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ABSTRACT
Emerging applications such as personalized portals, enter-
prise search and web integration systems often require key-
word search over semi-structured views. However, tradi-
tional information retrieval techniques are likely to be ex-
pensive in this context because they rely on the assumption
that the set of documents being searched is materialized. In
this paper, we present a system architecture and algorithm
that can efficiently evaluate keyword search queries over vir-
tual (unmaterialized) XML views. An interesting aspect of
our approach is that it exploits indices present on the base
data and thereby avoids materializing large parts of the view
that are not relevant to the query results. Another feature
of the algorithm is that by solely using indices, we can still
score the results of queries over the virtual view, and the re-
sulting scores are the same as if the view was materialized.
Our performance evaluation using the INEX data set in the
Quark [5] open-source XML database system indicates that
the proposed approach is scalable and efficient.

1. INTRODUCTION
Traditional information retrieval systems rely heavily on

a fundamental assumption that the set of documents be-
ing searched is materialized. For instance, the popular in-
verted list organization and associated query evaluation al-
gorithms [4, 32] assume that the (materialized) documents
can be parsed, tokenized and indexed when the documents
are loaded into the system. Further, techniques for scoring
results such as TF-IDF [32] rely on statistics gathered from
materialized documents such as term frequencies (number of
occurrences of a keyword in a document) and inverse doc-
ument frequencies (the inverse of the number of documents
that contain a query keyword). Finally, even document fil-
tering systems, which match streaming documents against a
set of user keyword search queries (e.g., [8, 15]), assume that
the document is fully materialized at the time it is handed
to the streaming engine, and all processing is tailored for
this scenario.
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In this paper, we argue that there is a rich class of semi-
structured search applications for which it is undesirable
or impractical to materialize documents. We illustrate this
claim using two examples.
Personalized Views: Consider a large online web portal
such as MyYahoo1 that caters to millions of users. Since
different users may have different interests, the portal may
wish to provide a personalized view of the content to its
users (such as books on topics of interest to the user along
with their reviews, and latest headlines along with previous
related content seen by the user, etc.), and allow users to
search such views. As another example, consider an enter-
prise search platform such as Microsoft Sharepoint2 that is
available to all employees. Since different employees may
have different permission levels, the enterprise must pro-
vide personalized views according to specific levels, and al-
low employees to search only such views. In such cases, it
may not be feasible to materialize all user views because
there are many users and their content is often overlap-
ping, which could lead to data duplication and its associated
space-overhead. In contrast, a more scalable strategy is to
define virtual views for different users of the system, and
allow users to search over their virtual views.
Information Integration: Consider an information inte-
gration application involving two query-able XML web ser-
vices: the first service provides books and the second service
provides reviews for books. Using these services, an aggre-
gator wishes to create a portal in which each book contains
its reviews nested under it. A natural way to specify this
aggregation is as an XML view, which can be created by
joining books and reviews on the isbn number of the book,
and then nesting the reviews under the book (Figure 1).
Note that the view is often virtual (unmaterialized) for var-
ious reasons: (a) the aggregator may not have the resources
to materialize all the data, (b) if the view is materialized,
the contents of the view may be out-of-date with respect to
the base data, or maintaining the view in the face of up-
dates may be expensive, and/or (c) the data sources may
not wish to provide the entire data set to the aggregator,
but may only provide a sub-set of the data in response to a
query. While current systems (e.g., [7, 13, 18]) allow users to
query virtual views using query languages such as XQuery,
they do not support ranked keyword search queries over such
views.

The above applications raise an interesting challenge: how
do we efficiently evaluate keyword search queries over vir-

1http://my.yahoo.com
2http://www.microsoft.com/sharepoint
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<bookrevs>

<book isbn=“111-11-1111”> 

<title>XML Web Services</title>  

<review> <content> ...about search... </content> </review> 

<review> <content> Easy to read... </content> </review>

...

</book>    

<book isbn=“222-22-2222”>

<title> Artificial Intelligence </title> <review>...</review>...

</book>

</bookrevs>

<books>

<book><isbn>111-11-1111</isbn>

<title>XML Web Services </title>

<publisher>Prentice Hall </publisher>

<year> 2004 </year>

</book>

<book><isbn>222-22-2222</isbn>

<title>Artificial Intelligence </title>

<publisher> Prentice Hall </publisher>

<year> 2002 </year>

</book>

...      

</books>

<reviews>

<review><isbn>111-11-1111</isbn>

<rate> Excellent </rate>

<content>…about search…</content>

<reviewer>John</reviewer>

</review>

<review>  <isbn>111-11-1111</isbn>

<rate> Good </rate>

<content> Easy to read…</content>

<reviewer>Alex</reviewer>

</review>

...

</reviews>

ReviewsBooks

Aggregation View

(Virtual)
Keyword Query Ranked results

Figure 1: An XML view associating books & reviews

tual XML views? One simple approach is to materialize
the entire view at query evaluation time and then evaluate
the keyword search query over the materialized view. How-
ever, this approach has obvious disadvantages. First, the
cost of materializing the entire view at runtime can be pro-
hibitive, especially since only a few documents in the view
may contain the query keywords. Further, users issuing key-
word search queries are typically interested in only the re-
sults with highest scores, and materializing the entire view
to produce only top few results is likely to be expensive.

To address the above issues, we propose an alternative
strategy for efficiently evaluating keyword search queries
over virtual XML views. The key idea is to use regular
indices, including inverted list and XML path indices, that
are present on the base data to efficiently evaluate keyword
search over views. The indices are used to efficiently identify
the portion of the base data that is relevant to the current
keyword search query so that only the top ranked results of
the view are actually materialized and presented to the user.

The above strategy poses two main challenges. First,
XML view definitions can be fairly complex, involving joins
and nesting, which leads to various subtleties. As an il-
lustration, consider Figure 1. If we wish to find all books
with nested reviews that contain the keywords “XML” and
“search”, then ideally we want to materialize only those
books and reviews such that they together contain the key-
words “XML” and “search” (even though no book or review
may individually contain both the keywords). However, we
cannot determine which reviews belong to which book (to
check whether they together contain both the keywords)
without actually joining the books and reviews on the isbn
number, which is a data value. This presents an interesting
dilemma: how do we selectively extract some fields needed
for determining related items in the view (e.g., isbn number)
without actually materializing the entire view?

The second challenge stems from ranking the keyword
search results. As mentioned earlier, popular ranking meth-
ods such as TF-IDF require statistics gathered from the
documents being searched. How do we efficiently compute
statistics on the view from the statistics on the base data, so
that the resulting scores and rank order of the query results

is exactly the same as when the view is materialized?
Our solution to the above problem is a three-phase algo-

rithm that works as follows. In the first phase, the algorithm
analyzes the view definition and query keywords to identify
a query pattern tree (or QPT) for each data source (such as
books and reviews); the QPT represents the precise parts
of the base data that are required to compute the potential
results of the keyword search query. In the second phase,
the algorithm uses existing inverted and path indices on the
base data to compute pruned document trees (or PDT) for
each data source; each PDT contains only small parts of the
base data tree that correspond to the QPT. The PDT is con-
structed solely using indices, without having to access the
base data. In this phase, the algorithm also propagates key-
word statistics in the PDTs. In the third phase, the query
is evaluated over the PDTs, and the top few results are ex-
panded into the complete trees; this is the only phase where
the base data is accessed (for the top few results only).

