiently prunes trajectories and find candidates. In order to
choose a proper subsequence to optimize the candidate number,
we model the choice as a discrete optimization problem (NP-
hard) and compute it using a 2-approximation algorithm. To
verify candidates, we design bidirectional tries, with which the
verification starts from promising positions and leverage the
shared segments of trajectories and the sparsity of road networks
for speed-up. Experiments are conducted on large datasets to
demonstrate the effectiveness of WED and the efficiency of our
method for various similarity functions under WED.

PVLDB Reference Format:
Satoshi Koide, Chuan Xiao, Yoshiharu Ishikawa. Fast Subtrajectory
Similarity Search in Road Networks under Weighted Edit Distance
Constraints. PVLDB, 13(11): 2188-2201, 2020.
DOI: https://doi.org/10.14778/3407790.3407818

1. INTRODUCTION
Vehicular transportation is facing a crucial turning point

as data-driven information technology advances. Data-driven
approaches, such as intelligent routing and ride-sharing, are
expected to resolve important social issues, such as environmen-
tal problem and traffic congestion; they are therefore actively
studied in many fields, including database research. Accord-
ingly, fundamental operations, such as indexing and retrieval,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407818

Q2
P2

P1

Q1

(a) Subtrajectory Matching (b) Whole Matching

Figure 1: Subtrajectory matching/Whole matching.

on huge vehicular trajectory data are becoming increasingly
important [19,20,22,23,41,47,63].

This paper addresses the similarity search problem over
trajectories in road networks, which is a classical but still active
area of spatial database research [41, 47,54, 55,63]. Unlike most
existing studies that target whole matching between data and
query trajectories (i.e., the entire trajectories are similar), we
tackle the subtrajectory similarity search problem, which finds
in a vehicular trajectory database the subtrajectories similar to
a query (Figure 1).
Why subtrajectory similarity search? One motivating
application is travel time estimation along a given path. Recent
on-the-fly approaches [51, 52] estimate the travel time distribu-
tion by retrieving historical trajectories that contain the query
path as a subtrajectory immediately after the query arrived.
Other applications include alternative route suggestion that
finds the variations of a query path in the database as alternative
routes and path popularity estimation [8, 20, 29] that counts
the frequency of appearance of a given path in the database as
a subtrajectory.

Exact path queries have been studied for subtrajectory
search [20, 23]; however, exact path queries only find tra-
jectories containing a subtrajectory that exactly matches a
query trajectory. Hence similarity queries are adopted to
retrieve more semantically relevant results for various applica-
tions [6, 7, 17, 39, 41, 44, 47, 57, 62, 63]. For example, similarity
queries can handle the errors caused by sampling strategies,
spatial transformations, or natural noises [6, 7, 44,47,63], which
are common in real data. In addition, travel time estimation
suffers from data sparsity (i.e., there are few historical trajecto-
ries that exactly travel a query path in the specified time slot)
even in urban areas. Subtrajectory similarity queries have been
used to address this issue; e.g., by path similarity [16] or road
segment similarity (types, number of lanes, etc.) [50], based
on the observation that paths or road segments with similar
contexts may have similar travel time.
Trajectory similarity functions. To measure the similarity
between trajectories, a similarity function must be selected.
Albeit many trajectory similarity functions have been proposed
[6, 7, 11, 14, 39, 40, 42, 45, 47, 54, 55, 57, 62, 63], as demonstrated
experimentally [6, 7, 47,63]), every similarity function has its

2188

own advantages and disadvantages. In other words, there is no
“best” trajectory similarity function, and the choice depends on
the application scenario. Accordingly, for trajectory similarity
search, general methodologies that do not depend on a specific
similarity function are preferable.

In this paper, we consider weighted edit distance (WED), a
class of similarity functions that includes several ones commonly
used in trajectory analysis, such as edit distance on real se-
quences (EDR) [7] and edit distance with real penalty (ERP) [6],
which have been shown capable of handling different sampling
strategies, spatial transformations, and/or noises, and better
than other functions such as dynamic time warping (DTW) and
longest common subsequence (LCSS) [44]. WED is flexible in
the sense that it allows user-defined cost functions. As such, it
not only covers EDR and ERP but also their extensions (e.g., the
adaptations using road network distance instead of binary or
Euclidean distance). WED also captures the semantics of the
aforementioned similarities for travel time estimation [16, 50],
and is able to measure the road segments that differ between two
trajectories, thereby (reversely) expressing semantics similar
to longest overlapping road segments (LORS) [47] and longest
common road segments (LCRS) [63].
Challenges. For real applications like trajectory analysis [41,
63], it is desirable to return query results in seconds or even
less. Trajectories in road networks can be modeled as strings,
and the problem is converted to substring search. A naive
approach is scanning the database using the Smith-Waterman
algorithm [43]; however, this is inefficient for large datasets
as it does not employ indexing. For fast query processing,
most string similarity algorithms resort to the filter-and-verify
paradigm, which finds a set of candidates and then verify them.
The most widely used is q-gram filtering [10, 13, 37, 53, 56] (also
for trajectories [7]). However, it targets Levenshtein distance
(unit cost) and does not deliver efficient performance for WED,
because the lower bound of common q-gram number become
very loose (even ≤ 0 and thus useless) when substitution cost
is arbitrarily small (e.g., ERP). Partition-based [25, 49] and
trie-based [12] methods are not applicable either, because it is
hard to derive the partition size for WED, and they are designed
for whole matching. Another key property resides in the sparsity
of road networks (i.e., the alphabet is very large but spatially
restricted), which has not been exploited in these solutions.
Another line of work is trajectory similarity methods [6,41,47,63].
However, these techniques are designed for whole matching and
become inefficient or inapplicable on subtrajectories. Many
of them rely on their own similarity functions (e.g., the ERP-
index [6] exploits the triangle inequality) or need adaptations to
switch between functions (e.g., DITA [41] requires a pivoting
strategy depending on the similarity function). Moreover, all
the aforementioned methods bear no performance guarantee
on candidate size. Seeing these challenges, we aim to design
a unified yet efficient algorithm applicable to a wide range of
similarity functions under the class of WED.
Contributions. Our contributions are as follows:

• We propose the first indexing and retrieval method for trajec-
tories in road networks that supports subtrajectry search on
WED. The query processing algorithm does not depend on a
specific similarity function; it supports any user-specified edit
distance with a unified and exact algorithm such that there
is no need to adapt the algorithm to switch between similarity
functions. To tackle the efficiency issue, we model trajectories
as strings and follow the filter-and-verify paradigm.

• To generate candidates, we propose the subsequence fil-
tering (§ 3), such that any trajectory in the result set must
share at least one element, or a neighbor (in terms of the
cost functions) of the element, with a chosen subsequence
of the query. In order to choose a subsequence to optimize
the candidate size, we model this as a discrete optimization
problem and show its NP-hardness as well as a polynomial-
time 2-approximation algorithm. We also give the condition
under which this algorithm finds the optimal subsequence.
Indexing and search algorithms (§ 4) are devised based on
this filtering strategy.
• To verify candidates (§ 5), we start with the positions at which

candidates are found and develop pruning techniques for a
local verification algorithm, so that only the promising
part of each candidate is computed for WED. We share
computation for the common subtrajectories of candidates,
and design bidirectional tries to cache such computation
by exploiting the sparsity of road networks which leads to
low cache miss rate.
• We conducted extensive experiments on large real datasets

(§ 6). The results demonstrate the effectiveness of WED and
the efficiency of our method on various similarity functions
under the class of WED, as well as the effectiveness of the
components in the proposed solution.

2. PRELIMINARIES

2.1 Framework and Data Model
We assume trajectories are constrained in a road network. A

query essentially consists of three components: (i) a trajectory,
(ii) a distance function, and (iii) a distance threshold. On receiv-
ing a query, we find the data trajectories that approximately
(satisfying the distance constraint) contains the query as a
subtrajectory. In this paper, we assume datasets and indexes
are stored in main memory.

The road network is modeled as a directed graph G = (V,E).
Each vertex v ∈ V is associated with its coordinate in R2. Each
edge e ∈ E is associated with a weight (e.g., travel time or
distance in a road network) denoted by w(e).

A trajectory is modeled as a path on G, i.e., a consecutive
sequence v1v2 · · · vn of vertices. We refer to this trajectory
representation as vertex representation. Equivalently, the path
can be represented by the corresponding edge representation
e1e2 · · · en−1, where ei = (vi, vi+1) ∈ E. These representations
can be converted from raw trajectory (a sequence of spatial
coordinates) through map matching (we employ the HMM map
matching for this purpose [35]). The techniques proposed in
this paper can support both representations.

Timestamps are associated with each trajectory. Following
the trajectory models in existing studies (e.g., [20, 23]), we as-
sume that timestamps are recorded at each vertex. In summary,
we employ the following definition of trajectories:

Definition 1 (Trajectory) A trajectory is a tuple (P, T),
where P is a path on G, and T is a sequence of timestamps
associated with each vertex in P .

We first focus on dealing with paths and then extend our
techniques to the case with time constraints. Thus, we also
denote a trajectory by its path P .
Notation. A path can be regarded as a string. We denote
an alphabet set by Σ. For vertex representation, Σ = V . For
edge representation, Σ = E. The set of all possible strings on

2189

Σ is denoted by Σ∗. An empty symbol is denoted by ε, and
Σ+ := Σ ∪ {ε}. Given a trajectory P , its i-th element is Pi,
and a subtrajectory (substring) of A from i to j is Pi:j (if i > j,
Pi:j represents an empty string). |P | denotes the length of the
trajectory (string). We say P ′ v P if P ′ is a subtrajectory of
P . Similarly, P ′ ⊆ P means that P ′ is a subsequence of P ;
i.e., there exist i1, i2, · · · , ik such that i1 < i2 < · · · < ik and
P ′ = Pi1Pi2 · · ·Pik . {1, 2, · · · , n} is denoted by [[n]].

2.2 Weighted Edit Distance

2.2.1 Concept
The Levenshtein distance, the most fundamental form of

edit distance (on strings), counts the minimum number of edit
operations needed to convert a string P into another string Q.
The edit operations usually consists of insertion, deletion, and
substitution of a symbol.

We consider a general class of edit distances where the costs
of edit operations can take any values. Given two symbols
a, b ∈ Σ, we denote the insertion, deletion and substitution
costs by ins(a), del(b), and sub(a, b), respectively. The weighted
edit distance (WED) between two trajectories P = P1:m and
Q = Q1:n, denoted by wed(P,Q), is defined recursively:

wed(ε,Q1:n) =

n∑
j=1

ins(Qj), wed(P1:m, ε) =

m∑
i=1

del(Pi),

wed(P1:m, Q1:n)=min

wed(P1:m−1, Q1:n−1)+sub(Pm, Qn),

wed(P1:m−1, Q1:n) + del(Pm),

wed(P1:m, Q1:n−1) + ins(Qn).

