
eXtract: A Snippet Generation System for XML Search

Yu Huang Ziyang Liu Yi Chen
Arizona State University

{yu.huang.1, ziyang.liu, yi}@asu.edu

ABSTRACT
Snippets are used by almost every text search engine to comple-
ment ranking schemes in order to effectively handle user keyword
search. Despite the fact that XML is a standard representation for-
mat of web data, research on generating result snippets for XML
search remains untouched. In this work, we present eXtract, a sys-
tem that efficiently generates self-contained result snippets within
a given size bound which effectively summarize the query results
and differentiate them from one another, according to which users
can quickly assess the relevance of the query results.

1. INTRODUCTION
Keyword search is widely used for information retrieval on both

unstructured and structured data. To improve user search experi-
ence, various ranking schemes have been proposed so that users can
focus on the ones that are deemed highly relevant. However, due
to the intrinsic ambiguity of keyword search, no ranking schemes
can always perfectly assess the relevance of query results, and typ-
ically a user needs to navigate through several results to find the
desirable ones. To compensate the inaccuracy of ranking functions
and reduce users’ navigation burden, result snippets are used by al-
most every text search engine. A snippet provides a brief quotable
passage of the query result in order to help users quickly judge the
relevance of the query result and choose the relevant ones among
many results.

Despite the fact that XML is a standard representation format of
web data, the problem of generating result snippets for XML key-
word search remains untouched. Compared with text documents,
XML data are semi-structured with mark-ups providing meaning-
ful annotations to data content, therefore present better opportuni-
ties for generating helpful result snippets. In this paper we address
this important yet open problem.

As an example, consider a query “Texas, apparel, retailer” whose
result fragments are shown in Figure 1.1 Some statistics of the
whole query result are shown at the right portion in the figure,

1Snippet generation takes query results as input, thus we omit the
description of the procedure of query result generation.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

where for each distinct value, we show the number of its occur-
rences in the query result. For instance, “city: Houston: 6” indi-
cates that there are 6 stores in the query result that are in the city of
Houston. Values with low occurrences are omitted.

A good snippet for this query result would look like the one
shown in Figure 2. It captures the heart of the query result in a
small tree: the query result is about retailer named as: Brook Broth-
ers. This retailer features clothes of outwear in casual situation, for
both man and woman. Furthermore, this retailer has many stores in
Houston.

We identify that a good XML result snippet should be a self-
contained information unit within a bounded size that effectively
summarizes the query result and differentiates itself from others. To
achieve this goal, several technical challenges need to be addressed.

To generate self-contained snippets, we need to identify the se-
mantic information units in the query results. In our example, the
query result is about an entity retailer.

To help users distinguish different query results from one another
with little effort, in analogy to text document search where the doc-
ument titles are included in the snippets, we propose to include the
key of a query result in its snippet. In our example, ideally the
name of the retailer should be included. However, a query result
often contains many entities, such as store, clothes, each of which
can have keys. It is not clear which entities’ keys can serve as the
key of the query result.

Besides, a snippet should provide a representative summary of
the query result, by capturing the most prominent features of the
query result. Intuitively, a prominent feature should have a dom-
inant number of occurrences in the query result. However, this
relationship is not always reliable. In our example, although the
number of occurrences of Houston: 6, is much less than that of
children: 40, considering that the majority of Brook Brothers stores
are in Houston in the query result, it should be considered as a
prominent feature.

Furthermore, a snippet should be small so that the user can quickly
browse it and decide whether this query result is relevant for further
examination or not.

To address these challenges, we present eXtract, a system that
generates effective snippets for XML keyword search results to
help users quickly identify the most relevant results.

The technical contributions of our work include:

• To the best of our knowledge, eXtract is the first system that
generates query result snippets for XML search.

• We identify four goals that a good query result snippet should
meet in order to help users quickly get the essence of a query
result and assess its relevance.