We have experimentally compared our approach with two
alternatives: the naive approach that materializes the entire
view at query time, and GTP [11] with TermJoin [1], which
is a state of the art implementation of integrating struc-
ture and keyword search queries. Our experimental results
show that our approach is more than 10 times faster than
these alternatives, due to the following two reasons: (1) we
use path indices to efficiently create PDTs, thereby avoiding
more expensive structural joins, and (2) we selectively mate-
rialize the element values required during query evaluation
using indices, without having to access the base data. We
have also compared our PDT generation with the technique
for projecting XML documents [26]; again our approach is
more than an order of magnitude faster because we generate
PDTs solely using indices.

In summary, we believe that the proposed approach is
the first optimized end-to-end solution for efficient keyword
search over virtual XML views. The specific contributions
of this paper are:

• A system architecture for efficiently evaluating key-
word search queries over virtual XML views (Section 3).

• Efficient algorithms for generating pruned XML el-
ements needed for query evaluation and scoring, by
solely using indices (Section 4).

• Evaluation and comparison of the proposed approach
using the 500MB INEX dataset3 (Section 5).

There are some interesting optimizations and extensions
to the proposed approach that are not explored in this pa-
per. First, the proposed approach produces all pruned view
elements, so that each element is scored and only the top
few results are fully materialized. While this deferred ma-
terialization already leads to significant performance gains,
an even more efficient strategy might be to avoid producing
the pruned view elements that do not make it to the top few
results. This problem, however, turns out to be non-trivial
because of the presence of non-monotonic operators such as
group-by that are common in XML views (please see the
conclusion for more details). Second, the current focus of
this paper is on aspects related to system efficiency; conse-
quently, the discussion on scoring is limited to simple XML
scoring methods based on TF-IDF [32]. Generalizing the
proposed approach to deal with more sophisticated XML
scoring functions (e.g., [2, 20, 27]) is another interesting di-
rection for future work.

3http://inex.is.informatik.uni-duisburg.de:2004
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let $view :=
for $book in fn:doc(books.xml)/books//book
where $book/year > 1995
return <bookrevs>

<book> {$book/title} </book>,
{for $rev in fn:doc(reviews.xml)/reviews//review
where $rev/isbn = $book/isbn
return $rev/content}

</bookrevs>
for $bookrev in $view
where $bookrev ftcontains('XML' & 'Search')
return $bookrev

Figure 2: Keyword Search over XML view

2. BACKGROUND & PROBLEM DEFINI-
TION

We first describe some background on XML, before pre-
senting our problem definition.

2.1 XML Documents and Queries

An XML document consists of nested XML elements start-
ing with the root element. Each element can have attributes
and values, in addition to nested subelements. Figure 1
shows an example XML document representing books with
nested reviews. Each 〈book〉 element has 〈title〉 and 〈review〉
subelements nested under it. The 〈book〉 element also has
the isbn attribute whose value is “111-11-1111”. For ease
of exposition, we treat attributes as though they are sub-
elements. While XML elements can also have references
to other elements (IDREFs), they are treated and queried
as values in XML; hence we do not model this relation-
ship explicitly for the purposes of this paper. In order to
capture the text content of elements, we use the predicate
contains(u, k), which returns true iff the element u directly
or indirectly contains the keyword k (note that k can appear
in the tag name or text content of u or its descendants).

An XML database instance D can be modeled as a set
of XML documents. An XML query Q can be viewed as
a mapping from a database instance D to a sequence of
XML documents/elements (which represents the output of
the query). More formally, if UD is the universe of XML
database instances and S is the universe of sequences of
XML documents/elements, then Q : UD → S. Thus, we
use the notation Q(D) to denote the result of evaluating
the query Q over the database instance D. A query Q is
typically specified using an XML query language such as
XQuery. An XML view is simply represented as an XML
Query. For instance, the variable $view in Figure 2 cor-
responds to an XQuery query/view which nests review ele-
ments in the review document under the corresponding book
element in the book document. We thus use the term view
and query interchangeably for the rest of the paper. Further,
we use the following notation for reasoning about sequences
of elements. Given a sequence of elements s, e ∈ s is true iff
the element e is present in the sequence s.

2.2 XML Scoring
An important issue for keyword search queries is scoring

the results. There have been many proposals for scoring
XML keyword search results [2, 3, 19, 20, 27]. As men-
tioned in Section 1, in the paper we focus on the commonly
used TF-IDF method proposed in the context of XML doc-
uments [19]. In this context, tf and idf values are calculated
with respect to XML elements, instead of entire documents

as in the traditional information retrieval. Specifically, given
an XML view V over a database D, the TF-IDF method de-
fines two measures:

• tf(e, k), which is the number of distinct occurrences of
the keyword k in element e and its descendants (where
e ∈ V (D)), and

• idf(k) = |V (D)|
|{e|e∈V (D)∧contains(e,k)}|

(the ratio of the num-

ber of elements in the view result V(D) to the number
of elements in V(D) that contain the keyword k).

Given the above measure, the score of a result element e
for a keyword search query Q is defined to be: score(e, Q) =
Σk∈Q(tf(e, k) × log(idf(k))). The score can be further nor-
malized using various methods proposed in the literature [39].

2.3 Problem Definition
We use a set of keywords Q = {k1, k2, ..., kn} to represent

a keyword search query, and define the problem of keyword
search over views as follows.
Problem KS: Given a view V defined over a database D,
the result of a keyword search query Q, denoted as RES(Q,V,D),
is the sequence s such that:

• ∀e ∈ s, e ∈ V (D), and

• ∀e ∈ s,∀q ∈ Q(contains(e, q)), and

• ∀e ∈ V (D)(∀q ∈ Q (contains(e,q))) ⇒ e ∈ s

Figure 2 illustrates a keyword query {’XML’, ’Search’}
over the view corresponding to the variable $view. Given
the definition of score in the previous section, we can further
define the problem of ranked keyword search as follows.
Problem Ranked-KS: Given a view V defined over a
database D and the number of desired results k, the re-
sult of a ranked keyword query Q is the set of k elements
with highest scores in RES(Q,V,D), where we break ties ar-
bitrarily.

The above definition captures the result of conjunctive
ranked keyword search queries over views. Our system also
supports disjunctive queries which can be defined similarly.

3. SYSTEM OVERVIEW

3.1 System Architecture
Figure 3 shows our proposed system architecture and how

it relates to traditional XML full-text query processing. The
top big box denotes the query engine sub-system and the
bottom big box denotes the storage and index subsystem.
The solid lines show the traditional query evaluation path
for full-text queries (e.g., [5, 14, 24, 29]). The query is
parsed, optimized and evaluated using a mix of structure
and inverted list indices and document storage. However,
as mentioned in the introduction, traditional query engines
are not designed to support efficient keyword search queries
over views. Consequently, they either disallow such queries
(e.g., [14, 29]), materialize the entire view before evaluating
the keyword search query (e.g. [5]), or do not support such
queries efficiently (e.g., [24]), as verified in our performance
study (Section 5).

To efficiently process keyword search queries over views,
we adapt the existing query engine architecture by adding
three new modules (depicted by dashed boxes in Figure 3).
The modified query execution path (depicted by dashed lines
in Figure 3) is as follows. On detecting a keyword search
query over a view that satisfies certain conditions (clarified
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Parser

Optimizer

Evaluator

QPT 

Generation 

Module

PDT Generation 

Module

Structure (Path/Tag) 

Indices

Inverted List 

Indices

Document 

Storage

Scoring & 

Materialization 

Module

XQFT 

queries

Keyword queries

over virtual views

Ranked

results

Query 

results

Figure 3: Keyword query processing architecture

at the end of this section), the parser redirects the query
to the Query Pattern Tree (QPT) Generation Module. The
QPT, which is a generalization of the GTP [11], identifies
the precise parts of the base data that are required to com-
pute the results of the keyword search query. The QPT is
then sent to the Pruned Document Tree (PDT) Generation
Module. This module generates PDTs (i.e., a projection of
the base data that conforms to the QPT) using only the
path indices and inverted list indices; consequently, the gen-
eration of PDTs is expected to be fast and cheap.

