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Abstract

This paper offers a novel generalization of a passivity-based, energy tracking controller for robust 

bipedal walking. Past work has shown that a biped limit cycle with a known, constant mechanical 

energy can be made robust to uneven terrains and disturbances by actively driving energy to that 

reference. However, the assumption of a known, constant mechanical energy has limited 

application of this passivity-based method to simple toy models (often passive walkers). The 

method presented in this paper allows the passivity-based controller to be used in combination 

with an arbitrary inner-loop control that creates a limit cycle with a constant generalized system 
energy. We also show that the proposed control method accommodates arbitrary degrees of 

underactuation. Simulations on a 7-link biped model demonstrate that the proposed control 

scheme enlarges the basin of attraction, increases the convergence rate to the limit cycle, and 

improves robustness to ground slopes.

I. Introduction

An idea that is key to biped locomotion is underactuation. During human gait, the foot rolls 

across the ground from heel to toe, which does not represent a controlled interaction with the 

environment [1]. This is characteristic of how most bipeds interact with the environment, 

and it introduces a degree of underactuation in the system. Some biped models (e.g., the 

compass-gait model [2]) shortcut this challenge by combining the stance foot and ankle 

together into a single point that “sticks” to the ground until the other foot makes contact with 

the ground. Other approaches embrace the underactuation and design a controller that 

creates a stable periodic orbit in the Hybrid Zero Dynamic (HZD) manifold as in [3]. This is 

done by enforcing a set of time-invariant trajectories that are obtained by an optimization 

procedure and using a feedback controller to enforce asymptotic convergence to the zero 

dynamics manifold. This methodology has enjoyed success on a wide range of systems as 

demonstrated in [4]. However, it lacks an inherent notion of utilizing the natural system 

dynamics.

HHS Public Access
Author manuscript
Proc Am Control Conf. Author manuscript; available in PMC 2019 June 01.

Published in final edited form as:
Proc Am Control Conf. 2018 June ; 2018: 2958–2963. doi:10.23919/ACC.2018.8431783.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A particularly well-known phenomena in biped locomotion is that of passive dynamic 

walking, as first reported by McGeer et al. in [5], where an uncontrolled biped is able to 

walk down a shallow slope simply under the power of gravity. In other words, a stable 

walking gait can naturally emerge from the mass/geometry properties of the biped and 

environment. During this process, the exchange of potential to kinetic energy over the 

duration of a step is exactly canceled by inelastic impacts with the ground. The mechanical 

energy of the system remains constant and is conserved from step to step. This stable 

walking can be characterized by a limit cycle in the phase space of the biped as reported in 

[6].

Goswami et al. were the first to exploit these natural dynamics and use passivity-based 

control (PBC) to explicitly drive the energy of the biped to a constant value along its natural 

limit cycle to induce stable walking [6]. Others have since built on these ideas and 

demonstrated more sophisticated examples of energy-tracking PBC that improve different 

properties of the limit cycle such as increasing the basin of attraction and increasing the 

convergence rate to the limit cycle [7]. Separate methodologies such as Energy Shaping [8]–

[10], IDA-PBC [11], and the Control Lyapunov Function (CLF) method [12] have also 

utilized these connections between energy and limit cycles to create stable walking gaits. 

However, some of these methods historically require assumptions that limit their 

applicability. Energy shaping relies on the system meeting a matching criteria that restricts 

the degree of underactuation allowed [13]. Most passivity-based energy methods rely on the 

existence of a limit cycle with constant mechanical energy. This assumption prevents 

application on high-dimensional biped models, which typically require some external 

control action to inject and/or dissipate energy in order to create a limit cycle. While the 

CLF method has been shown to perform well on these systems [14], it is not passive. There 

is a gap to be filled in the realm of passivity-based control with applications to high 

dimensional underactuated systems.