We can compute wed(P1:m, Q1:n) by dynamic programming in
O(mn) time. Furthermore, to keep notation simple, we define
sub(a, ε) := del(a) and sub(ε, b) := ins(b).

Assumptions. To obtain a meaningful similarity function,
we make some assumptions on the edit operation costs. First, to
make wed(P,Q) nonnegative, we assume sub(a, b) ≥ 0 for a, b ∈
Σ+. To make wed(P,Q) symmetric, we assume sub(a, b) =
sub(b, a) (and this implies ins(a) = del(a)). Finally, to make
wed(P, P) = 0 hold, we assume sub(a, a) = 0. Note that we do
not enforce the triangle inequality wed(P,Q) ≤ wed(P,R) +
wed(R,Q). Also, we do not enforce wed(P,Q) = 0⇒ P = Q,
i.e., wed(P,Q) = 0 does not mean P = Q.

Proposition 1 With the assumptions above, we have:
(i) wed(P,Q) ≥ 0, (nonnegativity); (ii) wed(P, P) = 0, (pseudo-
positive definite); (iii) wed(P,Q) = wed(Q,P). (symmetry)

Proposition 1 implies that WED is not metric in general.
Next, we show that WED contains some existing similarity
functions as special cases.

2.2.2 Known Instances of WED
Levenshtein Distance. The well-known Levenshtein dis-
tance (Lev) is obtained by setting

sub(a, b) =

{
0, (a = b)

1, (a 6= b)
, ins(a) = 1, del(b) = 1. (1)

This can be used for both the vertex and edge representations.

Edit Distance on Real Sequence (EDR). EDR [7] is de-
fined on real-valued sequences. For the data trajectoryP , we use

vertex representation. A query Q is not necessarily restricted
on road networks. We can cover EDR by setting

sub(a, b) =

{
0, (d(a, b) ≤ ε)
1, (otherwise)

, ins(a) = 1, del(b) = 1, (2)

where ε > 0 is a predefined matching threshold. We employ
Euclidean distance for d(a, b). EDR is not a metric, i.e., the
triangle inequality does not hold.

Edit Distance with Real Penalty (ERP). ERP [6] is also
defined on real-valued sequences, obtained by setting

sub(a, b) = d(a, b), ins(a) = d(a, g), del(b) = d(b, g), (3)

where g ∈ R2 is a predefined reference point (e.g., the barycenter
of the vertices in V). ERP is a metric.

2.2.3 Network-aware Similarity Functions
WED is more flexible than the aforementioned distance

functions in the sense that users can define their own costs
tailored to the application; e.g., for trajectory analysis in a road
network, users may use a distance defined on the road network
instead of Euclidean distance, or count the road segments that
differ in two trajectories. Next we show some examples.

NetERP and NetEDR. A popular trajectory similarity defi-
nition employs shortest path distance between two vertices a
and b [11, 14, 39, 40, 45]. By replacing Euclidean distance in
EDR (Eq.(2)) and ERP (Eq.(3)) with shortest path distance,
we obtain new similarity functions, referred to as NetEDR and
NetERP, respectively. For directed graphs, shortest path dis-
tance is not symmetric, which violates the assumption above.
One way to fix this is to make the road network undirected.

In ERP, we need a reference point; in NetERP, we use a

constant insertion/deletion cost instead, G
(del)
NetERP > 0, defined

by users. This makes NetERP non-metric, but this does not
affect our method since it does not use the triangle inequality.

Shortest Unshared Road Segments (SURS). Another
idea behind several existing similarity functions is to evaluate
the total edge weights (e.g., distance or travel time) that are
shared (or unshared) between two trajectories [47,54,55,63]. To
express such semantics using WED, we define shortest unshared
road edges (SURS) for trajectories in edge-representation:

sub(a, b) = w(a) + w(b), ins(a) = w(a), del(b) = w(b), (4)

where w(a) is a given travel cost for a road edge a ∈ E. Because
sub(a, b) = ins(a) + del(b), substitution is equivalent to a com-
bination of insertion and deletion; therefore, SURS essentially
counts the total travel costs of edges not shared between two
trajectories, considering the order of sequence elements. Note
that the functions in [47, 54, 55, 63] measure similarity, while
SURS measures distance.

Example 1 Given two paths P = befg ∈ Σ∗ and Q =
abcdg ∈ Σ∗ the optimal alignment that yields the SURS is:

- b - - e f g (= P)

a b c d - - g (= Q).

SURS(P,Q) is the total cost of the edges aligned to the gap
symbol, i.e., w(a) + w(c) + w(d) + w(e) + w(f).

So far we have discussed WED instances. Furthermore, given
a supervised machine learning task, we may optimize the edit
operation costs of WED using a technique in [18].

2190

2.2.4 Other Similarity Functions
There are also other similarity functions not belonging to

WED. For example, in DTW, one element of a trajectory can
be aligned to multiple elements in the other; this is not allowed
in WED. LCSS, LORS, and LCRS are not WED either, because
they are measure common subsequence rather than distance.

2.3 Problem Setting
To give a formal definition of our subtrajetory search problem,

we first define the term subtrajectory matching.

Definition 2 (Subtrajectory Matching) Given a query
Q ∈ Σ∗ and a trajectory P ∈ Σ∗, we say a subtrajectory
Pi:j of P matches Q (and vice versa) iff wed(Pi:j , Q) < τ ,
where τ is a threshold.

Example 2 Consider a trajectory P = ABCDE. As |P | = 5,
there are |P |(|P |+ 1)/2 = 15 subtrajectories. Consider a query
Q = BFD under Lev with τ = 2. Then, P2:4 = BCD satisfies
wed(P2:4, Q) = 1 < τ and thus matches Q (note that we use

“<” not “≤” in the problem definition).

We denote a set ofN data trajectories byT ={(P (id), T (id)}Nid=1.
Our problem is defined as follows.

Definition 3 (Subtrajectory Similarity Search) Given
(Q, T ,wed, τ), find in T the subtrajectories that match Q, i.e.,

SubtrajSimSearch(Q, T,wed, τ)={(id, s, t) | P (id)
s:t matches Q}.

To avoid the case that Q is similar to an empty trajectory
(i.e., wed(Q, ε) < τ), we assume that

∑
q∈Q ins(q) ≥ τ for a

meaningful problem definition.
Temporal Constraints. Some applications require consid-
eration of temporal condition. For the on-the-fly travel time
estimation mentioned in § 1, searching trajectories that traveled
during a given time interval, say I, is important (e.g., rush hour).
This condition can be written as [Ti, Tj] ⊆ I, or [Ti, Tj]∩ I 6= ∅,
where i and j are the matched positions in Definition 2. An-
other application may require constraints on average speed (i.e.,
D(Pi:j)/(Tj − Ti) where D is the distance of Pi:j) or travel
time for the query or some of the road segments.

A simple and general approach is checking temporal con-
straints after solving the subtrajectory similarity search. This
allows us to treat any kind of temporal constraints. For some
cases, however, speed-up can be achieved by considering tempo-
ral conditions during the filtering step, as discussed in § 4.3.

3. FILTERING PRINCIPLE
We consider designing an exact solution to subtrajectory

similarity search. A naive solution is enumerating all subtra-
jectories of the trajectories in T and computing the WED to
the query. The time complexity is O(

∑N
id=1 |P

(id)|3 · |Q|). An
improvement is achieved by the Smith-Waterman (SW) algo-
rithm [43] 1. It avoids enumerating subtrajectories and checks if
Q matches some Pi:j in O(|P | · |Q|) time (note that the thresh-
old τ can be exploited for speed-up but it does not improve
the time complexity), hence reducing the time complexity of

processing a query to O(
∑N
id=1 |P

(id)| · |Q|). However, this
is still inefficient when the dataset is large or the trajectories

1The SW here is slightly different from the standard one which
performs local alignment. We adapt SW to our problem by
changing the boundary condition of dynamic programming. The
pseudo-code is given in Appendix A of the extended version [21].

are long. Our experiments show that it spends more than 30
minutes to answers a query on a dataset of 1 million trajectories,
using NetEDR as distance function.

Observing the inefficiency of the above baseline methods, we
resort to indexing trajectories offline and answering the online
query with a filter-and-verify paradigm: by a filtering strategy,
we first find a set of candidates, i.e., the data trajectories (along
with the positions) that are probable to yield a match; and
subsequently verify these candidates. Note that traditional filter-
and-verify techniques for strings (e.g., q-grams and partition-
based methods) are inefficient or inapplicable for WED on
subtrajectories, as we have discussed in § 1.

3.1 Subsequence Filtering
The basic idea of our novel filtering principle, referred to as the

subsequence filtering, is to choose a subsequence Q′ of the query
Q and derive a lower bound of WED using Q′. To guarantee
to find all the answers to the query, we need a subsequence Q′

such that if the lower bound reaches τ , then any trajectory P
having a subtrajectory match to Q must contain at least one
element (or one neighbor of the element) in Q′. To this end, we
start with analyzing the effect of edit operations.

Given two (non-empty) trajectories P and Q on Σ, consider
converting Q into P with some edit operations. If a symbol
q ∈ Q does not appear in P , q must be substituted or deleted
from Q. For deletion, we need to pay a cost sub(q, ε). To
substitute q with any q′ ∈ Σ\{q}, we need a cost sub(q, q′).
Therefore, to substitute or delete q, the cost is at least

c̃(q) := min
q′∈Σ+\{q}

sub(q, q′).

Example 3 Consider two trajectories P = BCD and Q = ABC

on an alphabet Σ = {A, B, C, D}. Assume the following cost

sub(A, A) sub(A, B) sub(A, C) sub(A, D) del(A)
0 5 3 6 4

Consider q = A in Q. We see that A does not appear in P and
the minimum cost to delete or substitute this A turns out to be
c̃(A) = sub(A, C) = 3.

Based on the cost c̃(q), we can derive a lower bound. For
the general case of WED, an issue is that this lower bound can
become loose if there exists q′ ∈ Σ+\{q} with a small cost; e.g.,
considering EDR, even if q′ 6= q, sub(q, q′) can be zero (when
d(q, q′) ≤ ε). To address this issue and derive the filtering
principle, we propose the concept of substitution neighbors.