The QPT Generation Module also rewrites the original
query to go over PDTs instead of the base data and sends it
to the traditional query optimizer and evaluator. Note that
our proposed architecture requires no changes to the XML
query evaluator, which is usually a large and complex piece
of code. The rewritten query is then evaluated using PDTs
to produce the view that contains all view elements with
pruned content (determined using path indices), along with
information about scores and query keywords contained (de-
termined using inverted indices). These elements are then
scored by the Scoring & Materialization Module, and only
those with highest scores are fully materialized using docu-
ment storage.

Our current implementation supports views specified us-
ing a powerful subset of XQuery, including XPath expres-
sions with named child and descendant axes, predicates on
leaf values, nested FLWOR expressions, non-recursive func-
tions. We currently do not support predicates on the string
values of non-leaf elements and other XPath axes such as
sibling and position based predicates, although it is possible
to extend our system to handle these axes by using an un-
derlying structure index that supports these axes (e.g., [12]).
We refer the reader to [35] for the supported grammar.

3.2 XML Storage and Indexing
Since our system architecture exploits indices on the base

data to generate PDTs, we now provide some necessary
background on XML storage and indexing techniques.

One of the key concepts in XML storage is the notion of
element ids, which is a way to uniquely identify an XML el-
ement. One popular id format is Dewey IDs which has been
shown to be effective for search [20] and update [30] queries.
Dewey IDs is a hierarchical numbering scheme where the
ID of an element contains the ID of its parent element as
a prefix. An example XML document in which Dewey IDs
are assigned to each node is shown in Figure 4(a).

Another important aspect is XML indexing. At a high-

…

XQFT

Jane

…

XQFT

Jane 111.2.3 111.2.3 211.7.3 211.7.3

3,721.1.2 3,721.1.2

……

……

(ID, TF, Position List )

B+ tree indexB+ tree index
books,1

book, 1.1 book, 1.2

isbn, 1.1.1 ...

(a) Dewey IDs (b) XML Inverted list Indices

Figure 4: Illustrating XML Storage & Indices

………

1.2.1“222-222-2222”/books/book/isbn

/books/book/author/fn

…

/books/book/isbn

Path

……

1.2.4.3, 1.7.4.3“Jane”

1.1.1,1.3.1“111-111-1111”

IDListValue

………

1.2.1“222-222-2222”/books/book/isbn

/books/book/author/fn

…

/books/book/isbn

Path

……

1.2.4.3, 1.7.4.3“Jane”

1.1.1,1.3.1“111-111-1111”

IDListValue

B+-Tree

Path-Values Table

Figure 5: XML path indices

level, there are two types of XML indices: path indices and
inverted list indices (these indices can sometimes be com-
bined [25]). Path indices are used to evaluate XML path
and twig (i.e., branching path) queries. Inverted list indices
are used to evaluate keyword search queries over (materi-
alized) XML documents. We now describe representative
implementations for each type of index.

One effective way to implement path indices is to store
XML paths with values in a relational table and use indices
such as B+-tree [10, 37] for efficient probes. Figure 5 shows
the path index for the document in Figure 1. As shown, the
Path-Values index table contains one row for each unique
(Path, Value) pair, where path represents a path from the
root to an element in the document, and value represents
the atomic value of the last element on the path. For each
unique (Path, Value) pair, the table stores an IDList, which
is the list of ids of all elements on the path corresponding to
Path with that atomic value (paths without corresponding
values are associated with a null value). A B+-tree index
is built on the (Path, Value) pair. Queries are evaluated
as follows. First, a path query with value predicates such
as /book/author/fn[. = ’Jane’] is evaluated by probing the
index using the search key (Path,’Jane’). Second, a path
query without value predicates is evaluated by merging lists
of IDs corresponding to the path, which are retrieved using
Path, the prefix of the composite key. For path queries with
descendant axes, such as /book//fn, the index is probed for
each full data path (e.g., /book/name/fn), and the lists of
result ids are merged. Finally, twig queries are evaluated by
first evaluating each individual path query and then merging
the results based on the dewey id.

The second type of XML indices are inverted list indices.
XML inverted list indices (e.g., [20, 28, 38]) typically store
for each keyword in the document collection, the list of XML
elements that directly contain the keyword. Figure 4 shows
an example inverted list for our example document. In ad-
dition, an index such as a B+-tree is usually built on top of
each inverted list so that we can efficiently check whether a
given element contains a keyword.

3.3 QPT Generation Module
The QPT Generation Module (Figure 3) generates QPTs
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books

book

isbn title year
[.>1995]v c

reviews

review

isbn content
v c

<books> 

    <book>

      <isbn id=”1.2.1”>121-23-1321</isbn> 

       <title id="1.2.3" kwd1=”xml” tf1=”1" 

                   kwd2=”search” tf2=”0"/>

        <year id=”1.2.6”>1996</year>

    </book>

    <book>

            ...

    </book>

     ...

</books>

<reviews> 

    <review>

      <isbn id=”2.2.1”>121-23-1321</isbn>

       <content id="2.1.3" kwd1=”xml” tf1=”0" 

                            kwd2=”search” tf2=”2"/>

    </review>

    <review>

        ...

    </review>

    ...

</reviews>

(a) QPT (b) PDT

doc(books.xml)

doc(reviews.xml)

Figure 6: QPTs and PDTs of book and review

from an XML view. We illustrate the QPT using the view
shown in Figure 2. In order to evaluate this view query,
we only need a small subset of the data, such as the isbn
numbers of books and isbn numbers of reviews (which are
required to perform a join). It is only when we want to
materialize the view results do we need additional content
such as the titles of books and content of reviews. The QPT
is essentially a principled way of capturing this information.

The QPT is a generalization of the Generalized Tree Pat-
terns (GTP) [11], which was originally proposed in the con-
text of evaluating complex XQuery queries. The GTP cap-
tures the structural parts of an XML document that are re-
quired for query processing. The QPT augments the GTP
structure with two annotations, one that specifies which
parts of the structure and associated data values are re-
quired during query evaluation, and the other that specifies
which parts are required during result materialization.

Figure 6(a) shows the QPTs for the book and review doc-
uments referenced in our running example. We first describe
features present in the GTP. First, each QPT is associated
with an XML document (determined by the view query).
Second, as is usual in twigs, a double line edge denotes ances-
tor/descendant relationship and a single line edge denotes a
parent/child relationship. Third, nodes are associated with
tag names and (possibly) predicates. For instance, the year
node in Figure 6(a) is associated with a predicate > 1995.
Finally, edges in the QPT are either optional (represented
by dotted lines) or mandatory (represented by solid lines).
For example, in Figure 6(a), the edge between book and isbn
is optional, because a book can be present in the view result
even if it does not have an isbn number; the edge between
review and isbn is mandatory, because a review is of no
relevance to query execution unless it has an isbn number
(otherwise, it does not join with any book and is hence ir-
relevant to the content of the view).

The new features in the QPT are node annotations ’c’ and
’v’, where ’c’ indicates that the content of the node is prop-
agated to the view output, and ’v’ indicates that the value
of node is required to evaluate the view. In our example,
the ’isbn’ node in both the book and review QPT is marked
with a ’v’ since their values are required for performing a
join operation; the ’title’ and ’content’ nodes are marked
as ’c’ nodes since their content is propagated to the view

output, and is required only during materialization. Note
that a node can be marked with both a ’v’ and a ’c’ if it is
used during evaluation and propagated to the view output,
although there is no instance of this case in our example.

