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Abstract
Data centers are the backend for a large number of ser-
vices that we take for granted today. A significant frac-
tion of the total cost of ownership of these large-scale
storage systems is the cost of keeping hundreds of thou-
sands of disks spinning. We present a simple idea that
allows the storage system to turn off a large fraction of
its disks, without incurring unacceptable performance
penalties. Of particular appeal is the fact that our solu-
tion is not application-specific, and offers power-savings
for a very generic data center model. In this paper, we
describe our solution, identify the parameters that deter-
mine its cost-benefit tradeoffs, and present a simulator
that allows us to explore this parameter space. We also
present some initial simulation results that add weight
to our claim that our solution represents a new power-
saving opportunity for large-scale storage systems.

1 Introduction

The declining costs of commodity disk drives has made
online data storage a way of life. So much so that
companies like Google and Yahoo host hundreds of
thousands of servers for storage. However, there is a
catch: a hundred thousand servers consume a lot of
power! Not only does this translate to many millions of
dollars annually on electricity bills, the heat produced
by so much computing power can be searing. An article
in The New York Times describes one of Google’s data
centers: “.. a computing center as big as two football
fields, with twin cooling plants protruding four stories
into the sky”[9]. Conclusion: Power conservation is
an important concern for big server clusters. Since
disks account for a significant fraction of the energy
consumed[6], several approaches for disk power man-
agement have been proposed and studied. We will
examine some of these here. But first let us lay out some
of the groundwork.

Any disk power management scheme essentially
attempts to exploit one fact: disks can be run in high-
power mode, or low-power mode, with a corresponding
performance tradeoff. In the limit, a disk can be shut
off so that it consumes no power. Given a large cluster
of disks, only a fraction of them is accessed at any
time, so that the rest could potentially be switched to
a low-power mode. However, since mode transitions
consume time and power, disk management schemes
have to walk the tightrope of finding the right balance
between power consumption and performance.

The solution space explored thus far in the literature
can be divided as follows: (1) Hardware-based solutions,
(2) Disk Management solutions, and (3) Caching solu-
tions. Each of these solutions proposes a new system
of some kind;hardware-based solutionspropose novel
storage hierarchies to strike the right balance between
performance and power consumption;disk management
solutions interject a new ‘disk management layer’ on
top of the file system, which controls disk configuration
and data layout to achieve power-optimal disk access
patterns; caching solutionsdevise new power-aware
caching algorithms that allow large fractions of the
storage system to remain idle for longer periods of time,
allowing them to be switched to lower power modes.

The principal contribution of this paper is to argue
that there is a fourth niche as yet unexplored: (4) File
System solutions. We do not present a new system; in-
stead, we take an idea that has been around for well over
a decade now - the Log-Structured File System (LFS)
[13] and argue that technological evolution has given it
a new relevance today as a natural power-saving oppor-
tunity for large-scale storage systems. The key insight
is that, where other solutions attempt to predict disk ac-
cess to determine which disks to power down, the LFS
automatically provides a perfect prediction mechanism,
simply by virtue of the fact that all write-accesses go to



the log head. Section 3 explains and expands on this idea.

1.1 Idea Overview

To see why LFS is a natural solution to the problem
of disk power management, consider some of the chal-
lenges involved:

• Short Idle Periods: Server systems typically are not
idle long enough to make it worthwhile to incur the
time+power expense of switching the disk to a low-
power mode, and switching it back when it is ac-
cessed. This is a notable point of difference between
server systems and typical mobile device scenarios
(like laptops), which makes it hard to translate the
solutions devised for mobile devices to server sys-
tems. As we shall see, LFS localizes write-access to
a small subset of disks; this feature, when combined
with a cache that absorbs read-accesses, results in
long disk idle periods.