Definition 4 (Substitution Neighbors) Given a symbol
q ∈ Σ, the substitution neighbors of q are defined by

B(q) := {b ∈ Σ | sub(q, b) ≤ η}, (5)

where η ≥ 0 is a cost threshold, depending on the cost function
(we discuss the choice of η below). For example, by setting
η = 0 in EDR, B(q) is a set of vertices b ∈ V such that
d(q, b) ≤ ε (⇔ sub(q, b) = 0). Note that q ∈ B(q) always
holds as sub(q, q) = 0. Given a sequence Q ∈ Σ∗, we define the
substitution neighbor of Q by

B(Q) :=
⋃
q∈Q

B(q). (6)

Intuitively, B(Q) is comprised of the vertices (or edges) that
are either in Q or too close to those in Q to deliver significant
cost. By considering the costs of the elements in B(Q), we

2191

can obtain c(Q), a lower bound of the cost of substituting or
deleting all the elements in B(Q), which leads to the following
filtering principle 2.

Theorem 1 (Subsequence Filtering Principle) Given a
subtrajectory P ′ v P ∈ Σ∗ and a query Q ∈ Σ∗, suppose a
subsequence Q′ ⊆ Q such that P ′ ∩ B(Q′) = ∅ and c(Q′) :=∑

q∈Q′ c(q) ≥ τ where

c(q) := min
q′∈Σ+\B(q)

sub(q, q′). (7)

Then wed(P ′, Q) ≥ τ .

We refer to a subsequence Q′ satisfying c(Q′) ≥ τ as a τ -
subsequence of Q. The filtering principle states that if P ′ does
not share any element with B(Q′), where Q′ is a τ -subsequence
of Q, then it is guaranteed that P ′ is not a result. Computing
each c(q), q ∈ Q′is sublinear-time w.r.t. |V | or |E|: For ERP,
the complexity isO(log |V |) using a kd-tree. For other similarity
functions in § 2.2, the complexity is O(1), because c(q) is 1
for EDR, Lev, and NetEDR, the smallest edge cost from q for
NetERP, and del(q) for SURS. Further, we make two remarks
on this filtering principle:
• The filtering is not limited to a specific cost function. Hence

it can be used for the general purpose.
• Q′ can be an arbitrary subsequence of Q (we discuss the

choice of Q′ in § 3.2).
Candidates are only found in the trajectories that pass the
filtering principle. Since we are going to look up an inverted
index with the elements inB(Q′) to identify candidates (§ 4), we
denote each candidate by a triplet (id, j, iq). id is the trajectory

ID. j and iq are positions in P (id) and Q, respectively, at which

the candidate is identified; i.e., P
(id)
j ∈ B(Qiq), Qiq ∈ Q′.

Example 4 Suppose η = 0 and the following cost matrix.

q sub(q, A) sub(q, B) sub(q, C) sub(q, D) del(q) c(q)
A 0 5 3 6 4 3
B 5 0 2 0 1 1
C 3 2 0 5 3 2
D 6 0 5 0 4 4

Consider Q = ABC. By definition, we have B(A) = {A},
B(B) = {B, D}, B(C) = {C}, and B(D) = {B, D}. Taking the
minimum over Σ+\B(q) for each row, we have c(q) as in the

table above. Consider P (1) = BCDBCD, P (2) = DABCBA, and
P (3) = ABABAB. Consider τ = 3 and Q′ = A ⊆ Q, which satis-
fies c(Q′) ≥ τ . As P (1)∩Q′ = ∅, P (1) can be pruned (its subtra-
jectory closest to Q is BC, where wed(BC, Q) = del(A) = 4 6< τ).

Since P (2) and P (3) contains A, they pass the filter and gener-
ate candidates: (P (2), 2, 1), (P (2), 6, 1), (P (3), 1, 1), (P (3), 3, 1),

and (P (3), 5, 1). By verification, only (P (2), 2, 1) yields a result
ABC because wed(ABC, Q) = 0 < τ . Other candidates are false

positives (e.g., the closest subtrajectory to Q in P (3) is ABA,
where wed(ABA, Q) = 3 6< τ).

Choice of η. (1) For discrete cost functions (e.g., Lev and
EDR), we can use η = 0, which excludes only symbols a ∈ Σ+

with sub(q, a) = 0, q ∈ Q′. (2) For continuous cost functions
(e.g., ERP), since the cost can be arbitrarily small, we need a
small positive number for η to prevent the lower bound, c(Q′),
becoming too loose (an extreme case is that c(Q) < τ , making
the choice of τ -subsequence impossible). We may tune η for the
tightness of c(Q)′. With increasing η, c(Q′) increases, leading

2The proofs are given in Appendix B of the extended version [21].

to a tighter lower bound; however, the number of symbols in
B(Q′) also increases, which results in a larger candidate set.
Setting η to τ

|Q| guarantees that a τ -subsequence can be found.

3.2 Finding Optimal τ -Subsequence
The subsequence filtering (Theorem 1) holds for any Q′ ⊆ Q

that satisfies c(Q′) ≥ τ . To reduce computational cost in
verification, we propose to choose a subsequence that minimizes
the number of candidates.

According to the subsequence filtering, (P, T) ∈ T such that
P ∩B(Q′) 6= ∅ will generate candidate trajectories. Let n(q)
be the frequency of a symbol q ∈ Σ that appears in T . We note
that the frequency is counted multiple times if q occurs multiple
times in a data trajectory, because we also record the positions
j and iq in a candidate. The total number of symbols in T
that intersects with B(q) is

∑
b∈B(q) n(q). Therefore, we can

formulate an optimization problem that minimizes the number
of candidates as follows.

Definition 5 (Minimum Candidate Problem) The min-
imum candidate problem (MinCand) is to find a subsequence
Q′ ⊆ Q defined by the following discrete optimization problem:

min
Q′⊆Q

∑
q∈Q′

∑
b∈B(q)

n(b), subject to
∑
q∈Q′

c(q) ≥ τ. (8)

Example 5 Consider the same trajectories and cost matrix as
Example 4. The frequencies are n(A) = 5, n(B) = 7, n(C) = 3,
and n(D) = 3. There are seven subsequences ofQ = ABC, namely
A, B, C, AB, AC, BC, and ABC. Among them, A, AB, AC, BC, and
ABC satisfy the constraint

∑
q∈Q′ c(q) ≥ τ = 3. Evaluating the

objective function for each subsequence, we obtain:

Q′ A AB AC BC ABC

Obj. 5 15 8 13 18

Hence, Q′ = A is the optimal solution (note: as B(B) = {B, D},
we have

∑
b∈B(B) n(b) = n(B) + n(D) = 10).

Remark. Given symbols q and q′ inQ, ifB(q)∩B(q′) 6= ∅, say
q′′ is a common element of B(q) and B(q′), then Eq.(8) counts
trajectories that travel on q′′ twice. The elements counted
multiple times are treated distinctly as they correspond to
different candidates (distinct iq and iq′). To see the formulation
does not violate the correctness of the search algorithm, there
are |Q′| elements in Q′, each q ∈ Q′ has |B(q)| substitution
neighbors, and each neighbor b generates n(b) candidates (i.e.,
the number of (id, j) pairs is n(b) in T). Besides, there is no
duplicate among these candidates due to distinct (id, j) and iq.
Hence the objective in Eq.(8) is exactly the candidate size.

Next we discuss the computational aspects of MinCand. An
observation is that MinCand is similar to the 0-1 knapsack
problem. In fact, it can be reduced from the Minimum Knapsack
Problem (MKP) [5], defined as follows.

min
S⊆[[K]]

∑
k∈S

Wk, subject to
∑
k∈S

Vk ≥ D. (9)

K is the number of items; Wk is the weight of an item and Vk is
its value. The goal is to select a minimum weight subset of items
S ⊆ [[K]], such that the total value is no less than a demand D.
Hence we have

Proposition 2 MinCand is NP-hard.

Seeing the NP-hardness, we employ an approximation algo-
rithm (Algorithm 1) based on [5] (MinCand can be reduced

2192

Algorithm 1: MinCand(Q,n, c, τ)

1 Nq ←
∑
b∈B(q) n(b) (∀q ∈ Q); . Trajectory freq.

2 Q′ ← ∅; wq ← 0 (∀q ∈ Q); . Initialize
3 while τ > c(Q′) do . Constraint (8)
4 vq ← (Nq − wq)/min{c(q), τ − c(Q′)} ∀q ∈ Q\Q′;
5 q∗ ← argminq∈Q\Q′{vq}; . Choose greedily

6 wq ← wq + min{c(q), τ − c(Q′)} · vq∗ ∀q ∈ Q\Q′;
7 Q′ ← Q′ ∪ {(q∗, iq∗)}; . iq∗:position of q∗ in Q

8 return Q′

to MKP and thus we can use the algorithm for MKP, see
Proposition 3). In brief, this algorithm starts with an empty
subsequence Q′, and greedily adds an item q∗ that has the
minimum vq value (Lines 4–5) to Q′. Intuitively, if Nq/c(q) is
small, the item would be worth choosing because we want to
choose one with small Nq and large c(q). Following the justi-
fication in [5], we extend this idea with a slight modification,
and use (Nq − wq)/min(c(q), τ − c(Q′)) as vq, where the wq
variables (Line 6) are related to the dual problem of Eq. (9).
We stop this procedure when the constraint in Eq. (8) (i.e.,
τ ≤ c(Q′) :=

∑
(q,iq)∈Q′ c(q)) is satisfied. At Line 7, we also

record iq, which is the position of q in Q. This information is
carried when candidates are generated.

Example 6 Suppose that Q = ABCD, c = [1, 2, 3, 4] and N =
[5, 2, 9, 8]. If τ = 4, we have v = [5, 1, 3, 2]. Hence, we add the
second item, B, and its position, 2, to Q′. Then we update w =
[1, 2, 3, 4] and τ − c(Q′) = 4− c(B) = 2. In the next iteration,
we have v = [4/1, -, 6/2, 4/2] and we add the forth item, (D, 4)
to Q′. This results in τ − c(Q′) = 4 − c(B) − c(D) = −2 and
we stop the iteration and obtain Q′ = {(B, 2), (D, 4)}. Although
this Q′ is not the optimal one Q∗ = {(D, 4)}, we have a good
approximation (10/8=25% loss compared to the optimal).

Algorithm Property. Algorithm 1 runs in O(|Q|2) time.
Further, the following statement holds.

Proposition 3 Let f∗ be the optimal objective value of Eq. (9).
The approximation ratio of Algorithm 1 is 2, i.e., the approxi-
mated objective value is not greater than 2f∗.

For a special case, the following stronger result holds (EDR, Lev,
and NetEDR satisfy this property).

Proposition 4 If c(q) is a constant function, i.e., c(q) = c′,
Algorithm 1 returns the optimal solution of MinCand.