We now introduce some notation that is used in subse-
quent sections. A QPT is a tree Q = (N, E) where N is the
set of nodes and E is the set of edges. For each node n in N,
n.tag is its tag name, n.preds is the set of predicates associ-
ated with n, and n.ann is its node annotation(s), which can
be ’v’, ’c’, both, or neither. For each edge e in E, e.parent
and e.child are the parent and child node of e, respectively;
e.axis is either ’/’ or ’//’ corresponding to an XPath axis,
and e.ann is either ’o’ or ’m’ corresponding to an optional
or a mandatory edge.

4. PDT GENERATION MODULE
We now turn our attention to the PDT Generation Mod-

ule (Figure 3), which is one of the main technical contribu-
tions in the paper. The PDT Generation Module efficiently
generates a PDT for each QPT. Intuitively, the PDT only
contains elements that correspond to nodes in the QPT and
only contains element values that are required during query
evaluation. For example, Figure 6(b) shows the PDT of the
book document for its QPT shown in Figure 6(a). The PDT
only contains elements corresponding to the nodes books,
book, isbn, title, and year, and only the elements isbn and
year have values.

Using PDTs in our architecture offers two main advan-
tages. First, the query evaluation is likely to be more ef-
ficient and scalable because the query evaluator processes
pruned documents which are much smaller than the under-
lying data. Further, using PDTs allows us to use the regular
(unmodified) query evaluator for keyword query processing.

We note that the idea of creating small documents is sim-
ilar to projecting XML documents (PROJ for short) pro-
posed in [26]. There are, however, several key differences,
both in semantics and in performance. First, while PROJ
deals with isolated paths, we consider twigs with more com-
plex semantics. As an example, consider the QPT for the
book document in Figure 6(a). For the path books//book/isbn,
PROJ would produce and materialize all elements corre-
sponding to book (and its subelements corresponding to isbn).
In contrast, we only produce book elements which have year
subelements whose values are greater than 1995, which is
enforced by the entire twig pattern. Second, instead of ma-
terializing every element as in PROJ, we selectively mate-
rialize a (small) portion of the elements. In our example,
only the elements corresponding to isbn and year are ma-
terialized. Finally, the most important difference is that we
construct the PDTs by solely using indices, while PROJ re-
quires full scan of the underlying documents which is likely
to be inefficient in our scenario. Our experimental results
in Section 5 show that our PDT generation is more than an
order of magnitude faster then PROJ.

We now illustrate more details of PDTs before presenting
our algorithms.

4.1 PDT Illustration & Definition
The key idea of a PDT is that an element e in the docu-

ment corresponding to a node n in the QPT is selected for
inclusion only if it satisfies three types of constraints: (1)
an ancestor constraint, which requires that an ancestor ele-
ment of e that corresponds to the parent of n in the QPT
should also be selected, (2) a descendant constraint, which
requires that for each mandatory edge from n to a child of

1061



n in the QPT, at least one child/descendant element of e
corresponding to that child of n should also be selected, and
(3) a predicate constraint, which requires that if e is a leaf
node, it satisfies all predicates associated with n. Conse-
quently, there is a mutual restriction between ancestor and
descendant elements. In our example, only reviews with at
least one isbn subelement are selected (due to the descen-
dant constraint), and only those isbn and content elements
that have a selected review are selected (due to the ancestor
constraint). Note that this restriction is not “local”: a con-
tent element is not selected for a review if that review does
not contain an isbn element.

We now formally define notions of PDTs. We first define
the notion of candidate elements that only captures descen-
dant restrictions.

Definition 1 (candidate elements). Given a QPT
Q, an XML document D, the set of candidate elements in
D associated with a node n ∈ Q, denoted by CE(n, D), is
defined recursively as follows.

• n is a leaf node in Q: CE(n, D) =
{v ∈ D | tag name of v is n.tag ∧
the value of v satisfies all predicates in n.preds }.

• n is a non-leaf node in Q: CE(n, D) =
{v ∈ D | tag name of v is n.tag ∧ for every edge e in
Q, if e.parent is n and e.ann is ’m’ (mandatory),
then ∃ec ∈ CE(e.child, D) such that
(a) e.axis = ’/’ ⇒ v is the parent of ec, and
(b) e.axis = ’//’ ⇒ v is an ancestor of ec }

Definition 1 recursively captures the descendant constraints
from bottom up. For example, in Figure 6(a), candidate ele-
ments corresponding to “review” must have a child element
“isbn”. Now we define notions of PDT elements which cap-
ture both ancestor and descendant constraints.

Definition 2 (PDT elements). Given a QPT Q, an
XML document D, the set of PDT elements associated with
a node n ∈ Q, denoted by PE(n, D), is defined recursively
as follows.

• n is the root node of Q: PE(n, D) = CE(n, D)

• n is the non-root node in Q: PE(n, D) =
{v ∈ D | v is in CE(n, D) ∧
for every edge e in Q, if e.child is n,
then ∃vp ∈PE(e.parent, D) such that
(a) e.axis = ’/’ ⇒ vp is the parent of v, and
(b) e.axis = ’//’ ⇒ vp is an ancestor of v }

Intuitively, the PDT elements associated with each QPT
node are first the corresponding candidate elements and
hence satisfy descendant constraints. Further, the PDT el-
ements associated with the root QPT node are just its can-
didate elements, because the root node does not have any
ancestor constraints; the PDT elements associated with a
non-root QPT node have the additional restriction that they
must have the parent/ancestors that are PDT elements as-
sociated the parent QPT node. For example, in Figure 6(a),
each PDT element corresponding to “content” must have a
parent element that is the PDT element with respect to “re-
view”. Using the definition of PDT elements, we can now
formally define a PDT.

Definition 3 (PDT). Given a QPT Q, an XML doc-
ument D, a set of keywords K, a PDT is a tree (N, E) where
N is the set of nodes and E is set of edges, which are defined
as follows.

1: PrepareLists (QPT qpt, PathIndex pindex, InvertedIndex
iindex, KeywordSet kwds): (PathLists, InvLists)

2: pathLists← ∅; invLists← ∅
3: for Node n in qpt do
4: p← PathFromRoot(n); newList ← ∅
5: if n has no mandatory child edges then
6: n.visited ← true
7: if n has a ’v’ annotation then
8: {Combining retrieval of IDs and values}
9: newList← (n, pindex.LookUpIDV alue(p))

10: else
11: newList← (n, pindex.LookUpID(p))
12: end if
13: end if
14: {Handle ’v’ nodes with mandatory child edges}
15: if n.visited = false ∧ n has a ’v’ annotation then
16: newList← (n, pindex.LookUpIDV alue(p))
17: end if
18: if newList 6= null then pathLists.add(newList)
19: end for
20: for all k in kwds do
21: invLists← invLists ∪ (k, sindex.lookup(k))
22: end for
23: return (pathLists, invLists)

Figure 7: Retrieving IDs and values

• N = ∪q∈Q PE(q, D), and nodes in N are associated
with required values, tf values and byte lengths.

• E = {(p, c) | p, c are in N ∧ p is an ancestor of c ∧
∄q ∈ N s.t. p is an ancestor of q and q is an ancestor
of c}

4.2 Proposed Algorithms
We now propose our algorithm for efficiently generating

PDTs. The generated PDTs satisfy all restrictions described
above and contains selectively materialized element values.
The main feature of our algorithm is that it issues a fixed
number of index lookups in proportion to the size of the
query, not the size of the underlying data, and only makes a
single pass over the relevant path and inverted lists indices.

At a high level, the development of the algorithm requires
solving three technical problems. First, how do we minimize
the number of index accesses? Second, how do we efficiently
materialize required element values? Finally, how do we
efficiently generate the PDTs using the information gathered
from indices? We describe our solutions to these problems
in turn in the next two sections.