• Low Predictability of Idle Periods: Previous stud-
ies [7] have shown that there exists low correlation
between a given idle period’s duration and the dura-
tion of previous idle periods. This variability makes
it difficult to devise effective predictive mechanisms
for disk idle times. The LFS neatly circumvents this
problem by predetermining which disk is written to
at all times.

• Performance Constraints: Server systems are often
constrained by Service Level Agreements to guar-
antee a certain level of performance, so that find-
ing a solution that provides acceptable performance
to only a fraction of the incoming requests (albeit
a large fraction) may often not be sufficient. As
we shall show, the LFS provides an application-
independent solution that allows the system to per-
form consistently across a wide range of datasets.

• The law of large numbers: Large scale server sys-
tems process incredibly large request loads. Direct-
ing these to a small fraction of the total number
of disks (the fraction that is in ‘high-power mode’)
can significantly raise the probability of error and
failure. The fact that the disks used in these con-
texts are typically low-end with relatively weak re-
liability guarantees, exacerbates this problem. As
we shall see, our solution alleviates this problem by
making sure that the live subset of disks is not con-
stant.

The rest of this paper is organized as follows: Section 2
describes some of the solutions explored in the first three

quadrants mentioned above. Section 3 presents and ana-
lyzes our solution, while Section 4 discusses our evalua-
tion methodology and results. We conclude in Section 5.

2 Related Work

Hardware-based Solutions
The concept of a memory hierarchy arose as a result
of the natural tradeoff between memory speed and
memory cost. Carrera et. al. point out in [1] that
there exists a similar tradeoff between performance
and power-consumption among high-performance disks
and low-performance disks such as laptop disks. They
explore the possibility of setting up a disk hierarchy by
using high- and low-performance disks in conjunction
with each other. In a related vein, Gurumurthi et. al.[8]
propose Dynamic Rotations Per Minute (DRPM) tech-
nology, whereby disks can be run at multiple speeds
depending on whether power or performance takes
precedence. DRPM, however, poses a significant engi-
neering challenge whose feasibility is far from obvious.

Another approach is proposed by Colarelli et. al. in
[2], using massive arrays of inexpensive disks (MAID).
They propose the use of a small number ofcache
disks in addition to the MAID disks. The data in these
cache disks is updated to reflect the workload that is
currently being accessed. The MAID disks can then
be powered down, and need only be spun up when a
cache miss occurs, upon which their contents are copied
onto the cache disks. This approach has several of
the weaknesses that memory caches suffer, only on a
larger scale. If the cache disks are insufficient to store
the entire working set of the current workload, then
‘thrashing’ results, with considerable latency penalties.
Further, the cache disks represent a significant added
cost in themselves.

Disk Management Solutions
Pinheiro and Bianchini [11] suggest that if data is laid
out on disks according to frequency of access, with the
most popular files being located in one set of disks, and
the least popular ones in another, then the latter set of
disks could be powered down to conserve energy. Their
scheme is called Popular Data Concentration (PDC)
and they implement and evaluate a prototype file server
called Nomad FS, which runs on top of the file system
and monitors data layout on disks. Their findings are
that if the low-access disks are powered down, this
results in a considerable performance hit; they suggest
instead that they be run at low speed. While their idea is
sound, it is not clear whether this scheme would adapt to
different workloads.



Son et. al. propose another data layout management
scheme to optimize disk access patterns [14]. Their
approach uses finer-grained control over data layout on
disk, tuning it on a per-application basis. Applications
are instrumented and then profiled to obtain array access
sequences, which their system then uses to determine
optimal disk layouts by computing optimal stripe factor,
stripe size, start disk etc. Again, the wisdom of marry-
ing the disk layout to the application seems questionable.

Hibernator, proposed by Zhu et. al [6], combines
a number of ideas. It assumes multispeed disks, and
computes online the optimal speed that each disk should
run at. To minimize speed transition overheads, disks
maintain their speeds for a fixed (long) period of time -
they call this the coarse-grained approach. Hibernator
includes a file server that sits on top of the file system
and manipulates data layout to put the most-accessed
data on the highest speed disks. The authors address the
issue of performance guarantees by stipulating that if
performance drops below some threshold, then all disks
are spun up to their highest speed.