Solving MinCand is similar to finding best substrings (incl.
q-grams) for string similarity problems [24, 25, 37, 48, 60]. The
main differences are: (1) They mainly target Levenshtein dis-
tance on entire strings, while we cope with WED on substrings.
(2) They resort to either heuristics [25, 37] or an offline con-
structed dictionary [24, 48, 60] without performance guarantee
on candidate size, while we model this as a discrete optimization
problem solved by a 2-approximation algorithm.

4. INDEXING AND SEARCH ALGORITHM

4.1 Indexing
Our indexing method employs inverted index [30], which

is widely used for keyword search and also used to deal with
trajectory similarity search (e.g., [47, 63]). We store data
trajectories in the postings list (denoted by Lq) of each symbol

Algorithm 2: SubtrajSimSearch(Q, T ,wed, τ)

input :Query: Q; Database: T ; Similarity function: wed;
Similarity threshold: τ

1 Q′ ← MinCand(Q,n, c, τ) . Optimize τ-subsequence
2 C ← ∅
3 for (q, iq) ∈ Q′ do
4 for b ∈ B(q) do
5 for (id, j) ∈ Lb do
6 C ← C ∪ {(id, j, iq)}

7 A ← Verify(C, Q, τ) . See Algorithm 3 in § 5
8 return A

q ∈ Σ. A record in Lq is in the form of (id, j), where id is the ID

of a trajectory that passes q and j is its position, i.e., P
(id)
j = q.

We can update the index by appending a new record to the
corresponding postings list.

4.2 Search Algorithm
We propose an algorithm for subtrajectory similarity search

problem based on the subsequence filtering in § 3. Algorithm 2
shows a skeleton of the algorithm.

Given a query Q, we first generate candidates based on
Theorem 1. This states that for any subsequence Q′ satisfying
c(Q′) ≥ τ , trajectories not included C = ∪b∈B(Q′)Lb can be
safely pruned. To minimize the size of this candidate set C, we
solve the MinCand using Algorithm 1 (at Line 1 of Algorithm 2).
We iterate through each (q, iq) ∈ Q′ and look up the postings
list of b ∈ B(q). At Line 6, the ID of the data trajectory that
contains b ∈ B(q) is added to the candidate set. We also include
the corresponding positions in P and Q (denoted by j and iq,
respectively). They are used to speed up the verification (§ 5).
After the candidates are obtained, we verify whether each of
them truly matches the query Q.
Incorporating spatial/road network indexing. Despite
focusing on the general case of WED, it is noteworthy to mention
that we can improve the query processing by indexing spatial
information for a specific similarity function and regarding the
index as a blackbox without needing to modify our algorithm.
For similarity functions that involves Euclidean distance, we
may index the coordinates of the vertices V using a spatial index,
such as a kd-tree or an R-tree, so as to quickly compute B(q)
by retrieving the symbols within a range to q. For similarity
functions involving shortest path distance (e.g., NetEDR and
NetERP), we may use the hub-labeling index [1, 2] to compute
shortest path distance to get sub(v, v′). We provide a running
example in the extended version [21].

4.3 Filtering with Temporal Information
As mentioned in § 2.3, we can treat any kind of temporal

constraints as postprocessing. For interval constraints, such
as [Ti, Tj] ⊆ I or [Ti, Tj] ∩ I 6= ∅, we can prune candidates
before verification as follows. For each candidate trajectory
(P (id), T (id)) of length n, we check its first and last timestamps

(i.e., I(id) := [T
(id)
1 , T

(id)
n]). Given a query time interval I, if

I(id) ∩ I = ∅, then we have [Ti, Tj] 6⊆ I and [Ti, Tj]∩ I 6= ∅; we
can safely prune this candidate. Furthermore, depending on
the application, we may sort the records in each postings list by

their temporal information such as departure time (i.e., T
(id)
1)

or maximum speed (i.e., max1≤t≤|T (id)|−1 w(P
(id)
t)/(T

(id)
t+1 −

T
(id)
t), where w(e) is the distance of an edge e). This allows

2193

A
B
C
D
E

A B C D X
A B

C D X
....

A
B

C
D
E

A....

....

C D
X

Y..

A
B
C
D
E

(= Q)

(P =)

(= P)f

(= R)f

(= P)f

(P =)b

(a) Naive DP (b) Bidirectional DP

(c) Trie-based Bidirectional DP

(Q =)f

(=Q)b

(Q =)f

(P =)b

(=Q)b

Figure 2: Comparison of verification methods (P =
ABCDX..., Q = ABCDE; colors show partition).

us to generate candidates with binary search on postings lists,
hence to avoid those violating the temporal constraint.

5. VERIFICATION
The generated candidates usually include many false positives;

therefore, we need to verify them efficiently to obtain the
answer. Existing methods for whole matching similarity search
(e.g., [47, 63]) computes the similarity between P and Q with
dynamic programming (DP) for each candidate. Similarly, in
our subtrajectory search setting, we can compute the similarity
by sequentially filling a |P | · |Q| matrix based on the recursive
definition of WED, which is referred to as the Smith-Waterman
(SW) algorithm. The time complexity is O(|P | · |Q|), as shown
in Figure 2(a). This naive SW algorithm includes the following
redundant computation: (1) Although a subtrajectory of P
similar to Q can be a small part of P , the SW algorithm
computes DP matrix for the entire P . (2) If two trajectories
share a subtrajectory, the DP matrices have common values,
but the SW algorithm does not exploit this property.
Main Idea. We reduce redundant computation as follows.
(1) Local verification: Given a candidate (id, j, iq), the sub-
trajectory similar to Q are located around the position j of
P ; hence we only need to run DP around j. (2) Trie-based
caching: We share computation for common subtrajecories
by exploiting the sparsity of a road network: Although the
alphabet Σ is large, the possible previous/next symbols of Pj
(i.e., Pj−1 and Pj+1) are limited because trajectories move along
physically connected vertices (edges) in a road network; hence
we can efficiently cache the columns of DP matrices.

5.1 Local Verification
The filtering phase gives (id, j, iq), where j is a position such

that P
(id)
j matches Qiq or its substitution neighbor. The local

verification is to check if there exists a subtrajectory P
(id)
s:t such

that wed(P
(id)
s:t , Q) < τ , where s ≤ j ≤ t. Our idea is to run

the DP computation from j bidirectionally. To guarantee that
we will not miss any similarity search result after verifying all
the candidates, we have the following lemma.

Lemma 1 Given a subtrajectoryP
(id)
s:t ofP such that wed(P

(id)
s:t ,

Q) < τ , and the set of candidates C identified by subsequence
filtering, there exists (id, j, iq) ∈ C such that s ≤ j ≤ t and

wed(P
(id)
s:t , Q) = wed(P

(id)
s:j−1, Q1:iq−1) + sub(P

(id)
j , Qiq)

+ wed(P
(id)
j+1:t, Qiq+1:|Q|). (10)

This lemma suggests that for every subtrajectory that satisfies
the WED constraint, we can always find a position j in the

candidates identified by subsequence filtering, such that P
(id)
j

is aligned to Qiq in the optimal alignment that yields the WED.
Thus, we can verify from j to obtain the similarity search

result. Specifically, by Eq. (10), we partition P
(id)
s:t into three

parts at j and compute WED bidirectionally [15]. From j, we
run two DPs: a backward one (i.e., from the end of strings

to the start) for wed(P
(id)
s:j−1, Q1:iq−1) and a forward one for

wed(P
(id)
j+1:t, Qiq+1:|Q|). By iterating s from j to 1 and t from

j to |P (id)| in the two DPs, respectively, we are able to find

all P
(id)
s:t such that s ≤ j ≤ t and wed(P

(id)
s:t , Q) < τ . The

above step is conducted for each (id, j, iq) in the candidate set
to obtain all the similarity search results. For ease of exposition,
in the rest of this section, we omit the superscript (id) from P ,
and we use P b to denote Ps:j−1 and P f to denote Pj+1:t.

Example 7 Consider a trajectory P = ...ABCDX... and a
query Q = ABCDE. Assume a τ -subsequence is Q′ = {B} and
there is only one candidate whose j = 2 and iq = 2. As shown in
Figure 2(b), we partition P into (P b, Pj , P

f) = (...A,B,CDX...)
and Q into (Qb, Qiq , Q

f) = (A,B,CDE). We can find all
subtrajectories Ps:t such that s ≤ 2 ≤ t and wed(Ps:t, Q) < τ
by computing sub(B,B) + wed(...A,A) + wed(CDX...,CDE).

Early Termination. For each direction d ∈ {b, f}, we can
terminate the computation before reaching the end ofP d. Given
a position 0 ≤ k ≤ |P d| (k = 0 for the case of an empty string),
by the definition of WED, we have the following lower bound of
the WED between P d and Q:

LBdk := min
0≤j≤|Q|

{wed(P d1:k, Q1:j)} ≤ wed(P d, Q). (11)

If the lower bound for any k reaches τ , we can safely terminate
the DP computation of P d.

5.2 Caching with Bidirectional Trie
The local verification still involves redundant computation

when we verify multiple candidates. We begin with an example.

Example 8 (Continuing from Example 7) Consider another
trajectory R = ...ABCDY... identified as a candidate via B. In
the local verification, we need to compute both wed(P f , Qf)
and wed(Rf , Qf), where Qf = CDE, P f = CDX..., and Rf =
CDY.... Hence, when computing wed(P f , Qf) and wed(Rf , Qf),
the first two columns of the DP matrices share the same values
because P f and Rf has a common prefix CD. This indicates
that we can reduce the computation by caching these columns.

In general, given a vertex/edge in the road network, the
number of possible next vertices/edges are very small (typically,
three) compared to the alphabet size because of the structure
of the road network. This implies that the candidate subtrajec-
tories starting from Qiq tend to share a prefix; therefore, we
expect that the caching strategy will improve the efficiency.

To efficiently cache the DP columns of common prefixes, we
employ a trie-based data structure as shown in Figure 2(c). We
describe how this trie works using a running example.

Example 9 (Continuing from Example 8) After computing
wed(P f , Qf), we have three columns corresponding to C, D, and
X, as in Figure 2(c). When computing wed(Rf , Qf), we can
reuse the two columns for C and D that are cached in the trie.