4.2.1 Optimizing index probes and retrieving join
values

To retrieve Dewey IDs and element values required in
PDTs, our algorithm invokes a fixed number of probes on
path indices. First, we issue index lookups for QPT nodes
that do not have mandatory child edges; note that this in-
cludes all the leaf nodes. The elements corresponding to
these nodes could be part of the PDT even if none of its de-
scendants are present in the PDT according to the definition
of mandatory edges [11]. Further, if a QPT node is associ-
ated with predicates, the index lookup will only return ele-
ments that satisfy the predicates. For instance, for the book
QPT shown in Figure 6(a), we only need to perform three
index lookups on path indices (shown in Figure 5) for three
paths in QPT: books//book/isbn, books//book/year[.>1995],
and books//book/title.

Second, for nodes with ’v’ annotation, we issue separate
lookups to retrieve their data values (which may be com-
bined with the first round of lookups). The idea of re-
trieving values from path indices is inspired by a simple
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PrepareList():pathLists

PrepareList():invLists

values

tf values

(books//book/isbn, (1.1.1: “111-11-1111”), (1.2.1: “121-23-1321”),... )

(books//book/title,1.1.4, 1.2.3, 1.9.3, …)

(books//book/year, (1.2.6, 1.5.1: “1996”), (1.6.1:”1997"), …)

(“xml”,(1.2.3:1),, (1.3.4:2), …) (“search”,(2.1.3:2), (2.5.1:1), …)

Figure 8: Results of PrepareLists()

yet important observation that path indices already store
element values in (Path, Value) pairs. Our algorithm conve-
niently propagates these values along with Dewey IDs. For
example, consider the QPT of the book document in Fig-
ure 6(a) and the path indices in Figure 5. For the path
books//book/isbn, we use its path to look up the B+-tree
index over (Path, Value) pairs in the Path-Values table to
identify all corresponding values and Dewey IDs (this can be
done efficiently because Path is the prefix of the composite
key, (Path, Value)); in Figure 5, we would retrieve the sec-
ond and third rows from the Path-Values table. Note that
IDs in individual rows are already sorted. We then merge
the ID lists in both rows and generate a single list ordered
by Dewey IDs, and also associate element values with the
corresponding IDs. For example, the Dewey ID 1.1.1 will
be associated with the value “111-111-1111”. Finally, our
algorithm also returns the relevant inverted index indices to
obtain scoring information.

Figure 7 shows the high-level pseudo-code of our algo-
rithm of retrieving Dewey IDs, element values and tf values.
The algorithm takes a QPT, Path Index, query keywords,
and Inverted Index as input, and first issues a lookup on
path indices for each QPT node that has no mandatory child
edges (lines 5- 13). It then identifies nodes that have a ’v’
annotation (lines 9 & 16), and for each path from the root
to one of these nodes, the algorithm issues a query to obtain
the values and IDs (by only specifying the path). Finally,
the algorithm looks up inverted lists indices and retrieves
the list of Dewey IDs containing the keywords along with tf
values (lines 20-22). Figure 8 shows the output of Prepar-
eList for the book QPT (Figure 6(a)). Note that the ID lists
corresponding to books//book/isbn and books//book/year
contain element values, and the ID lists retrieved from in-
verted lists indices contain tf values.

4.2.2 Efficiently generating PDTs
In this section we propose a novel algorithm that makes

a single “merge” pass over the lists produced by Prepar-
eList and produces the PDT. The PDT satisfies the ances-
tor/descendant constraints (determined using Dewey IDs in
pathLists) and contains selectively materialized element val-
ues (obtained from pathLists) and tf values w.r.t each query
keyword (obtained from invLists). For our running example,
our algorithm would produce the PDT shown in Figure 6(b)
by merging the lists shown in Figure 8.

The main challenges in designing such an algorithm are:
(1) we must enforce complex ancestor and descendant con-
straints (described in Section 4.1) by scanning the lists of
Dewey Ids only once, (2) ancestor/descendant axes may ex-
pand to full paths consisting of multiple IDs matching the
same QPT nodes, which adds additional complication to the
problem.

The key idea of the algorithm is to process ids in Dewey or-
der. By doing so, it can efficiently check descendant restric-

1: GeneratePDT (QPT qpt, PathIndex pindex, KeywordSet
kwds, InvertedIndex iindex): PDT

2: pdt← ∅
3: (pathLists, invLists) ← PrepareLists(qpt, pindex, iindex,

kwds)
4: for idlist ∈ pathLists do
5: AddCTNode(CT.root, GetMinEntry(idlist), 0)
6: end for
7: while CT.hasMoreNodes() do
8: for all n ∈ CT.MinIDPath do
9: q ← n.QPTNode

10: if pathLists(q).hasNextID() ∧ there do not exist
≥ 2 IDs in pathLists(q) and also in CT then

11: AddCTNode(CT.root, pathLists(q).NextMin(), 0)
12: end if
13: end for
14: CreatePDTNodes(CT.root, qpt, pdt)
15: end while
16: return pdt

Figure 9: Algorithm for generating PDTs

tions because all descendants of an element will be clustered
immediately after that element in pathLists. Figure 9 shows
the high-level pseudo-code of our algorithm which works as
follows. The algorithm takes in a QPT, path index and in-
verted index of the document, and begins by invoking Pre-
pareList in order to collect the ordered lists of ids relevant to
the view. It then initializes the Candidate Tree (described
in more detail shortly) using the minimum ID in each list
(lines 4-6). Next, the algorithm makes a single loop over
the IDs in pathLists (lines 7-15), and creates PDT nodes
using information stored in the CT. At each loop, the algo-
rithm processes and removes the element corresponding to
the minimum ID in the CT. Before processing and remov-
ing the element, it adds the next ID from the corresponding
path list (lines 8-12) so that we maintain the invariant that
there are at least one ID corresponding to each relevant QPT
node for checking descendant constraints.

Next the algorithm invokes the function CreatePDTNodes
(line 14) and checks if the minimum element satisfies both
ancestor and descendant constraints. If it does, we will cre-
ate it in the result PDT. If it satisfies only descendant con-
straints, we store it in a temporary cache (PdtCache) so that
we can check the ancestor constraints in subsequent loops.
If it does not satisfies descendant constraints and does not
have any children in the current CT, we discard it immedi-
ately. The intuition is that in this case, since the CT already
contains at least one ID for each relevant QPT node (by the
invariant above), and since IDs are retrieved from pathList
in Dewey order, we can infer that the minimum element can-
not have any unprocessed descendants in pathLists, hence
it will not satisfy descendant constraints in all subsequent
loops. The algorithm exits the loop and terminates after
exhausting IDs in pathList and the result PDT contains all
and only IDs that satisfy the PDT definition.

We now describe the Candidate Tree and individual steps
of the algorithm in more detail.

Description of the Candidate Tree
The Candidate Tree, or the CT, is a tree data structure.
Each node cn in the CT stores sufficient information for
efficiently checking ancestor and descendant constraints and
has the following five components.

• ID: the unique identifier of cn, which always corre-
sponds to a prefix of a Dewey ID in pathLists.

• QNode: the QPT node to which cn.ID corresponds.