Caching Solutions
Zhu et. al [5] observe that the storage cache management
policy is pivotal in determining the sequence of requests
that access disks. Hence, cache management policies
could be tailored to change the average idle time be-
tween disk requests, thus providing more opportunities
for reducing disk energy consumption. Further, cache
policies that are aware of the underlying disk manage-
ment schemes (eg. which disks are running at which
speeds, say) can make more intelligent replacement
decisions. The authors present both offline and online
power-aware cache replacement algorithms to optimize
read accesses. They also show through experiments
the somewhat obvious fact that for write accesses,
write-back policies offer more opportunities to save
power than write-through policies.

3 A New Solution

We shall now argue that there remains an unexplored
quadrant in this solution space. Caches are used to min-
imize accesses to disk. Good caching algorithms practi-
cally eliminate read accesses to disk. However, write ac-
cesses (whether synchronous or not) must still eventually
access the disk. Thus, assuming perfect caching, disk
access will be write-bound. Putting a disk management
layer on top of the file-system to optimize data layout for
writes is only halfway to the solution. To take this idea
to its logical conclusion, it is necessary to rethink the file
system itself. In the context of write-access optimization,

a very natural candidate is the log-structured file system
[13]. We now give a brief overview of the log-structured
file system before describing the power-saving opportu-
nity it represents.

3.1 Log-Structured File System

The Log-Structured File System (LFS) was motivated
by a need to optimize the latency of write-accesses.
Writing a block of data to a Seagate Barracuda disk
costs about 11.5ms in seek time and 0.025ms/KB in
transmission time. The key observation here is that seek
time is a large andconstantterm in latency computation.
To eliminate this term, the LFS replaces write operations
by append operations. Secondary storage is treated
as a large append-only log and writes always go to
the log head. Seek time is thus eliminated, and write
latency becomes purely a function of the disk bandwidth.

How do reads in the LFS work? In the same way as in
conventional file systems! Reads require random-access,
and hence do not avoid seek-latency. However, the
assumption is that with good caching mechanisms, reads
will be a small fraction of disk accesses.

As can be imagined, space reclamation is a tricky
problem in log structured file systems. However, excel-
lent solutions have been proposed to solve it, and one
such is of interest to us: the disk is divided into large
log segments. Once a log segment gets filled, a new log
segment is allocated and the log head moves to the new
segment. When some threshold of a segment gets invali-
dated, its valid data is moved to another segment (replac-
ing that segment’s invalid data), and it is then added to
the pool of free log segments. Over time, this process re-
sults in a natural division of allocated segments into sta-
ble (ie.. consisting almost entirely of data that is rarely
invalidated/modified), and volatile ones (which need to
be constantly ‘cleaned’). We will see how this feature
can be used to save power.

3.2 LFS: A Power-Saving Opportunity

The disk-management policies described in the related
works section essentially attack the problem by trying
to predict in advance which disk any given access will
go to. They optimize the data layout on disks to ensure
that accesses are localized to some fraction of the disks,
so that only these need be powered up. However, these
are all probabilistic models - a new access has some
probability of not fitting this model and needing to
access a powered-down disk. Further, in such schemes,
disk layout becomes tied to particular applications;
two applications that have completely different access



patterns might require different data layouts on disk
leading to conflicts that reduce possible power-savings.

Since all writes in an LFS are to the log head, we
know in advance which disk they will access. This
gives us the perfect prediction mechanism, at least
for write-accesses. Besides being deterministic, this
prediction mechanism is also application-independent.
Thus, if most accesses to disks were writes, we could
power down every disk but the one that the log head
resides on. This, however, is an ideal case scenario.
Our view is that, with a good caching algorithm (the
power-aware caching algorithms described in the related
works section are good candidates), reads to disk can be
minimized, and only a small fraction of the disks need
be powered on in order to serve all writes as well as
reads.