2194

Algorithm 3: Verify(C, Q, τ)

input :Candidates C; Query Q; Threshold τ
1 for (q, iq) ∈ Q′ do
2 T fiq, T

b
iq
← Empty tries

3 for (id, j, iq) ∈ C do

4 A ← A∪ VerifyCandidate(Q, (id, j, iq), τ, T fiq , T
b
iq

)

5 return A

Algorithm 4: VerifyCandidate(Q, (id, j, iq), τ, T f , T b)
input :Query: Q ∈ Σ∗; Candidate: (id, j, iq); Threshold: τ ;

Forward/Backward tries: T f , T b
1 P ← accessTrajectory(id)

2 (P b, b, P f)← (P1:(j−1), Pj , P(j+1):|P |) . Partition

3 (Qb, q, Qf)← (Q1:(iq−1), Qiq , Q(iq+1):|Q|) . Partition

4 Eb ← AllPrefixWED(Qb, P b, τ ′, T b.root)

5 Ef ← AllPrefixWED(Qf , P f , τ ′, T f.root)

6 for (s, t) such that sub(q, b) + Ebs + Eft < τ do
7 S ← S ∪ {(id, s, t)} . Initialized as S = ∅
8 return S . All subtrajectories Ps:t that matches Q

As candidates tend to have common prefixes as discussed
above, we expect that the cache miss rate is low and the verifi-
cation gets faster. A trie is built for each direction (hence called
a bidirectional trie) and each symbol in the τ -subsequence of Q.
So there are 2|Q′| tries.

5.3 Verification Algorithm
Algorithms 3–6 summarize our verification algorithm. First,

for each direction {b, f} and q ∈ Q′ whereQ′ is a τ -subsequence
of Q, empty tries are initialized (each trie is denoted by T biq or

T fiq , where iq indicates the candidate position in Q). Then, for

each candidate (id, j, iq) ∈ C, VerifyCandidate (Algorithm 4) is
applied and the results are stored in A.

In VerifyCandidate, the data trajectory P and query Q are
partitioned into three parts. Then, for each direction d ∈ {b, f},
AllPrefixWED is called to compute an array Ed, whose k-th
element is the WED between Qd and the k-th prefix of P d,
i.e., Edk = wed(P d1:k, Q

d). We can use a tighter threshold τ ′ :=
τ − sub(q, b) instead of the original τ because of Eq. (10); this
τ ′ is used for early termination. Finally, all the subtrajectories
that satisfy Eq. (10) < τ are added to the result set.

In AllPrefixWED (Algorithm 5), we compute the array Ed. A
symbol c in a given trajectory P d is processed one by one; if a
child node corresponding to c at the current trie is found (Line 3),
we skip computing the corresponding DP column; otherwise, we
create a new child (Line 5) and compute the DP column (Line 6)
using the StepDP procedure (Algorithm 6), a standard DP that

computes a new column based on the previous column. A(x)

represents a DP column cached in the trie node x. By Eq. (11),
if the lower bound LBdk exceeds a given threshold (Line 7), we
can safely terminate the DP computation for P d. Finally, the

value A
(x)

|Qd|
= wed(P d1:k, Q

d) is stored to Edk (Line 9).

6. EXPERIMENTS

6.1 Settings
Due to the page limitation, we report the detailed experiment

setup in [21], along with a set of additional experiments.

Algorithm 5: AllPrefixWED(Qd, P d, τ, x)

input :Query Qd; Trajectory P d; Trie node x; (d ∈ {f, b})
output :WED between Qd and P d1:k (∀k)

1 Ed ← Empty array . Edk means wed(Qd, P d1:k)

2 for k in 1..|P d| do
3 c := P dk ; xparent ← x; x← xparent.findChild(c)

4 if x not found then
5 x← xparent.createChild(c) . New child

6 A(x) ← StepDP(Qd, c, A(xparent)) . Fill DP column

7 if τ ≤ min0≤j≤|Q| A
(x)
j (= LBdk) then

8 break . Early Termination (Sec.5.1)

9 Edk ← A
(x)

|Qd| . wed(Qd, P d1:k)

10 return Ed

Algorithm 6: StepDP(Qd, p, A)

input :Query Qd; Next symbol p ∈ Σ; DP array A0:|Qd|
1 B ← Array of length |Qd|+ 1; B0 ← A0 + del(p)

2 for j in 1..|Qd| do
3 Bj←min{Aj−1+sub(p,Qdj), Aj+del(p), Bj−1+ins(Qdj)}
4 return B

Table 1: Dataset statistics.
Dataset # Trajectories Avg. Length |V | |E|
Beijing 786,801 101 86,484 171,135
Porto 1,701,238 81 75,265 135,133

SanFran 11,505,922 101 175,343 223,606

Evaluation was conducted on the following datasets: Beijing
(T-drive) [64], Porto [32], and SanFran [4]. For Beijing and Porto,
we conducted map matching [35] to obtain network-constrained
representation. SanFran is a large synthesized dataset by the
moving object generator [4] with the San Francisco road network.
The statistics after preprocessing are presented in Table 1.

Our method consists of the (optimized) subsequence filter-
ing with the bidirectional trie (BT) verification (referred to as
OSF-BT). We also consider OSF-SW, where BT is replaced by
the Smith-Waterman (SW) algorithm for verification. Further,
we compare with the following baselines.
DISON. DISON [63] is a whole matching method for LCRS.
We adapted it to our problem. Since the early termination
technique in [63] does not work here, we used SW (DISON-SW)
or BT verification (DISON-BT).
Torch. Torch [47] is a whole matching method that supports
several similarity functions. We adapted it to our problem. We
equipped it with SW (Torch-SW) and BT (Torch-BT) for verifi-
cation. The upper bounding technique [47] prior to verification
was developed for LORS and does not apply here.
DITA. DITA [41] is a whole matching method developed for
DTW and can be adapted for other functions. We modified
its pivoting method to fit WED. Since DITA does not support
subtrajectory search, we enumerated all subtrajectories and
indexed them. Note the enumeration is done offline and not
counted towards query processing time. We used SW instead
of the double-direction verification (DDV) [41] because DDV
works for DTW but does not improve upon SW for WED.
q-gram indexing for EDR. q-gram indexing was proposed
in [7] for whole matching under the EDR based on the fact that if
there are less than max{|P |, |Q|}− q+ 1− τq common q-grams
between P and Q, then EDR(P,Q) > τ . We customized their

2195

method to support subtrajectory search under EDR. We set
q = 3. SW was used for verification.
Indexing for ERP. ERP-index was proposed in [6]. It employs
lower bounding and triangle inequality. Given a sequence P of
coordinates, we indexed the sum of all coordinates, sum(P) ∈
R2, in a spatial index (we used kd-tree). Given a query sequence
Q, ‖sum(P)− sum(Q)‖ gives a lower bound. We enumerated
and indexed all subtrajectories. SW was used for verification.
Smith-Waterman (SW). The SW algorithm [43] is a non-
indexing method for substring matching. We adopted it (re-
ferred to as Plain-SW) to process all the data trajectories.

Since DITA and ERP-index enumerate all subtrajectories,
the whole datasets are impossible to index due to exceeding
the main memory (e.g., Beijing dataset generated 1.4 billion
subtrajectories). We used a fraction of the dataset when these
two methods were included in the competitors.

We used the six WED instances introduced in § 2.2 as simi-
larity functions. Instead of specifying a similarity threshold τ
directly, we used a threshold ratio τratio ∈ [0, 1]. Given a query
Q and τratio, we set τ := τratio

∑
q∈Q c(q). We used τratio = 0.1

as the default value. For SURS, LORS, and LCRS, costs are
given by road lengths. The cost functions of the other WED
instances are given in § 2.2. For EDR, we used ε = 0.001. For
NetEDR, we set ε to the median distance of edges in E. For

NetERP deletion costG
(del)
NetERP, we used 2M . For η in Eq. (5), we

used η = 0 for Lev, EDR, SURS, and NetEDR, 10−4 multiplied
by the median distance of a node and its nearest neighbor for
ERP, and the median road length for NetERP (see Appendix D
of the extended version [21] for the choice of η).

All evaluations were conducted on a workstation with Intel
Core i9-7900X CPU (3.30GHz) and 64GB RAM. All methods
were implemented in C++ (g++ v.7.3.0) with the -O3 option. We
do not use multi-threading (for distributed baselines, we imple-
mented centralized versions to compare algorithms themselves).
All the algorithms were implemented in a main memory fashion.

6.2 Effectiveness

6.2.1 Travel Time Estimation
To demonstrate the effectiveness of WED and subtrajectory

similarity search, we first consider an on-the-fly travel time
estimation task following the approach in [52]. We use the
Beijing dataset and sample 130 queries of length 60, where
the numbers of exact match are less than 10 (i.e., the sparse
case). The travel times corresponding to the subtrajectories that
exactly match the query Q are used as ground truth data. For

estimation, we find the subtrajectories {P (id)
i:j } in the database

similar to Q under a threshold τratio. Since a trajectory P (id)

may have multiple subtrajectories similar to Q, we pick the
most similar one and break tie by the shortest one. Then we

compute the average of the travel time, T
(id)
j − T

(id)
i , over those

similar to Q as the estimated value. In order to evaluate the
superiority of similarity search over exact match, we measure
mean squared errors (MSEs) and report the relative value
(RMSE := MSE(τratio)/MSE(exact)). Since the ground
truths are contained in both results of similarity search and
exact match, we employ a leave-one-out cross-validation by
excluding one ground truth from the result set at a time. RMSE
< 100% means similarity search is better than exact match.

We compare the six WED instances in § 2.2 with DTW,
LORS, LCRS, and LCSS. Since LORS, LCRS, and LCSS are
defined on shared road segments, we convert them to equivalent
distance functions. DTW, LORS and LCSS are normalized

0.00 0.05 0.10 0.15 0.20
ratio

90
100
110
120
130
140

Re
la

tiv
e

M
SE

 (%
) Lev. (91%)

SURS (89%)
EDR (91%)
ERP (95%)
NetEDR (90%)
NetERP (89%)
LORS (127%)
LCRS (89%)
LCSS (118%)
DTW (94%)

Figure 3: RMSE of travel time estimation (Beijing),
best values reported on the right side.