• ParentList (or PL): a list of cn’s ancestors whose QN-
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1: AddCTNode(CTNode parent, DeweyID id, int depth)
2: newNode ← null
3: if depth ≤ id.Length then
4: curId←Prefix(id, depth); qNode←QPTNode(curId)
5: if qNode = null then

AddCTNode(parent,id,depth+1)
6: else
7: newNode ← parent.findChild(curId)
8: if newNode = null then
9: newNode ← parent.addChild(curId, qNode)

10: Update the data value and tf values if required
11: end if
12: AddCTNode(newNode, id, depth+1)
13: end if
14: end if
15: if newNode 6=null ∧ ∀i, newNode.DM[i]=1 then
16: ∀ n∈newNode.PL, n.DM[newNode.QPTNode]←1
17: end if

Figure 10: Algorithm for adding new CT nodes

1: CreatePDTNodes (CTNode n, QPT qpt, PDT
parentPdtCache)

2: if ∀i, n.DM[i] = 1 ∧n.ID not in parentPdtCache then
3: pdtNode = parentPdtCache.add(n)
4: end if
5: if n.HasChild() = true then
6: CreatePDTNodes(n.MinIdChild, qpt, n.PdtCache)
7: else
8: {Handle pdt cache and then remove the node itself}
9: for x in n.pdtCache do

10: {Update parent list and then propagate x to
parentPdtCache}

11: if n ∈ x.PL then
12: x.PL.remove(n)
13: if ∃i, n.DM[i] = 0 ∧ x.PL = ∅ then

n.pdtCache.remove(x)
14: else
15: x.PL.replace(n, n.PL)
16: end if
17: end if
18: if x ∈ pdtCache then Propagate x to

parentPdtCache
19: end for
20: n.RemoveFromCT()
21: end if

Figure 11: Processing CT.MinIDPath

ode’s are the parent node of cn.QNode.

• DescendantMap (or DM):QNode→ bit : a mapping con-
taining one entry for each mandatory child/descendant
of cn.QNode. For a child QPT node c, DM[c] = 1 iff
cn has a child/descendant node that is a candidate
element with respect to c.

• PdtCache: the cache storing cn’s descendants that sat-
isfy descendant restrictions but whose ancestor restric-
tions are yet to be checked.

We now illustrate these components using CT shown in
Figure 12(a), which is created using IDs 1.1.1, 1.1.4, and
1.2.6, corresponding to paths in pathLists shown in Fig-
ure 8. First, every node has an ID and a QNode and CT
nodes are ordered based on their IDs. For example, the ID
of the “books” node is 1 which corresponds to a prefix of
the ID 1.1.1, and the id 1.1.1 corresponds to the QPT node
“isbn”. The PL of a CT node stores its ancestor nodes that
correspond to the parent QPT node. For instance, book1.PL
= {books}. Note that cn.PL may contain multiple nodes if
cn.QNode is in an ancestor/descendant relations. For exam-
ple, if “/books//book” expands to “/books/books/book”,
then book.PL would include both “books”. Next, DM keeps
track of whether a node satisfies descendant restrictions. For

(a) Initial CT

book1 book2
books,1

root

book,1.1 book,1.2

isbn,1.1.1

title,1.1.4

year,1.2.6

isbn,1.2.1

(b) Step 1: adding new ids to CT 

books,1

root

book,1.1 book,1.2

isbn,1.1.1 title,1.1.4 year,1.2.6

isbn,1.2.1

(c) Step 2: processing MinIDPath

PdtCache:

isbn,1.1.1

New id

books,1

root

book,1.1 book,1.2

title,1.1.4

year,1.2.6isbn,1.2.1

(d) Step 3: before removing book,1.1

PdtCache:
isbn,1.1.1

title,1.2.3

books,1

root

book,1.2

year,1.2.6

isbn,1.2.1

(e) Before removing book,1.2

PdtCache:

title,1.2.3

...

books,1

root

book,1.2

year,1.2.6

isbn,1.2.1

(f) Propagating nodes in pdt cache

PdtCache:

title,1.2.3

...

book,1.2

PdtCache:

DM: DescendantMap

PL: ParentList

 
dummy root 

 QNode: books 

ID: 1 

DM:(book, 1) 

PL: null 

QNode: book 

ID: 1.1 

DM:(year: 0) 

PL:  

 

QNode: book 

ID: 1.2 

DM: (year, 1) 

PL:  

QNode: isbn 

ID: 1.1.1 

DM :null 

PL: 

QNode: title 

ID: 1.1.4 

DM: null 

PL:  

QNode: year 

ID: 1.2.6 

DM: null 

PL:  

  

   

Figure 12: Generating PDTs

instance, book1.DM[year] = 0 because it does not have the
mandatory child element “year” while book2.DM[year] = 1
because it does. Consequently, a CT node satisfies the de-
scendant restrictions (and therefore is a candidate element)
when its DM is empty (corresponding to QPT nodes with-
out mandatory child edges), or the values in its DM are
all 1 (corresponding to QPT nodes with mandatory child
edges). PdtCache will be illustrated in subsequent steps
shortly. Note that for ease of exposition, our illustration fo-
cuses on creating the PDT hierarchy; the atomic values and
tf values are not shown in the figure but bear in mind that
they will be propagated along with Dewey IDs.

Initializing the Candidate Tree
As mentioned earlier, the algorithm begins by initializing the
CT using minimum IDs in pathLists. Figure 10 shows the
pseudo-code for adding a single Dewey ID and its prefixes to
the CT. A prefix is added to the CT if it has a corresponding
QPT node and is not already in the CT (lines 6-13). In
addition, if a prefix is associated with a ’c’ annotation, the
tf values are retrieved from the inverted lists (line 10).

Figure 12(a), which we just described, shows the initial
CT for our example, which is created by adding minimum
IDs of paths in pathLists shown in Figure 8. Note that for
ease of exposition, our algorithm assumes each Dewey ID
corresponds to a single QPT node; however, when the QPT
contains repeating tag names, one Dewey ID can correspond
to multiple QPT nodes. We discuss how to handle this case
in Section 4.2.2.1.
Description of the main loop
Next the algorithm enters the loop(lines 7-15 in Figure 9)
which adds new Dewey IDs to the CT and creates PDT
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nodes using CT nodes. At each loop, the algorithm ensures
the following invariant: the Dewey IDs that are processed
and known to be PDT nodes are either in the CT or in
the result PDT (hence we do not miss any potential PDT
nodes); and the result PDT only contains IDs that satisfy
the PDT definition.

As mentioned earlier, at each loop we focus on the element
corresponding to the minimum ID in the CT and its ances-
tors (denoted by MinIDPath in the algorithm). Specifically,
we first retrieve next minimum IDs corresponding to QPT
nodes in MinIDPath(Step 1). We then copy IDs in MinID-
Path from top down to the result PDT or the PDT cache
(Step 2). Finally, we remove those nodes in MinIDPath that
do not have any children (Step 3). We now describe each
step in more detail.

Step 1: adding new IDs In this step, the algorithm
adds the current minimum IDs in pathLists corresponding
to the QPT nodes in CT.MinIDPath. In Figure 12(a), this
path is “books//book/isbn” and Figure 12(b) shows the CT
after its next minimum ID 1.2.1 is added (for reason of space,
this figure and the rest only show the QPT node and ID).

Step 2: creating PDT nodes In this step, the algo-
rithm creates PDT nodes using CT nodes in CT.MinIDPath
from top down (Figure 11, lines 2-4). We first check if the
node satisfies the descendant constraints using values in its
DM. In Figure 12(b), DM of the element “books” has value
1 in all entries, hence we will create its ID in the PDT cache
passed to it(lines 2-4), which is the result PDT.

The algorithm then recursively invokes CreatePDTNodes
on the element book1 (line 6). Its DM has value 0 and hence
it is not a PDT node yet. Next, we find its child element
“isbn” has an empty DM and satisfies the descendant restric-
tions. Hence we create the node “isbn” in book1.PdtCache.
Figure 12(c) illustrates this step. In general, the pdt cache of
a CT node stores the ids of descendants that satisfy the de-
scendant restrictions; ancestor restrictions are only checked
when the CT node is removed (in Step 3).