However, what about the performance and power costs
of log cleaning? Matthews et. al present some optimiza-
tions in [4] to hide the performance penalty of log clean-
ing even when the workload allows little idle time. The
power costs of log cleaning are a little more tricky to jus-
tify; however, this is where the natural division of seg-
ments into stable and volatile ones that the log cleaning
process results in (as described above) can help. After a
significant fraction of segments on a disk have been clas-
sified as stable, volatile, or free, we power the disk on and
copy the stable segments to a ‘stable’ disk, volatile seg-
ments to a ‘volatile’ disk (disk is kept on), and the entire
disk is freed for reuse. This is similar to the log cleaning
scheme described in [10], which uses a ‘hidden’ structure
embedded in the log to track segment utilization. Clean-
ing an entire disk amortizes the cost of powering it on.

4 Evaluation

4.1 Methodology

We have proposed the use of LFS in lieu of conventional
file systems in data-center scenarios to achieve power
conservation. For this idea to be accepted, two ques-
tions need to be answered in the affirmative: (1)Does
this new scheme result in significant power savings?,
and (2)Does this new scheme provide comparable per-
formance to existing schemes?Further, the answers to
these questions must be largely application-independent,
and must apply to a generic data center model. To ad-
dress these questions, we present a simulator - Logsim.
Logsim consists of less than a thousand lines of Java code
and is a single-threaded, discrete event-based simulator
of a log-structured file system. Given a trace of read and
write requests, Logsim returns the observed access laten-
cies, disk utilization, cache-hit ratio, disk-mode transi-

Number of accesses 476884
Number of files touched 23125
Number of bytes touched 4.22GB

Average number of bytes/access8.8 KB

Table 1: Sample Trace Characteristics.

tions etc., for the chosen set of configuration parameters.
We use real-world traces for our simulations from a web-
server that serves images from a database[12]. Table1
describes the characteristics of a sample trace. While a
true evaluation of the feasibility and efficacy of our solu-
tion can only be achieved through an actual implementa-
tion, simulation provides an elegant way to identify and
explore some of the cost-benefit tradeoffs in a scaled-
down version of our system.

The mechanism we simulate is as follows: All (non-
empty) disks are assumed to begin in the ‘on’ state, and
an access count (an exponentiated average) is maintained
for each disk. The user specifies the maximum percent-
age (m) of disks that are kept powered on. Periodi-
cally (200ms, in our experiments), a ‘disk check’ process
scans the access count for each disk and powers down all
but the most-accessed topm% of the disks, as well as
any disk which does not have at leastt access count.t is
0 in our experiments. If a cache-miss results in an access
to a powered-down disk, then this disk is spun up (to re-
main powered on until the next ‘disk check’), and there
is a corresponding latency penalty. Judicious choice of
m andt minimizes the probability of this occurrence.

4.2 Results

To save power, we must turn off some percentage of disks
in the storage system. However, there are two oppos-
ing forces at play here. A large number of powered-on
disks results in good performance (low latency), but also
low power savings. On the other hand, decreasing the
number of powered-on disks incurs two possible penal-
ties: increased latencies, and increased mode-transitions.
Mode-transitions consume power and thus counter the
potential savings achieved by powered-down disks. To
find the optimal percentage of disks to be powered down,
we ran a set of simulations on Logsim and varied the
number of disks that we kept powered up from none (ex-
cept the log-head disk), to all, in steps of 20%. Thus, out
of a total of 66 disks, 1, 13, 26, 39, 52, and 66 disks were
kept powered up, respectively. For each run, we examine
both its performance (in terms of observed access laten-
cies), as well as its power-consumption. Fig.1, 2 and3
show the results of these simulations.