This paper presents a passivity-based controller based on a generalized energy expression in 

the storage function, which defines a novel passive output that accounts for the energy stored 

and dissipated by an arbitrary inner-loop controller. It is assumed that this inner-loop 

controller generates a stable limit cycle for the biped on a given slope. The outer-loop PBC 

will then increase the basin of attraction, improve the robustness to the ground slope, and 

increase the rate of convergence back to the stable limit cycle. The control method is also 

shown to perform with an arbitrary degree of underactuation in the system. The rest of the 

paper subscribes to the following format: Section II introduces the dynamic model of the 

biped. Section III offers a brief review of passivity and derive a PBC from an energy based 

storage function. Finally, Section IV demonstrates simulation results on a 7-link biped 

model that utilizes a PD controller in the inner loop to create a stable limit cycle.

II. Modeling and Dynamics

In this paper, we consider a 2D biped model with torque only in the sagittal plane. For 

simplicity, we model the link between the two hip joints as a single joint and omit a torso 

link. Thus, together with a foot, shank, and thigh link for each leg we have a 7-link biped 

model. We model it as a kinematic chain with respect to an inertial reference frame (IRF) 
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defined at either the stance heel or stance toe, depending on the phase of the single-support 

period (to be discussed in Section II-B). A diagram of the biped is shown in Fig. 1.

The generalized coordinates of the biped model are defined as q = (px, py, ϕ, θa, θk, θh, θsk, 
θsa)T ∈ ℝ8×1, where px and py represent the Cartesian position of the stance heel in the 

inertial reference frame, and ϕ is the angle of the heel-to-ankle vector with respect to the 

vertical axis. The subscript i ∈ {a, k, h, sk, sa} (denoting the ankle, shank, hip, stance knee, 

stance ankle, respectively) is used to describe the angles θi between each link. The mass mj, 

length lj and inertia Ij of the links are indexed by the subscript j ∈ {f, s, t, h} which denotes 

the foot, shank, thigh, and hip, respectively.

A. Continuous Lagrangian Dynamics

The dynamics are derived using the Lagrangian formulation [15] to get the equation

M(q)q̈ + C(q, q̇)q̇ + N(q) + A(q)Tλ = τ, (1)

where M(q) ∈ ℝ8×8 is the inertia matrix, C(q, q̇) ∈ ℝ8 × 8 is the Coriolis/centrifugal matrix, 

and N(q) ∈ ℝ8×1 is the gravity force vector. The term A(q)T λ models the interaction 

between the biped’s foot and the ground, where the matrix A(q) ∈ ℝc×8 is defined as the 

gradient of the constraint functions, and c is the number of contact constraints that may 

change during different contact conditions. The Lagrange multiplier λ ∈ ℝc×1 is calculated 

using the method in [16], [17] and satisfies the assumption that the ground reaction forces do 

no work on the system. The torque vector is τ = Buu+Bvv where Bu ∈ ℝ8×d and Bv ∈ ℝ8×m 

are mappings of the outer-loop PBC torques u and arbitrary inner-loop control torques v into 

the generalized coordinates, respectively. The number of control inputs d and m do not need 

to be the same and are addressed later.

B. Contact Constraints

Based on [18], [19], the single-support period can be broken down into three sub-phases: 

heel contact, flat foot, and toe contact, where holonomic contact constraints can be properly 

defined. Following the convention in [16], we express the holonomic contact constraints of 

the biped as relations between the position variables of the form

a(q1, q2, …, qc) = 0c × 1, (2)

where qj denotes the j-th element of the configuration vector q. There are c = 2 constraints 

for heel contact and toe contact whereas flat foot has c = 3 constraints. The constraint matrix 

can then be defined for all contact conditions as

Asub = ∂a(q)
∂q = [Ic × c 0c × (8 − c)], (3)
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where sub ∈ {heel, flat, toe}. This form can be achieved by defining the IRF at the stance 

heel during heel contact and flat foot vs. the stance toe during toe contact.