Step 3: removing CT nodes After the top down pro-
cessing, the algorithm starts removing nodes from bottom
up (Figure 11, line 7-20). For instance, in Figure 12(c), after
we process and remove the node “title”, we will remove the
node “book” because it does not have children and it does
not satisfy descendant constraints. Figure 12(d) shows the
CT at this point. Note that since we process nodes in id
order, we can infer that the descendant constraints of this
node will never be satisfied in the future.

Another key issue we consider before removing a node is
to handle nodes in its pdt cache. In our example, the pdt
cache contains two nodes “isbn” and “title”. As mentioned
earlier, they both satisfy descendant constraints. Hence we
only need to check if they satisfy ancestor constraints, which
is done by checking nodes in their parent lists. If those
parent nodes are known to be non-PDT nodes, which is the
case for “isbn” and “title”, then we can conclude the nodes
in the cache will not satisfy ancestor restrictions, and can
hence be removed (line 13). Otherwise the cache node still
has other parents, which could be PDT nodes, and will thus
be propagated to the pdt cache of the ancestor. Figure 6(e)
and (f) illustrates this case in our running example, which
occurs when we remove the node “book” with ID 1.2.

Finally, at the last step of the algorithm when we remove
the root node “books”, all IDs in its pdt cache will be prop-
agated to the result PDT. In summary, we remove a node
(and its ID) only when it is known to be a non-PDT node,
which is either a CT node that does not satisfy descendant

constraints, or a node in a pdt cache that does not satisfy
ancestor constraints. Further, we only create nodes satis-
fying descendant constraints in the pdt cache, and always
check ancestor constraints before propagating them to an-
cestors in the CT. Therefore it is easy to verify that the
invariant of the main loop holds.

4.2.2.1 Extensions and optimizations.
As mentioned earlier, when the QPT has repeating tag

names, a single Dewey ID can match multiple QPT nodes.
For example, if the QPT path is “//a//a” and the corre-
sponding full data path is “/a/a/a”, then the second “a” in
the full path matches both nodes in the QPT path. To han-
dle this case, we extend the structure of CT node to contain
a set of QNodes, each of which is associated with their own
InPdt, PL and DM. In general, different QPT nodes capture
different ancestor/descendant constraints. Hence they must
be treated separately.

Further, there are two possible optimizations in the cur-
rent algorithm. First, the algorithm always copies IDs that
satisfy the descendant constraints in the pdt cache. This
can be optimized by immediately creating the IDs in the
result PDT if they also satisfy the ancestor restrictions. For
this purpose, we add a boolean flag InPdt to the CT node,
set InPdt to be true when the ID is created in the result
PDT, and create the descendant ID in the PDT when one
of its parents is in the PDT (InPdt = true). Second, to
optimize the memory usage, we can output PDT nodes in
document order (to external storage). We refer the reader
to [35] for complete details and corresponding revisions to
our algorithm.

4.2.2.2 Scoring & generating the results.
As shown in Figure 3, once the PDTs are generated (e.g.,

the PDT of our running example is shown in Figure 6(b)),
they are fed to a traditional evaluator to produce the tempo-
rary results, which are then sent to the Scoring & Material-
ization Module. Using just the pruned results with required
tf values and byte lengths (encoded as XML attributes as
shown in Figure 6(b)), this module first enforces conjunctive
or disjunctive keyword semantics by checking the tf values,
and then computes scores of the view results. Specifically,
for a view result s, score(s) is computed as follows: first
calculate tf(s, k) for a keyword k by aggregating values of
tf(s′, k) of all relevant base elements s′; then calculate the
value idf(k) by counting the number of view results contain-
ing the keyword k; next use the formula in Section 2.2 to
obtain the non-normalized scores, which are then normalized
using aggregate byte lengths of the relevant base elements.

The Scoring & Materialization Module then identifies the
view results with top-k scores. Only after the final top-k re-
sults are identified are the contents of these results retrieved
from the document storage system; consequently, only the
content required for producing the results is retrieved.

4.3 Complexity and Correctness of Algorithms
The runtime of GeneratePDT is O(Nqdf +Nqd2 +Nd3 +

Ndkc) where N is the number of the IDs in pathLists, d is
the depth of the document, q and f are the depth and fan-
out of the QPT, respectively, k is the number of keywords,
and c is the average unit cost of retrieving tf values. In-
tuitively, the top-down and bottom-up processing dominate
the overall cost. Nqdf+Nqd2 determines the cost of the top-
down processing: there can be Nd ID prefixes; every prefix
can correspond to q QPT node; every QPT node can have d
parent CT nodes and f mandatory child nodes. Nd3 deter-
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Parameter Values (default in bold)
Size of Data(×100MB) 1, 2, 3, 4, 5
# keywords 1, 2, 3, 4, 5
Selectivity of keywords Low(IEEE, Computing),

Medium (Thomas, Control),
High (Moore,Burnett)

# of joins 0, 1, 2, 3, 4
Join selectivity 1X, 0.5X, 0.2X, 0.1X
Level of nestings 1, 2, 3, 4
# of results(K in top-K) 1, 10, 20, 40
Avg. Size of View Element 1X, 2X, 3X, 4X, 5X

Table 1: Experimental parameters.

mines the cost of bottom-up processing, since every prefix
can be propagated d times and can have d nodes in its par-
ent list. Finally, Ndkc determines the cost of retrieving tf
values from the inverted index.

Note that this is a worst case bound which assumes multi-
ple repeating tags in queries (q QPT nodes), and repeating
tags in documents (d parent nodes). In most real-life data,
these values are much smaller (e.g., DBLP4, and SIGMOD
Record5, and INEX), as also seen in our experiments.

We can prove the following correctness theorem (proofs
are presented in [35]). If I is the function transforming
Dewey IDs to node contents, PDTTF is the tf calculation
function, and PDTByteLength is the byte length calculation
function, len(e) is the byte length of a materialized element
e, and using the notations of UD, Q, S defined in Section 2.1.

Theorem 4.1 (Correctness). Given a set of keywords
KW, an XQuery query Q and a database D ∈ UD, if PDTDB
= {GeneratePDT(QPT, D.PathIndex, D.InvertedIndex, KW)
| QPT ∈ GenerateQPT(Q) } , then

• I(Q(PDTDB)) = Q(D)(The result sequences, after be-
ing transformed, are identical)

• ∀e ∈ Q(PDTDB), e′ ∈ Q(D), I(e) = e′ ⇒
PDTByteLength(e) = len(e′) (The byte lengths of each
element are identical)

• ∀e ∈ Q(PDTDB), e′ ∈ Q(D), I(e) = e′ ⇒ (∀k ∈ KW,
PDTTF(e,k) = tf(e′,k)) (The term frequencies of each
keyword in each element is identical)

5. EXPERIMENTS
In this section, we show the experimental results of evalu-

ating our proposed techniques developed in the Quark open-
source XML database system.

5.1 Experimental Setup
In our experiments, we used the 500MB INEX dataset

which consists of a large collection of publication records.
The excerpt of the INEX DTD relevant to our experiments
is shown below.

<!ELEMENT books (journal*)>
<!ELEMENT journal (title, (sec1|article|sbt)*)>
<!ELEMENT article (fno, doi?, fm, bdy)>
<!ELEMENT fm (hdr?, (edinfo|au|kwd|fig)*)>

We created a view in which articles (article elements) are
nested under their authors (au elements), and evaluated our
system using this view. When running experiments, we
generated the regular path and inverted lists indices imple-
mented in Quark (∼1GB each).