Table 2: RMSE of travel time (SURS, Beijing).
k 5 10 15 20 25

Subtrajectory 92 % 91 % 102 % 108 % 116 %
Whole 233 % 221 % 219 % 220 % 220 %

to [0, 1] such that DTW(P,Q) ≤ τratio

∑|Q|−1
i=1 d(Qi, Qi+1)2

and LORS(P,Q) ≥ (1 − τratio) ·
∑|Q|
i=1 w(Qi) (the same for

LCSS). Figure 3 shows how the RMSE changes over τratio

(LORS and LCSS have RMSE> 100% at τratio = 0 because they

do not count mismatching road segments in P (id)). For most
WED instances, similarity search performs better than exact
match when τratio ∈ [0.04, 0.14], showcasing the superiority of
similarity search for travel time estimation on sparse data. To
compare similarity functions, all the WED instances except
ERP perform well, while LORS and LCSS deliver the worst
performance. SURS achieves the smallest RMSE (89%) among
all the similarity functions. NetEDR and NetERP are competitive
when τratio is large. These observations suggest that WED is
useful for travel time estimation and these new WED instances
are better than existing ones (Lev, EDR, and ERP). We also
observe that LCRS and SURS behave similarly because of similar
semantics. An advantage of SURS over LCRS is that efficient
subtrajectory search under LCRS has not been established
and thus we enumerate all subtrajectories (O(

∑N
k=1 |P |

2|Q|)-
time), while SURS belongs to WED and can be efficiently
processed. Next, we compare similar subtrajectory matching
with whole matching. Since whole matching finds no result for
most thresholds, we consider a top-k setting for fair comparison.
The RMSE is reported in Table 2 for SURS, the best function
in the previous experiment. The result shows that the RMSE
of subtrajectory matching is about half of the RMSE of whole
matching, and the gap is more significant for small k.

6.2.2 Alternative Route Suggestion
Next we show the effectiveness through an alternative route

suggestion task. Suppose a driver is planning to travel from an
origin u to a destination v through a route Q, and the driver
wants to find if there are variations of Q as alternative routes.
We can do this by retrieving subtrajectories from u to v similar
to Q from the database. To measure the preference of a route,
we employ the route naturalness described in [65] §7: drivers
prefer routes that go directly towards the destination, and
the log-likelihood of a route is proportional to the number of
hops that get closer (in terms of road network distance) to the
destination than ever. Following this idea, given a route P such
that P1 = u and P|P | = v, we define its naturalness as the

ratio of hops that get closer to v than ever, i.e., |C|
|P |−1

, where

C = {(Pi−1, Pi) | min1≤j<i d(Pj , v) > d(Pi, v)}. If a route
includes many inefficient detours, then the naturalness is low.

2196

2.5 5.0 7.5
Cardinality

0.765
0.770
0.775
0.780
0.785

Na
tu

ra
ln

es
s

LCSS: 0.63-0.67
LORS: 0.63-0.67

|Q|=40

2 4 6
Cardinality

0.7400
0.7425
0.7450
0.7475
0.7500

LCSS: 0.64-0.69
LORS: 0.64-0.69

|Q|=50

2 4
Cardinality

0.718
0.719
0.720
0.721
0.722

LCSS: 0.65-0.68
LORS: 0.64-0.68

|Q|=60

Lev
NetEDR

SURS
NetERP

EDR
DTW

ERP
LCRS

Figure 4: Naturalness of alternative routes suggested
by similarity search τratio ∈ [0, 0.3] (Beijing).

Table 3: Running time breakdown (ms).
Varying τratio Varying |Q|

Default†
0.2 0.3 20 40

MinCand 0.002 0.005 0.007 0.0005 0.001
Index lookup 0.070 0.259 0.443 0.039 0.055

Verify 19.9 113.1 390.0 6.2 11.1
† Default: τratio = 0.1, |Q| = 60, dataset size = 100%.

Figure 4 shows the naturalness of the routes suggested by sub-
trajectory similarity search under various similarity functions.
The results are averaged over 3,000 queries uniformly sampled
from the Beijing dataset. We vary τratio from 0 to 0.3 at 0.05
interval and plot the cardinality (i.e., the number of suggested
routes) and the naturalness. The cardinality increases w.r.t.
τratio, but the rate depends on the similarity function. So we do
not show τratio explicitly. Among the six WED instances, Lev,
EDR, NetEDR, and NetERP deliver routes with high naturalness.
LCSS, LORS, and LCRS exhibit low naturalness because they
measure common road segments but do not penalize inefficient
detours. DTW’s naturalness is high for short queries but drops
rapidly for long queries. Another interesting observation is
that when query length is 50 or 60, the naturalness using WED
instances, except ERP, first decreases w.r.t. the cardinality
and then rebounds. This is because some highly natural routes
involve shortcuts that are spatially distant from the queries.
They cause large DTW or ERP and hence are not identified using
the two functions, while the WED instances with non-spatial
distance as costs are capable of capturing these routes.

6.3 Query Processing Time
Following past related studies [20, 23, 50, 52], we randomly

sampled subtrajectories from each dataset as queries. We set
the default query length |Q| to 60, whose path distance in real
world ranges from 500 m to 40 km, with an average of 6.5 km,
in line with [50, 52, 58]. Evaluation metrics were averaged over
100 queries, except for Plain-SW, whose processing time was
averaged over 10 queries due to the computational cost.

We first investigate the effect of the similarity threshold τratio.
Figure 5 shows that the proposed method OSF-BT outperforms
the other competitors. It responses in less than 2 seconds ex-
cept for NetEDR, and typically hundreds of milliseconds when
τratio = 0.3. Compared to DISON-BT and Torch-BT, which
employ different filtering principles, our OSF-BT always per-
forms better and is up to 9 times faster than DISON-BT and
73 times faster than Torch-BT. Comparing our BT verification
with SW, BT significantly improves the efficiency. The impact
of BT is more significant for NetEDR and NetERP, which in-
volve relatively expensive computation in verification. For this
reason, we omitted the results of DISON-SW and Torch-SW for

NetEDR and NetERP from Figure 5, which take at least 24 hours
for computation for 100 queries. These results indicate that
both OSF and BT improve the performance, and improvements
are consistently observed whatever similarity function is used.

We vary the length of query |Q| with τratio = 0.1. As shown
in Figure 6, OSF-BT is always faster than the others. For larger
|Q|, the processing time of OSF-BT increases as well as the
other methods. The reason is two-fold: (1) the verification cost
is proportional to |Q|; (2) in our setting, the similarity threshold
τ increases as |Q| increases, making the candidate set larger.

In Table 3, we decompose the query processing time of
OSF-BT (on Beijing, EDR) to: MinCand computation, index
lookup, and verification. Most time (around 99%) is spent on
verification, whose time increases with τratio and |Q|. This is
expected, because for each candidate we need only one index
lookup but run a quadratic-time DP to verify it. MinCand
computation is almost negligible since it runs in O(|Q|2) time,
which does not depend on the dataset size.

Figure 7 shows query processing time when we vary the
dataset size. All the methods scales linearly and OSF-BT is
consistently the fastest. In addition, we show results for DITA
and ERP-index, which requires subtrajectory enumeration, on a
fraction of the datasets where they can fit into the main memory;
e.g., in order to store the randomly chosen 5,000 trajectories, the
number of subtrajectories to be indexed is 48M (Beijing), 37M
(Porto), and 26M (SanFran). The query processing time for this
small dataset is shown in Figure 8 (varying τratio) and Figure 9
(varying dataset size). Our method outperforms DITA and ERP-
index by two orders of magnitude. This result indicates that
applying whole matching methods to subtrajectory matching by
enumerating all subtrajectories is impractical for large datasets.

6.4 Filtering and Verification
We compare the filtering power by evaluating the candidate

size |C|. Note for all the competitors the candidates are in the
form of (id, j, iq) for fair comparison. Figure 10 shows: (1) OSF
consistently results in the best filtering power; its candidate size
is on average 3.4, 2.9, and 25 times smaller than DISON, q-gram,
and Torch, respectively. (2) OSF shows good scalability against
|Q|, because for long |Q|, the item set in MinCand becomes
large and thus the probability of including “good-value-for-the-
price” items becomes large. We also compare with DITA and
ERP-index on a fraction of the datasets. Their candidate sizes
are on average 105 and 14 times OSF’s, respectively.

To separate the effect of local verification (§ 5.1) and the
effect of caching with BT (§ 5.2), we evaluate (i) unpruned
position rate (UPR), and (ii) cache miss rate (CMR), which
are respectively defined as (i) the rate of DP columns that pass
the early termination (§ 5.1) compared to SW, and (ii) the rate
of DP columns where the StepDP procedure is actually called
among the DP columns that pass the early termination. Table 4
shows results for the Beijing dataset under EDR. We observe
both local verification and BT contribute to pruning. The rates
increase with τratio and |Q| due to looser similarity constraint
and longer query to verify, but decrease with dataset size due to
more shared prefixes/suffixes. The total unpruned rate (TUR),
defined by UPR × CMR, shows small values, indicating the
number of StepDP calls is far less than that by SW.

6.5 Index Construction Time / Index Size
Table 5 the index construction time and index size. The index

construction time of our postings lists is relatively fast. Among
the competitors, only q-gram’s index size is smaller than ours.

2197

0.1 0.2 0.3

102

104
Pr

oc
. T

im
e

(m
s/

qu
er

y) Beijing / EDR

0.1 0.2 0.3

101

103

105
Beijing / ERP

0.1 0.2 0.3
100

101

102

103

Beijing / SURS

0.1 0.2 0.3
100

101

102

103

Beijing / Lev.

0.1 0.2 0.3

103

105

Beijing / NetEDR

0.1 0.2 0.3

102

104

106

Beijing / NetERP

0.1 0.2 0.3
102

103

104

105

Pr
oc

. T
im

e
(m

s/
qu

er
y) Porto / EDR

0.1 0.2 0.3

102

104

Porto / ERP

0.1 0.2 0.3
101

102

103

104
Porto / SURS

0.1 0.2 0.3

102

103

104
Porto / Lev.

0.1 0.2 0.3

103

105

Porto / NetEDR

0.1 0.2 0.3

103

105

Porto / NetERP

0.1 0.2 0.3
 (ratio)

103

104

105

106

Pr
oc

. T
im

e
(m

s/
qu

er
y) SanFran / EDR

OSF-BT DISON-BT Torch-BT OSF-SW DISON-SW Torch-SW Plain-SW q-gram

0.1 0.2 0.3
 (ratio)

103

105

SanFran / ERP

0.1 0.2 0.3
 (ratio)

102

103

104

SanFran / SURS

0.1 0.2 0.3
 (ratio)

102

103

104

SanFran / Lev.

0.1 0.2 0.3
 (ratio)

104

106

SanFran / NetEDR

0.1 0.2 0.3
 (ratio)

103

105

107

SanFran / NetERP

Figure 5: Varying τratio: OSF-BT is our method (legend is shown at the bottom).