C. Hybrid Dynamics

Biped locomotion can be modeled as a hybrid dynamical system which includes continuous 

and discrete dynamics [20]. The system follows a sequence of continuous dynamics and 

their discrete transitions, i.e., it cycles through different contact configurations defined in 

Sec. II-B during stance period and encounters impacts when the swing heel hits the ground 

or the flat foot slaps the ground. Following the same assumption in [20], our model only 

allows an instantaneous double-support phase and perfectly inelastic collisions. The velocity 

of the biped changes instantaneously after each impact while the position of the biped 

remains unchanged.

Based on the method in [16], the hybrid dynamics and impact maps during one step are 

computed in the following sequence:

1 . Mq̈ + T(q, q̇) + Aheel
T λ = τ if aflat ≠ 0,

2 . q̇+ = (I − X(AflatX)−1Aflat)q̇
− if aflat = 0,

3 . Mq̈ + T(q, q̇) + Aflat
T λ = τ if cp(q, q̇) < lf,

4 . q̇+ = q̇−, (q(1)+, q(2)+)T = 𝒢 if cp(q, q̇) = lf,

5 . Mq̈ + T(q, q̇) + Atoe
T λ = τ if h(q) ≠ 0,

6 . (q+, q̇+) = Θ(q−, q̇−) if h(q) = 0,

where the superscripts “−” and “+” indicate the pre-impact and the post-impact values, 

respectively. Also, X = M−1Aflat
T , 𝒢 = (lfcos(γ), lfsin(γ))T, models the change in inertial 

reference frame, cp is the trajectory of the COP, γ is the ground slope angle, and lf is the foot 

length. The vector T groups the Coriolis/centrifugal terms and potential forces for brevity. 

The ground clearance of the swing heel is denoted by h(q), and Θ denotes the swing heel 

ground-strike impact map derived based on [20].

III. Energy and Passivity-Based Control

The passive compass-gait biped has no external force input during its continuous dynamics, 

thus the only work done on the system is by the discrete impacts with the ground. On a 

passive limit cycle, the kinetic energy of the biped is essentially reset after each impact, 

while the datum defining the potential energy is shifted to reset the potential energy. This 

gives rise to a constant generalized system energy [6]. A similar phenomena exists for an n-

link biped with a controller that does work to cause the biped to follow a limit cycle. During 

the continuous dynamics, the work done by the controller exactly accounts for the change in 

the mechanical energy. If the work is reset to zero after each impact (which we can enforce 

by convention), then the generalized system energy is still constant on the limit cycle [14].

As shown in [14], we can define the generalized system energy as
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E = K(q, q̇) + P(q) − W . (4)

The mechanical energy of the system is the kinetic energy K plus the potential energy P of 

the biped, while the work done by the inner loop controller is

W = ∫0
t∼

q̇TBvv dt,

which accounts for the energy stored, added, and dissipated over time t∼ by the controller 

torque v.

We can then consider the following storage function from [2] for the derivation of a 

passivity-based controller:

S = 1
2(E − Eref )

2 (5)

where Eref is the reference energy defined on a given limit cycle. Taking the time derivative 

of S, we obtain

Ṡ = (E − Eref )(Ė − Ėref ) .

If we only consider Ėref ≡ 0, then

Ė = d(K + P)
dt − dW

dt .

From the definition of W, the application of the fundamental theorem of calculus and the 

conservation of energy in a mechanical system yields

Ė = (q̇TBuu + q̇TBvv) − q̇TBvv = q̇TBuu .

The time derivative of the storage function becomes

Ṡ = (E − Eref )q̇TBuu

with passive output

yT = (E − Ere f )q̇TBu ∈ ℝ1 × d .
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If we feed back a scaled form of the passive output y, the outer loop control law that we 

arrive at is

u = − Λy = − Λ(E − Eref )Bu
Tq̇, (6)

where Λ is a positive definite diagonal gain matrix. By substituting in the control law, we 