4http://dblp.uni-trier.de/xml/
5http://acm.org/sigmod/record/xml/

We evaluated the performance of four alternative approaches:
Baseline: materializing the view at the query time, and
evaluating keyword search queries over views implemented
using Quark.
GTP: GTP with TermJoin for keyword searches and imple-
mented using Timber [1].
Efficient: our proposed keyword query processing architec-
ture (Section 3.1) developed using Quark, with all optimiza-
tions and extensions implemented(Section 4.2.2.1).
Proj: techniques of projecting XML documents [26].

We have implemented scoring in Efficient. Recall that
our score computation (Section 4.2.2.2) produces exactly
the same TF-IDF scores as if the view was materialized;
hence, we do not evaluate the effectiveness of scoring using
precision-recall experiments.

Our experimental setup was characterized by parameters
in Table 1. # of joins is the number of value joins in the
view. Join selectivity characterizes how many articles are
joined with a given author; the default value 1X corresponds
to the entire 500MB data; we decrease the selectivity by
replicating subsets of the data collection. Level of nestings
specifies the number of nestings of FLOWR expressions in
the view; for value 1, we remove the value join and only leave
the selection predicate; for the default value 2, we associate
publications under authors; for the deeper views, we create
additional FLOWR expressions by nesting the view with
one level shallower under the authors list. The rest of the
parameters are self-explanatory. In the experiments, when
we varied one parameter, we used the default values for the
rest. The experiments were run on an Intel 3.4Ghz P4 pro-
cessors running Windows XP with 2GB of main memory.
The reported results are the average of five runs.

5.2 Performance Results
5.2.1 Varying size of data

Figure 13 shows the performance results when varying the
size of the data. As shown, it takes Efficient less than 5
seconds to evaluate a keyword query without materializing
the view over the 500MB data. Second, the run time in-
creases linearly with the size of the data (note that the y-axis
is in log scale), because the index I/O cost and the overhead
of query processing increases linearly. This indicates that
Efficient is a scalable and efficient solution.

In contrast, Baseline takes 59 seconds even for a 13MB
data set, which is more than an order of magnitude slower
than Efficient. Note the run time includes 58 seconds
spent on materializing the view, and 1 second spent on the
rest of query evaluation, including tokenizing the view and
evaluating the keyword search query.

Further, Figure 13 shows that Efficient performs ∼10
times faster than GTP. Note that Figure 13 only shows the
time spent by GTP on structural joins and accessing the
base data (for obtaining join values); it does not include
the time for the remaining query evaluation since they were
inefficient and did not scale well (the total running time
for GTP, including the time to perform the value join, was
more than 5 minutes on the 100MB data set). GTP is
much slower mainly because it relies on (expensive) struc-
tural joins to generate the document hierarchy, and because
it accesses base data to obtain join values.

Finally, while Proj merely characterizes the cost of gener-
ating projected documents (the cost of query processing and
post-processing are not included), its runtime is ∼15 times
slower than Efficient. The main reason is that Proj scans
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base documents which leads to relatively poor scalability.
For the rest of the experiments, we focus on Efficient

since other alternatives performed significantly slower.

5.2.2 Evaluating Overhead of Individual Modules
Figure 14 breaks down the run time of Efficient and

shows the overhead of individual modules – PDT, Evaluator,
and Post-processing. As shown, the cost of generating PDTs
scales gracefully with the size of the data. Also, the overhead
of post-processing, which includes scoring the results and
materializing top-K elements, is negligible (which can be
barely seen in the graphs). The most important observation
is that the cost of the query evaluator dominates the entire
cost when the size of the data increases.

5.2.3 Varying other parameters
Varying # of keywords: Figure 15 shows the perfor-
mance results when varying the number of keywords. The
run time for Efficient increases slightly because it accesses
more inverted lists to retrieve tf values.
Varying # of joins: Figure 16 shows the performance re-
sults when varying the number of value joins in the view
definition. As shown, the run time increases with the num-
ber of joins mainly because the cost of the query evaluation
increases. The run time increases most significantly when
the number of joins increases from 0 to 1 for two reasons.
First, the case of 0 joins only requires generating a single
PDT while the other requires two. More importantly, the
cost of evaluating a selection predicate (in the case of 0 joins)
is much cheaper than evaluating value joins.
Other results: We also varied the size of the view element,
the selectivity of keywords, the selectivity of joins, the level
of nestings, and the number of results; the performance re-
sults (available in [35]) show that our approach is efficient
and scalable with increased size of elements. Finally, the size
of PDTs generated with respect to the entire data collection
(500MB) is about 2MB, which indicates that our pruning
techniques are effective.

6. RELATED WORK
There has been a large body of work in the information

retrieval community on scoring and indexing [21, 22, 32, 36].
However, they make the assumption that the documents be-
ing searched are materialized. In this paper, we build upon
existing scoring and indexing techniques and extend them
for virtual views. There has also been some recent inter-
est on context-sensitive search and ranking [6], where the
goal is to restrict the document collection being searched
at run-time, and then evaluate and score results based on
the restricted collection. In our terminology, this translates
to ranked keyword search over simple selection views (e.g.,

restricting searches to books with year > 1995). However,
these techniques do not support more sophisticated views
based on operations such as nested expressions and joins,
which are crucial for defining even simple nested views (as
in our running example). Supporting such complex opera-
tions requires a more careful analysis of the view query and
introduces new challenges with respect to index usage and
scoring, which are the main focus of this paper.

In the database community, there has been a large body of
work on answering queries over views (e.g., [7, 17, 34]), but
these approaches do not support (ranked) keyword search
queries. There has also been a lot of recent interest on
ranked query operators, such as ranked join and aggrega-
tion operators for producing top-k results (e.g., [9, 31, 23]),
where the focus is on evaluating complex queries over ranked
inputs. Our work is complementary to this work in the sense
that we focus on identifying the ranked inputs for a given
query (using PDTs). There are, however, new challenges
when applying these techniques in our context and we refer
the reader to the conclusion for details.

GTP [11] with TermJoin [1] were originally designed to
integrate structure and keyword search queries. Since it is
a general solution, it can also be applied to the problem
of keyword search over views. However, there are two key
aspects that make GTP with TermJoin less efficient in our
context. First, GTP and TermJoin use relatively expensive
structural joins to reconstruct the document hierarchy. Sec-
ond, GTP requires accessing the base data to support value
joins, which is again relatively inefficient. In contrast, our
approach uses path indices to efficiently create the PDTs
and retrieve join values, which leads to an order of magni-
tude improvement in performance (Section 5).

Finally, our PDT generation technique is related to the
technique for projecting XML documents [26]. The main
difference is that we use indices to generate PDTs, which
leads to a more than tenfold improvement in performance.
We refer the reader to Section 4 for other technical differ-
ences between the two approaches. Our technique is also
related to the projection operator in Timber [24] and lazy
XSLT transformation of XML documents [33], which, like
PROJ, also access the base data for projection.

7. CONCLUSION AND FUTURE WORK
We have presented and evaluated a general technique for

evaluating keyword search queries over views. Our exper-
iments using the INEX data set show that the proposed
technique is efficient over a wide range of parameters.

There are several opportunities for future work. First, in-
stead of using the regular query evaluator, we could use the
techniques proposed for ranked query evaluation (e.g., [9,
16, 23]) to further improve the performance of our system.
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There are, however, new challenges that arise in our context
because XQuery views may contain non-monotonic opera-
tors such as group-by. For example, when calculating the
scores of our example view results, extra review elements
may increase both the tf values and the document length,
and hence the overall score may increase or decrease (non-
monotonic). Hence existing optimization techniques based
on monotonicity are not directly applicable. Second, our
proposed PDT algorithms may be applied to optimize reg-
ular queries because the algorithms efficiently generate the
relevant pruned data, and only materialize the final results.
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