20 40 60 80

102

104

Pr
oc

. T
im

e
(m

s/
qu

er
y) Beijing / EDR

20 40 60 80

102

104

Beijing / ERP

20 40 60 80

101

103

Beijing / SURS

20 40 60 80

103

104

105

Pr
oc

. T
im

e
(m

s/
qu

er
y) Porto / EDR

20 40 60 80

102

103

104

105

Porto / ERP

20 40 60 80

102

103

104
Porto / SURS

20 40 60 80
|Q|

103

104

105

106

Pr
oc

. T
im

e
(m

s/
qu

er
y) SanFran / EDR

OSF-BT
OSF-SW

DISON-BT
DISON-SW

Torch-BT
Torch-SW

q-gram
Plain-SW

20 40 60 80
|Q|

103

105

SanFran / ERP

20 40 60 80
|Q|

102

103

104

105
SanFran / SURS

Figure 6: Varying |Q|.

25% 50% 75%100%

102

104

Pr
oc

. T
im

e
(m

s/
qu

er
y) Beijing / EDR

25% 50% 75%100%

101

103

105
Beijing / ERP

25% 50% 75%100%
100

101

102

103

Beijing / SURS

25% 50% 75%100%
102

103

104

105

Pr
oc

. T
im

e
(m

s/
qu

er
y) Porto / EDR

25% 50% 75%100%

102

104

Porto / ERP

25% 50% 75%100%

101

102

103

104
Porto / SURS

25% 50% 75%100%
Data size (%)

103

105

Pr
oc

. T
im

e
(m

s/
qu

er
y) SanFran / EDR

OSF-BT
OSF-SW

DISON-BT
DISON-SW

Torch-BT
Torch-SW

q-gram
Plain-SW

25% 50% 75%100%
Data size (%)

103

105

SanFran / ERP

25% 50% 75%100%
Data size (%)

102

103

104

105
SanFran / SURS

Figure 7: Varying T .

Table 4: Evaluation of verification (%).
Varying τratio Varying |Q| Varying |T |

Dflt.†
0.2 0.3 20 40 25% 50%

UPR 21.89 52.05 94.28 6.57 14.45 23.15 22.65
CMR 2.19 4.72 7.50 0.35 1.13 4.43 2.99
TUR 0.48 2.46 7.07 0.02 0.16 1.02 0.68
† Default: τratio = 0.1, |Q| = 60, dataset size = 100%.

For reference, we show results for methods involving subtrajec-
tory enumeration (ERP-index and DITA). Although these are

results with only 5,000 trajectories, the index construction time
and index size are larger than ours except on SanFran.

7. RELATED WORK
Trajectory Similarity Functions. Trajectory similarity
functions can be classified into: (1) coordinate-aware simi-
larity functions are defined based on spatial coordinates of
trajectories [6, 7, 42, 57, 62, 65] and (2) network-aware simi-
larity functions employ network features, such as travel costs
[11,14,39,40,45,47,54,55,63]. Coordinate-aware similarity func-

2198

0.05 0.10 0.15 0.20
 (ratio)

100

102

104
Pr

oc
. T

im
e

(m
s/

qu
er

y) Beijing / EDR

0.05 0.10 0.15 0.20
 (ratio)

100

102

104
Porto / EDR

0.05 0.10 0.15 0.20
 (ratio)

100

102

104
SanFran / EDR

OSF-BT OSF-SW DITA

0.05 0.10 0.15 0.20
 (ratio)

100

102

Pr
oc

. T
im

e
(m

s/
qu

er
y) Beijing / ERP

0.05 0.10 0.15 0.20
 (ratio)

100

102

Porto / ERP

0.05 0.10 0.15 0.20
 (ratio)

100

102

SanFran / ERP

OSF-BT OSF-SW ERP-index DITA

Figure 8: Comparison with baselines involving subtrajectory enumeration (Varying τratio; |T | = 5000; EDR/ERP).

5000 10000 15000
#Traj indexed

100

102

104

Pr
oc

. T
im

e
(m

s/
qu

er
y) Beijing / EDR

5000 10000 15000
#Traj indexed

10 1

101

103

Porto / EDR

5000 10000 15000
#Traj indexed

10 1

101

103
SanFran / EDR

OSF-BT OSF-SW DITA

5000 10000 15000
#Traj indexed

100

102

104

Pr
oc

. T
im

e
(m

s/
qu

er
y) Beijing / ERP

5000 10000 15000
#Traj indexed

100

102

Porto / ERP

5000 10000 15000
#Traj indexed

100

102

SanFran / ERP

OSF-BT OSF-SW ERP-index DITA

Figure 9: Comparison with baselines involving subtrajectory enumeration (Varying |T |; τratio = 0.1; EDR/ERP).

ED
R

ER
P

SU
RS

Lev
.

NetE
DR

NetE
RP

104

105

106

107

#C
an

di
da

te
s

0.1
0.20.3

Varying ratio {0.1, 0.2, 0.3}
OSF
DISON

Torch
q-gram

ED
R

ER
P

SU
RS

Lev
.

NetE
DR

NetE
RP

104

105

106

107

204060

Varying |Q| {20, 40, 60}
OSF
DISON

Torch
q-gram

Figure 10: Number of candidate positions (Beijing).

Table 5: Index construction time / index size.
Beijing Porto SanFran

OSF-BT† 7s/0.59 gb 10s/1.02 gb 79s/8.63 gb
q-gram 15s/0.59 gb 19s/1.01 gb 269s/8.55 gb

↓ Tiny dataset

(ERP-index††) 23s/2.6 gb 17s/1.9 gb 14s/1.4 gb
(DITA††) 60s/1.79 gb 36s/0.71 gb 31s/0.15 gb
† DISON and Torch have the same time/size as OSF-BT.
†† Reference values with only 5,000 trajectories. DITA construction

depends on the similarity function. We showed a result for ERP.

tions include dynamic time warping (DTW), edit distance with
real penalty (ERP) [6], edit distance on real sequence (EDR) [7],
edit distance with projections (EDwP) [38], and Fréchet dis-
tance. Their pros and cons were investigated in [6, 7, 44, 47, 63].
ERP and EDR are WED instances. DTW, EDwP, and Fréchet
distance are not. Recent effort aimed to learn deep trajectory
representations [28] or metrics [61] to reduce the computation
of similarity to linear time. For network-aware similarity func-
tions, a natural way is to measure the shared or unshared edges.
Weighted Jaccard distance [55] and weighted Dice distance [54]
are order-insensitive functions (i.e., edge ordering not incorpo-
rated). Longest common subsequences (LCSS) [33, 46], Longest
overlapping road segments (LORS) [47], and longest common
road segments (LCRS) [63] are order-sensitive functions, while
they do not belong to WED. Another strategy is to incorporate
shortest path distances between vertices [11,14,39,40,45].
Trajectory Indexing. Although much attention has been
gathered to indexing for non-constrained trajectories (see sur-
veys [31,36]), indexing methods for trajectories in road networks
are also studied actively [9,20,22,23,47,63]. Chen et al. proposed

ERP [6] and EDR [7] along with the query processing algorithms.
Wang et al. [47] and Yuan and Li [63] proposed algorithms to
support various similarity functions but they were designed for
whole matching (though can be adapted for subtrajectories,
see our experiments). Furthermore, their filtering policies are
different from ours (based on scanning postings lists for all
symbols [47] or prefix symbols [63] of a query). Shang et al. [41]
and Xie et al. [57] proposed distributed systems for similarity
search under DTW and discrete Fréche/Hausdorff distances, re-
spectively. These methods [41,57] support only whole matching.
Pivot points were proposed in [41] for pruning. The differences
from our method are: (1) The pivots are selected by turning
points or the distance to neighbor points/origin/destination,
while our τ -subsequence is chosen by a selectivity optimization
algorithm. (2) In contrast to pivot points, our filtering is de-
signed towards the general case of WED, and thus does not
require individual adaptation for specific similarity functions.
String / Time-series Similarity Search. Edit distance
has been employed for string similarity search. Bouding tech-
niques (e.g., by q-grams [10,37, 53]) are widely used. In bioin-
formatics, three types of similarity search methods are used:
global [34], local [27, 43, 59], and semi-global alignments [26].
The Smith-Waterman algorithm [43] can be used for WED.
Trajectories also belong to time series data, whose similarity is
often measured by Euclidean distance, DTW, ERP, or LCSS.
Common indexing methods are based on lower bounding [3,17].

8. CONCLUSION AND FUTURE WORK
We tackled subtrajectory similarity search under WED, a

class of similarity function that includes several important simi-
larity functions. For efficient search, we proposed subsequence
filtering, which involves a discrete optimization problem to
choose the optimal subsequence. Based on this technique, we
developed an algorithm using filter-and-verify strategy. We
designed a local verification method equipped with bidirectional
tries. We showed the effectiveness of WED and the superiority
of our solution over alternative methods. Interesting future
directions include supporting more general class of similarity
functions, developing a distributed indexing method, and more
sophisticated treatment of temporal information.
Acknowledgments. This work was supported by JSPS
16H01722, 17H06099, 18H04093, 19K11979, and NSFC 61702409.

2199

9. REFERENCES
[1] I. Abraham, D. Delling, A. V. Goldberg, and R. F.

Werneck. Hierarchical hub labelings for shortest paths. In
ESA, pages 24–35, 2012.

[2] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact
shortest-path distance queries on large networks by
pruned landmark labeling. In SIGMOD, pages 349–360,
2013.

[3] I. Assent, R. Krieger, F. Afschari, and T. Seidl. The
TS-tree: Efficient Time Series Search and Retrieval. In
EDBT, pages 252–263, 2008.

[4] T. Brinkhoff. A framework for generating network-based
moving objects. GeoInformatica, 6(2):153–180, 2002.

[5] T. Carnes and D. B. Shmoys. Primal-dual schema for
capacitated covering problems. Mathematical
Programming, 153(2):289–308, 2015.

[6] L. Chen and R. Ng. On the marriage of lp-norms and edit
distance. In VLDB, pages 792–803, 2004.

[7] L. Chen, M. T. Özsu, and V. Oria. Robust and fast
similarity search for moving object trajectories. In
SIGMOD, pages 491–502, 2005.

[8] Z. Chen, H. T. Shen, and X. Zhou. Discovering popular
routes from trajectories. In ICDE, pages 900–911, 2011.

[9] V. T. de Almeida and R. H. Güting. Indexing the
trajectories of moving objects in networks.
Geoinformatica, 9(1):33–60, 2005.

[10] D. Deng, G. Li, and J. Feng. A pivotal prefix based
filtering algorithm for string similarity search. In
SIGMOD, pages 673–684, 2014.

[11] M. R. Evans, D. Oliver, S. Shekhar, and F. Harvey. Fast
and exact network trajectory similarity computation: a
case-study on bicycle corridor planning. In
UrbComp@KDD, pages 9:1–9:8, 2013.