have

Ṡ = − (E − Eref )2q̇TBuΛBu
Tq̇ = − 2kS q̇ Ω

2 ,

where q̇ Ω
2 = q̇TBuΩBu

Tq̇ is the square of a weighted norm, and Λ = kΩ. The variable k is a 

scaling factor which we can treat as a gain, while Ω is a diagonal positive semi-definite 

matrix that assigns relative weights in the norm. If we make the assumption that q̇ Ω
2 ≥ η, 

then we arrive at a similar result to [2] with

S(t) ≤ S(0)e−2kηt,

which proves the exponential convergence to the limit cycle. By inspection we can see that 

the gain k provides a method of directly influencing the bound on the convergence rate of 

the storage function. The lower bound η on the norm is difficult to determine over the 

general phase space, analytically or computationally, since it varies with the system velocity.

The benefit of this formulation is that the PBC is capable of improving the storage function 

convergence regardless of the degree of underactuation, if the system operates far away from 

any stable equilibrium points in the actuated phase space. This requirement ensures that η = 

0 is transient condition, and the storage function can be bounded by a new exponential 

function after passing through this state in the phase space. Any initial condition in the basin 

of attraction of a limit cycle satisfy’s this requirement.

One of the beneficial properties of PBC is that it is easy and natural to extend these results to 

the case of an actuator with saturation. If we consider a saturated version of the control

u = sat( − Λ(E − Eref )Bu
Tq̇)

such that

Ṡ = − yΛsat(y) ≤ 0,

the resulting system is still passive because the function output preserves the sign of the 

input, similar to the results in [21].
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Throughout this derivation, the form and properties of the inner loop control law v were left 

unspecified. This seems to indicate that an additional benefit of the proposed PBC approach 

is the potential to work with arbitrary inner loop controllers that generates a stable limit 

cycle, due to the form of the system energy (4) and storage function (5). In this paper we 

choose to use a PD controller to establish a stable limit cycle for the biped as in [16], [22], 

for simplicity. The control is defined as

v = − K p(qm − δ) − Kdq̇m,

where qm is the actuated coordinates vector, δ is the equilibrium vector, and the control gain 

matrices are denoted as Kp, Kd ∈ ℝ5×5.

IV. Simulation Results and Discussion

To study the possible benefits of the proposed PBC, we conducted series of simulations on 

the 7-link biped model introduced in Section II, where the model parameters were chosen 

from [16, Table I]. We begin by finding a nominal limit cycle walking on a slope α = 0.095 

rad under the influence of the PD control solely, which is used as the baseline comparison 

for the rest of this section. We then discuss the effects of the PBC on the rate of convergence 

and basin of attraction of the limit cycle. Afterwards, we move on to the results of varying 

the walking slope. Finally, we demonstrate the effects of PBC saturation and underactuation 

on the biped’s limit cycle.

The biped has three contact configurations and impacts, which causes the limit cycle to 

transition between 3 different constant system energies, Eref1 → Eref2 → Eref3. This can be 

seen in the periodic, constant jumps in Fig. 2, which correspond to transitions in contact 

configurations (starting with heel contact). The y-axis is the generalized system energy E = 

K + P − W, and these constant values are used as the phase-specific reference energies in the 

PBC throughout the section.

The simulations in Section IV-A,B are fully actuated in the outer loop during the flat foot 

phase and are underactuated with degree one during heel and toe contact. The constant 

parameters used are Ω = [0, 0, 0, 8, 3, 0.01, 3, 8]I8×8. The first three entries in the diagonal 

vector that are zero correspond to (px, py, ϕ), which are contact constrained variables over 

the course of a step. The gains are chosen so that a joint does not experience an 

instantaneous switch in its control gain when switching from stance to swing. The numerical 

parameters for the biped and the PD controller can be found in [16].