• To address the goals, we identify the most significant infor-

1392

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this wor k owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

store1

state city

merchandises1

clothes1

fitting

man1

Texas1 Houston

store2

merchandises2

reta iler

category

suit1

clothes2 clothes3 clothes4 clothes5

fitting

man2

situation

formal2

situationfitting

woman3 casual3

category

outwear3

situationfitting

man4

category

outwear4

categoryfitting

woman5 skirt5

name product

Brook
Brothers

apparel

Houston:6
Austin: 1
Other cities (3): 3
Man: 600
Woman: 360
Children: 40
Casual: 700
Formal: 300
Outwear: 220
Suit: 120
Skirt: 80
Sweaters: 70
Other categories (7): 580

city:

fitting:

situation:

category:

casual4

situation

casual1

attribute: value: number of occurrences

name

Galleria

state city

Texas2 Austin

name

West
Village

…… ……

…… ……

Figure 1: Part of a query result of query “Texas apparel retailer” and statistics about value occurrences.

store1

statecity merchandises1

clothes1
Texas1Houston

retailer

clothes3

situation fitting

woman3

category

outwear3

nameproduct

Brook
Brothers

apparel

casual4

category

suit1

fitting

man1

Figure 2: Snippet of the query result in Figure 1

mation in a query result to be selected into a snippet.

• We prove that the problem of constructing a snippet of a
given size limit that maximally contains the significant in-
formation is NP-hard.

• We design an efficient greedy algorithm to generate snip-
pets that are self-contained, distinguishable, representative
and has a size within a given limit.

2. SNIPPET GENERATION
To generate snippets, the eXtract system takes a keyword query,

an XML database, the query results, and a snippet size limit as the
input. It first identifies the most important information from each
query result according to the proposed goals (to be explained in
Sec 2.1, 2.2 and 2.3). Such information is placed in the Snippet In-
formation List, denoted as IList, in the order of their importances.
Then eXtract selects node instances in the query result that con-
tains the information in IList in their ranked order to build a snippet
tree. Since multiple node instances in the query result can cover the
same item in IList, choosing different instances generally results in
different sizes of the snippet. Given a snippet size bound, eXtract
carefully selects the instances of each item in IList from the query

result in order to cover as many items in IList as possible till the
size bound is met.

IList is initialized with the query keywords. For the query in
Figure 1, IList is initialized as “Texas, apparel, retailer”. Now we
discuss the goals of snippet generation and how to construct IList
to meet the goals.

2.1 Self-contained Snippets
Recall that in textual documents, each sentence is a basic infor-

mation unit. A result snippet usually contains one or more “win-
dows” of sentences in the documents containing query keywords.
Analogously, XML result snippets should also be based on the ba-
sic information unit so as to be self-contained. To identify basic
semantic units, we analyze that an XML database contains infor-
mation about real-world entities with associated attributes as well
as their relationships. An entity represents a basic semantic infor-
mation unit.

We adopt the approach in [6] that leverages DTD or XML data
structure to classify XML nodes into three categories: entities, at-
tributes, and connection nodes. Specifically, a node is considered
as an entity if it corresponds to a *-node in the DTD. If a node
is not a *-node and only has one child which is a text value, then
this node, together with its value child, represents an attribute. A
node is a connection node if it represents neither an entity nor an
attribute.

To make the snippet self-contained, eXtract includes the names
of entities involved in the query result into its snippet. In the sam-
ple query result in Figure 1, retailer, store and clothes are entities.
Therefore we update IList by adding the entity names, and now
have the IList as: “Texas, apparel, retailer, clothes, store”.

2.2 Distinguishable Snippets
To make a snippet distinguishable from the snippets of other

query results, we propose to include the key of a query result into
the snippet, which resembles the title of a text document. However,
it is not clear how to define the key of a query result. Recall that
a query result often contains multiple entities, each of which can
have a key attribute. It is critical to find the “most important” enti-
ties in the query result whose key attribute can serve as the key of
the result.

Intuitively, each query has a search goal. The search goal can
be used to classify the entities in a query result into two categories:

1393

Texas, apparel, retailer, clothes, store, Brook Brothers, Houston, outwear, man, casual, suit, woman

Figure 3: IList of the query result in Figure 1

return entities, the entities that the user is looking for by issuing the
query, and supporting entities, the entities that are used to describe
return entities in the result. Take query “Texas, apparel, retailer”
as example. The user is likely to search for the retailer of apparel in
Texas state. Therefore retailer should be considered as the return
entity of this query, while other entities in the query results, store
and clothes, are likely to be supporting entities. The keys of return
entities can be used as the key of query result.

To infer these two types of entities, we propose the following
heuristics: an entity in a query result is a return entity if its name
matches a keyword or its attribute name matches a keyword. If
there is no such entity, we use the highest entity (i.e. entities that do
not have ancestor entities) in the query result as the default return
entity.