[12] J. Feng, J. Wang, and G. Li. Trie-join: a trie-based
method for efficient string similarity joins. VLDB J.,
21(4):437–461, 2012.

[13] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string
joins in a database (almost) for free. In VLDB, pages
491–500, 2001.

[14] J.-R. Hwang, H.-Y. Kang, and K.-J. Li. Searching for
similar trajectories on road networks using
spatio-temporal similarity. In ADBIS, pages 282–295,
2006.

[15] H. Hyyrö and G. Navarro. A practical index for genome
searching. In SPIRE, pages 341–349, 2003.

[16] T. Idé and S. Kato. Travel-time prediction using gaussian
process regression: A trajectory-based approach. In SDM,
pages 1185–1196, 2009.

[17] E. Keogh and C. A. Ratanamahatana. Exact indexing of
dynamic time warping. Knowledge and Information
Systems, 7(3):358–386, 2005.

[18] S. Koide, K. Kawano, and T. Kutsuna. Neural edit
operations for biological sequences. In Advances in Neural
Information Processing Systems 31, pages 4965–4975,
2018.

[19] S. Koide, Y. Tadokoro, C. Xiao, and Y. Ishikawa. CiNCT:
Compression and retrieval for massive vehicular
trajectories via relative movement labeling. In ICDE,
pages 1097–1108, 2018.

[20] S. Koide, Y. Tadokoro, T. Yoshimura, C. Xiao, and
Y. Ishikawa. Enhanced indexing and querying of
trajectories in road networks via string algorithms. ACM
Trans. Spatial Algorithms Syst., 4(1):3:1–3:41, 2018.

[21] S. Koide, C. Xiao, and Y. Ishikawa. Fast subtrajectory
similarity search under weighted edit distance constraints.
CoRR, abs/2006.05564, 2020.

[22] B. Krogh, C. S. Jensen, and K. Torp. Efficient in-memory
indexing of network-constrained trajectories. In GIS,
pages 17:1–17:10, 2016.

[23] B. Krogh, N. Pelekis, Y. Theodoridis, and K. Torp.
Path-based queries on trajectory data. In GIS, pages
341–350, 2014.

[24] C. Li, B. Wang, and X. Yang. VGRAM: improving
performance of approximate queries on string collections
using variable-length grams. In VLDB, pages 303–314,
2007.

[25] G. Li, D. Deng, and J. Feng. A partition-based method for
string similarity joins with edit-distance constraints. ACM
Trans. Database Syst., 38(2):9:1–9:33, 2013.

[26] H. Li and R. Durbin. Fast and accurate short read
alignment with burrows–wheeler transform.
Bioinformatics, 25(14):1754–1760, 2009.

[27] H. Li and R. Durbin. Fast and accurate long-read
alignment with Burrows-Wheeler transform.
Bioinformatics, 26(5):589–595, 2010.

[28] X. Li, K. Zhao, G. Cong, C. S. Jensen, and W. Wei. Deep
representation learning for trajectory similarity
computation. In ICDE, pages 617–628, 2018.

[29] W. Luo, H. Tan, L. Chen, and L. M. Ni. Finding time
period-based most frequent path in big trajectory data. In
SIGMOD, pages 713–724, 2013.

[30] C. D. Manning, P. Raghavan, and H. Schütze.
Introduction to Information Retrieval. Cambridge
University Press, 2008.

[31] M. F. Mokbel, T. M. Ghanem, and W. G. Aref.
Spatio-Temporal Access Methods. IEEE Data Eng. Bull.,
26(2):40–49, 2003.

[32] L. Moreira-Matias, J. Gama, M. Ferreira,
J. Mendes-Moreira, and L. Damas. Predicting
taxi-passenger demand using streaming data. IEEE Trans.
Intelligent Transportation Systems, 14(3):1393–1402,
2013.

[33] M. D. Morse and J. M. Patel. An efficient and accurate
method for evaluating time series similarity. In SIGMOD,
pages 569–580, 2007.

[34] S. Needleman and C. Wunsch. A general method
applicable to the search for similarities in the amino acid
sequence of two proteins. Journal of Molecular Biology,
48(3):443–453, 3 1970.

[35] P. Newson and J. Krumm. Hidden Markov map matching
through noise and sparseness. In GIS, pages 336–343,
2009.

[36] L.-V. Nguyen-Dinh, W. G. Aref, and M. F. Mokbel.
Spatio-Temporal Access Methods : Part 2 (2003 – 2010).
IEEE Data Eng. Bull., 33(2):46–55, 2010.

[37] J. Qin, W. Wang, C. Xiao, Y. Lu, X. Lin, and H. Wang.
Asymmetric signature schemes for efficient exact edit
similarity query processing. ACM Trans. Database Syst.,
38(3):16:1–16:44, 2013.

2200

[38] S. Ranu, D. P, A. D. Telang, P. Deshpande, and
S. Raghavan. Indexing and matching trajectories under
inconsistent sampling rates. In ICDE, pages 999–1010,
2015.

[39] S. Shang, L. Chen, Z. Wei, C. S. Jensen, K. Zheng, and
P. Kalnis. Trajectory Similarity Join in Spatial Networks.
PVLDB, 10(11):1178–1189, 2017.

[40] S. Shang, R. Ding, K. Zheng, C. S. Jensen, P. Kalnis, and
X. Zhou. Personalized trajectory matching in spatial
networks. VLDB J., 23(3):449–468, 2014.

[41] Z. Shang, G. Li, and Z. Bao. DITA: Distributed
In-Memory Trajectory Analytics. In SIGMOD, pages
725–740, 2018.

[42] C.-B. Shim and J.-W. Chang. Similar sub-trajectory
retrieval for moving objects in spatio-temporal databases.
In ADBIS, pages 308–322, 2003.

[43] T. F. Smith and M. S. Waterman. Identification of
common molecular subsequences. Journal of Molecular
Biology, 147(1):195–197, 1981.

[44] H. Su, S. Liu, B. Zheng, X. Zhou, and K. Zheng. A survey
of trajectory distance measures and performance
evaluation. VLDB J., 29(1):3–32, 2020.

[45] E. Tiakas, A. Papadopoulos, A. Nanopoulos,
Y. Manolopoulos, D. Stojanovic, and S. Djordjevic-Kajan.
Searching for similar trajectories in spatial networks.
Journal of Systems and Software, 82(5):772 – 788, 2009.

[46] M. Vlachos, D. Gunopulos, and G. Kollios. Discovering
similar multidimensional trajectories. In ICDE, pages
673–684, 2002.

[47] S. Wang, Z. Bao, J. S. Culpepper, Z. Xie, Q. Liu, and
X. Qin. Torch: A search engine for trajectory data. In
SIGIR, pages 535–544, 2018.

[48] W. Wang, J. Qin, C. Xiao, X. Lin, and H. T. Shen.
Vchunkjoin: An efficient algorithm for edit similarity joins.
IEEE Trans. Knowl. Data Eng., 25(8):1916–1929, 2013.

[49] W. Wang, C. Xiao, X. Lin, and C. Zhang. Efficient
approximate entity extraction with edit distance
constraints. In SIGMOD, pages 759–770, 2009.

[50] Y. Wang, Y. Zheng, and Y. Xue. Travel time estimation of
a path using sparse trajectories. In KDD, pages 25–34,
2014.

[51] R. Waury, J. Hu, B. Yang, and C. S. Jensen. Assessing the
accuracy benefits of on-the-fly trajectory selection in
fine-grained travel-time estimation. In MDM, pages

240–245, 2017.

[52] R. Waury, C. S. Jensen, S. Koide, Y. Ishikawa, and
C. Xiao. Indexing trajectories for travel-time histogram
retrieval. In EDBT, pages 157–168, 2019.

[53] H. Wei, J. X. Yu, and C. Lu. String similarity search: A
hash-based approach. IEEE Trans. Knowl. Data Eng.,
30(1):170–184, 2018.

[54] J. I. Won, S. W. Kim, J. H. Baek, and J. Lee. Trajectory
clustering in road network environment. In CIDM, pages
299–305, 2009.

[55] Y. Xia, G. Y. Wang, X. Zhang, G. B. Kim, and H. Y. Bae.
Spatio-temporal Similarity Measure for Network
Constrained Trajectory Data. Int. J. Comput. Intell.
Syst., 4(5):1070–1079, 2011.

[56] C. Xiao, W. Wang, and X. Lin. Ed-Join : An Efficient
Algorithm for Similarity Joins With Edit Distance
Constraints. PVLDB, 1(1):933–944, 2008.

[57] D. Xie, F. Li, and J. M. Phillips. Distributed trajectory
similarity search. PVLDB, 10(11):1478–1489, 2017.

[58] L. Yang, Y. Wang, Q. Bai, and S. Han. Urban Form and
Travel Patterns by Commuters: Comparative Case Study
of Wuhan and Xi’an, China. Journal of urban planning
and development, 144(1):05017014, 2018.

[59] X. Yang, H. Liu, and B. Wang. ALAE: Accelerating Local
Alignment with Affine Gap Exactly in Biosequence
Databases. PVLDB, 5(11):1507–1518, 2012.

[60] X. Yang, B. Wang, and C. Li. Cost-based
variable-length-gram selection for string collections to
support approximate queries efficiently. In SIGMOD,
pages 353–364, 2008.

[61] D. Yao, G. Cong, C. Zhang, and J. Bi. Computing
trajectory similarity in linear time: A generic seed-guided
neural metric learning approach. In ICDE, pages
1358–1369, 2019.

[62] B. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval
of similar time sequences under time warping. In ICDE,
pages 201–208, 1998.

[63] H. Yuan and G. Li. Distributed in-memory trajectory
similarity search and join on road network. In ICDE,
pages 1262–1273, 2019.

[64] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and
Y. Huang. T-drive: driving directions based on taxi
trajectories. In GIS, pages 99–108, 2010.

[65] Y. Zheng and X. Zhou. Computing with Spatial
Trajectories. Springer, 2011.

2201

	Introduction
	Preliminaries
	Framework and Data Model
	Weighted Edit Distance
	Concept
	Known Instances of WED
	Network-aware Similarity Functions
	Other Similarity Functions

	Problem Setting

	Filtering Principle
	Subsequence Filtering
	Finding Optimal -Subsequence

	Indexing and Search Algorithm
	Indexing
	Search Algorithm
	Filtering with Temporal Information

	Verification
	Local Verification
	Caching with Bidirectional Trie
	Verification Algorithm

	Experiments
	Settings
	Effectiveness
	Travel Time Estimation
	Alternative Route Suggestion

	Query Processing Time
	Filtering and Verification
	Index Construction Time / Index Size

	Related Work
	Conclusion and Future Work
	References