The performance of our system depends heavily on
its cache configuration. Since cache optimization is
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Figure 1: CCDF: Effect of increasing percentage of
powered-up disks on performance.

an orthogonal issue that comprises an entire field of
research in itself, it is important to isolate its effect
on performance. To achieve this, we implemented an
‘ideal cache’ algorithm, which we term theoracle.
Experiments using the oracle approximate the best
performance we could achieve since an oracle has future
knowledge and is able to replace items accessed furthest
in the future [3]. In fig. 1, 2, 3, the data points that use
this algorithm are annotated with the word ’Oracle’.

Finally, we also wish to compare our system against
conventional (not log-structured) file systems. As an
approximation of such a system, we implemented a
‘random placement’ (RP) algorithm, which maps each
block to a random disk. All disks are kept powered up,
and ideal caching (oracle) is assumed. This data point is
labeled ‘Oracle RP’ in our graphs.

Having set the context, let us examine our results.
Fig. 1 shows the relation between performance (per-
access latency) and the number of disks that are pow-
ered on. If we imagine a line at y=.001 (ie.. 99.9% of
the accesses live above this line) 60% disks ON is the
third best configuration, next only to the Oracle RP and
100% disks ON configurations. Further, the performance
degradation in going from 100% disks ON to 60% disks
ON is negligibly small. The principal take-away is that,
for the system under test, the optimal configuration is
to have 60% of the disks powered on. In other words,
40% of the disks can be spun down while still maintain-
ing performance comparable to that of a conventional file
system.

Fig. 2 shows an estimate of the actual power savings
achieved by our solution. The height of each bar is the
average power consumed while processing the trace.
Further, each bar shows the break-up of power consumed
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Figure 2: Effect of increasing percentage of powered-up
disks on power consumption

by powered-up disks (On), powered-down disks (Idle),
and mode-transitions (Transition). We assume the
following disk specifications: Avg. operating power =
12.8 W, Avg. idle power = 7.2 W, Avg. mode transition
power = 13.2 W, Avg time for transition = 6s. We see
that turning off 40% of the disks results in 12% power
savings (as compared to 32% with all the disks off),
while maintaining acceptable performance.

Finally, fig. 3 shows how much time the disks spend
in on/off/transition states. The height of each bar is the
cumulative time spent by each disk in each of these three
states. When 0% disks are on, the run takes 7253 cumu-
lative hours; we omit this bar from our graph for clearer
presentation. We see that, both the total duration of the
experiment, as well as the number of mode-transitions,
increase as the percentage of disks that is powered on is
decreased. However, as in fig.1, we see that keeping
60% disks on strikes an acceptable balance.

5 Conclusion

In this paper, we point out a new opportunity for saving
power in large-scale storage systems. The idea is elegant
in its simplicity: log structured file systems write only to
the log head; as a result, if read accesses are served by
the cache, then write accesses touch only the log head
disk, potentially allowing us to power down all the other
disks. Existing solutions like disk management solutions
and caching solutions are typically application-specific;
our solution, on the other hand, is applicable to any
cacheable dataset. Since existing solutions are typically
layered on top of the file-system, they could be used
in conjunction with our solution to take advantage of
application-specific optimizations.

We also provide some initial simulation results that
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validate our claim that power-savings are possible using
a log-structured file system. While simulations cannot
provide conclusive evidence for the feasibility of a sys-
tem, they are an effective means to identify promising
solutions. Our principal contribution in this paper is in
having shown a new fit for an old idea; we believe that
the log-structured file system shows promise as a power-
saving opportunity for large-scale storage systems.

In future work, several questions still remain to be ad-
dressed. Our evaluation has been limited by the difficulty
of obtaining real filesystem traces from commercial data
centers; we are actively looking for more recent traces
to test our solution against. We are also working on a
more thorough study of the efficacy of the log cleaning
approach we outline here. Finally, we believe the LFS
provides an interesting substratum to build more elabo-
rate solutions on, and we are working on some promising
options that we hope to share with the community soon.
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