For the sample query “Texas apparel retailer”, entity retailer has
its name matching a keyword, and therefore is considered as a re-
turn entity, corresponding to the user search goal. After mining the
keys of entities in the data, eXtract adds the value of the key at-
tribute of retailer: Brook Brothers, which is considered as the key
of this query result, to IList.

2.3 Representative Snippets
A desirable snippet should be representative, providing a good

summary of the query result by including the most prominent fea-
tures of the result.

We define a feature as a triplet (entity name e, attribute name
a, attribute value v). The pair (e, a) is referred as the type of a
feature, and attribute value v is referred as the value of a feature.
(e, a, v) denotes that entity e has an attribute a with feature value
v. For example (store, city, Houston) is a feature indicating that the
store is in the city of Houston. For presentation purpose, we refer a
feature by its value when there is no ambiguity.

A dominant feature of a query result is often reflected by a large
number of occurrences of this feature in the result. For example, in
Figure 1, there are 6 stores in Houston, and 4 stores in four other
cities. Houston is thus considered as dominant.

However, the relationship between the dominance of a feature
and the number of occurrences is not always reliable due to two rea-
sons. First, different features have different domain sizes. The do-
main size of a feature type (e, a) is defined as the number of distinct
values of this type, denoted as D(e, a). The smaller size a domain
has, the more chances there is for a value to have a large number of
occurrences in the result. For example, the number of occurrences
of outwear is less than that of woman in the query result. However,
considering their corresponding feature types, (clothes, category)
has a larger domain size than (clothes, fitting), thus outwear could
be a more dominant feature than woman.

Second, different feature types have different total number of
value occurrences, denoted as N(e, a). The more occurrences of
a feature type, the more chances for a value of this feature type to
occur. For example, though the number of occurrences of feature
Houston is much less than that of children, it should be considered
as more dominant considering that the features of type (store, city)
appear much less than those of type (clothes, fitting) in the result.

Since comparing the number of occurrences of different features
may not make sense in determining dominant features, we propose
to use normalized frequency, called dominance score, to measure
the significance of a feature in a query result. The dominance score

Data
Analyzer

XML

Return Entity
Identifier

Query & Result

Dominant
Feature

Identifier

IList,
Query Result Instance

Selector
Result

Snippet

Index
Builder

Index

Query Result
Key Identifier

Snippet
Size Limit

Figure 4: Architecture of eXtract

of a feature f = (e, a, v) in query result R, denoted by DS(f, R),
is defined as follows:

DS(f, R) =
N(e, a, v)

N(e,a)
D(e,a)

where N(x) denotes the number of occurrences of x in R, D(e, a)
denotes the domain size of feature (e, a) in R. We may omit R and
use DS(f) when R is explicit.

A feature is dominant if its dominance score is larger than 1. In-
tuitively, a dominant feature should have the number of occurrences
more than the average number of occurrences of the feature values
of the same type. There is one exception: if the domain size is 1,
D(e, a) = 1, then there is only one value of this feature type, which
is trivially considered to be dominant even though its dominance
score is 1.

eXtract includes dominant features into IList in the decreasing
order of their dominance scores. In Figure 1, DS(Houston) =
6/(10/5) = 3.0. Similarly, the dominance scores of man, woman,
casual, outwear and suit are 1.8, 1.1, 1.4, 2.2 and 1.2 respectively.
They are added to IList, which now becomes Texas, apparel, re-
tailer, clothes, store, Brook Brothers, Houston, outwear, man, ca-
sual, suit, woman.

2.4 Small Snippets
Given a snippet size bound, eXtract aims at including as many

items in IList as possible in the order of their significance, by care-
fully selecting the instances of each item from the query result. In-
tuitively, we should select instances of each item such that they are
close to each other, so as to occupy a small space and leave room
to include more items in IList. Considering feature Houston and
outwear as an example. Choosing outwear3 in Figure 1 results in a
smaller tree with Houston than outwear4.

The problem of maximizing the number of items in IList that are
captured in a snippet within a bounded size is NP-hard. To provide
a practical and efficient solution, we design a greedy algorithm for
selecting item instances. The proof of NP-hardness and the detailed
algorithm can be found in [3].

3. SYSTEM ARCHITECTURE
The architecture of eXtract is presented in Figure 3. The Data

Analyzer parses the input XML data and identifies the entities, at-
tributes and connection nodes. The Index Builder builds indexes
for efficiently retrieving matches to user input keywords, as well

1394

Figure 5: Search results of eXtract

as the information about node category, and parent-children rela-
tionship. The core components of the system are Return Entity
Identifier, Query Result Key Identifier, Dominant Feature Identifier
and Instance Selector. The eXtract system takes a user keyword
query, its query results and the snippet size bound as input. Note
that the query results can be generated by any XML keyword search
engine. The Return Entity Identifier identifies the search target of
the user among all the entities in the query result. The Query Re-
sult Key Identifier finds the key value of the return entity, which
serves as the key of the query result to distinguish different query
results. Dominant Feature Identifier traverses the query result and
calculates the dominance score for each feature. Then dominant
features are identified according to their dominance scores. The
query keywords, entities in the query results, key of query results,
and dominant features in the order of their dominance scores com-
pose the IList. Finally, the Instance Selector selects an instance of
each item in the IList in their ranked order to build a snippet tree,
using a greedy strategy. It aims at including as much information
as possible in the snippet without exceeding a given size limit.

User study and performance evaluation showed that eXtract can
effectively generate high-quality snippets for XML keyword search.
Details of the experimental evaluation are presented in [3].

4. DEMONSTRATION
In the demonstration, we present eXtract, the first system that

generates snippets for keyword search results on XML documents.
The development of eXtract fills a gap in developing a full-fledged
XML keyword search engine with functionalities from query result
construction, ranking, to providing result snippets.

Compared with snippet generation in text documents, generating
meaningful snippets within a size bound for XML search results is
much more challenging: a NP-hard problem. This demonstration
will present the challenges of searching tree-structured data, as well
as some practical and effective solutions.

eXtract has a web-based user interface (http://eXtract.asu.edu/)
which allows users to specify XML data sets and keywords for
retrieval. It takes a query result and snippet size bound as input
and efficiently generates meaningful result snippets within the size
bound. Then the user can examine the snippets, and click the rel-
evant ones for complete query results. eXtract is implemented in
C++; and query results are presented on the web site with Apache
and PHP, both on the Windows platform. A screen shot of eXtract
is shown in Figure 5. Currently XSeek [6] is used as the XML key-
word search engine to generate query results. Since snippet gener-
ation is orthogonal to query result generation and ranking, eXtract
can also be used on top of any XML keyword search engines such
as [1, 2, 4, 5, 7].

In our demonstration, we will show various example scenarios,
such as movies and stores. Users can select an XML document,
view it by clicking the “view data” button. They can issue keyword
queries on the selected XML file as they normally do at any web
search engine. We also provide users with the option of customiz-
ing the upper bound of snippet size, which is defined as the number
of edges in the tree.

For example, as shown in Figure 5, a user issues a query “store
texas”, searching for the information about the stores in Texas, with
a snippet size upper bound of 6. After the query results are pro-
duced, eXtract generates result snippets conforming to the size up-
per bound with a link to each query result. The user can easily
judge whether a query result is of his/her interest by looking at the
concise yet informative snippets. As we can see in the figure, the
user can clearly see that the store named as Levis features jeans,
especially for man; while the store named as ESprit focuses on the
outwear clothes, mostly for woman.

For comparison purpose, we also present the snippets produced
by Google Desktop for the generated XML keyword search results,
on our web site. Since Google is a text document search engine and
ignores XML tags and all structural information, the advantages
of developing an XML-specific snippet generation system can be
clearly demonstrated.

5. ACKNOWLEDGEMENT
This material is based on work partially supported by NSF grant

IIS-0740129 and IIS-0612273.

6. REFERENCES
[1] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSearch: A

semantic Search Engine for XML. In Proceedings of VLDB,
2003.

[2] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.
XRANK: Ranked Keyword Search over XML Documents. In
Proceedings of SIGMOD, 2003.

[3] Y. Huang, Z. Liu, and Y. Chen. Query Biased Snippet
Generation in XML Search. In Proceedings of SIGMOD,
2008.

[4] G. Li, J. Feng, J. Wang, and L. Zhou. Effective Keyword
Search for Valuable LCAs over XML Documents. In
Proceedings of CIKM, 2007.

[5] Y. Li, C. Yu, and H. V. Jagadish. Schema-Free XQuery. In
Proceedings of VLDB, 2004.

[6] Z. Liu and Y. Chen. Identifying Meaningful Return
Information for XML Keyword Search. In Proceedings of
SIGMOD, 2007.

[7] Y. Xu and Y. Papakonstantinou. Efficient Keyword Search for
Smallest LCAs in XML Databases. In Proceedings of
SIGMOD, 2005.

1395