A. Rate of Convergence and Basin of Attraction

Typically, the basins of attraction of passive biped limit cycles are quite small and sensitive 

to perturbations. The initial positions and velocities of the system must be close to the limit 

cycle, which can be difficult for a human to manually achieve by positioning and pushing a 

physical biped [5]. However, the basin of attraction can be significantly enhanced by the 

addition of the PBC in the outer loop.
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When the system is solely under the influence of the PD controller, the storage function S 
and system energy E (mechanical energy minus the work done by the PD controller) remain 

constant during the continuous dynamics, and are only changed by the discrete impacts as 

demonstrated in Fig. 2 and 3. These impacts dissipate energy and cause the biped to 

converge toward the limit cycle. However, as shown in Fig. 3, implementing the PBC on top 

of the PD controller causes the storage function to decrease during the continuous dynamics 

as well. The convergence appears to be exponential, with different rates for each contact 

condition. Based on the control law derivation and storage function analysis from the 

previous section, we can conclude that the changes in convergence rate across impact events 

are due to the instantaneous changes in the norm of the joint velocities (i.e., the bound η 
changes).

We present phase portraits of the mechanical energy of the biped versus a phase variable that 

monotonically increases during each step [23]. This allows meaningful information to be 

conveyed using a two dimensional graph. The specific phase variable used in these plots is 

the global hip angle, which is defined from the vertical axis to the vector that connects the 

stance ankle to the hip. The mechanical energy over our phase variable represents a 

dimensionality reduction of the phase space onto a 2D plane.

Fig. 4 shows a comparison of the system behavior with and without the PBC when starting 

from an initial condition that is significantly distant from the limit cycle. With the PBC, the 

system converges back to the limit cycle in the left plot; the right plot without PBC does not 

converge and in fact falls over after just two steps. This comparison demonstrates that the 

basin of attraction of the limit cycle is increased by the PBC.

B. Slope Robustness and New Limit Cycles

In addition to being sensitive to initial conditions, passive biped walkers are also sensitive to 

ground slope [24]. In [2], a passivity-based energy shaping approach was used to render the 

hybrid dynamics of a compass-gait robot invariant with respect to the ground slope, which, 

in effect, simply shifted the limit cycle in the phase plane. In contrast, the PBC in this paper 

causes a quite different effect.

In our simulation, the biped was initialized with its state on the nominal limit cycle for a 

slope on α = 0.095 rad. The initial slope was changed to α = 0.12 rad and was held constant 

while the biped converged with the PBC gain k = 1 to the new limit cycle, displayed in the 

left plot of Fig. 5. The PBC was then turned off, and as a result the biped fell over after 5 

steps as shown in the right plot. This indicates that after applying the PBC, the biped has 

become robust to a wider range of slopes.

By inspection, we can see that the new limit cycle at k = 1 is not simply a shifted version of 

the nominal limit cycle. It is an emergent new limit cycle created by the PBC, which can be 

seen by comparing the limit cycles for k = 1 and k = 0.25 for α = 0.12 rad in Fig. 5. Here the 

biped was allowed to converge to the new limit cycle on the slope α = 0.12 rad with gain k = 

1. The gain was then changed to k = 0.25, and as a result the biped converges to a new limit 

cycle. This suggests that the PBC is doing more than simply stabilizing an unstable limit 

cycle.
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C. Underactuated PBC with Saturation

This section shows a simulation example that is reasonable to implement in a physical 

system. A minimal amount of motors is often desirable from the perspective of mechanical 

design, and real motors experience torque saturation. Since the ankle joint provides most of 

the power injection in bipedal systems [25], this motivates a case study that restricts the 

actuation to just these joints. For the purpose of maintaining symmetry, we have actuation at 

both ankles with Ω = [0, 0, 0, 1, 0, 0, 0, 1]I8×8. Thus, the total degree of underactuation of 

the outer-loop due to the joint actuators and contact configuration is 6 during the heel and 

toe contact and 5 during flat foot.

The initial conditions and slope used for the saturated and underactuated simulation were the 

same as the full actuation case on the nominal slope. The control with ankle actuation alone 

is still capable of enhancing the basin of attraction of the limit cycle as indicated in Fig. 6. 

However, one can see that the number of cycles or steps necessary to reach the limit cycle 

has increased from three steps in the left plot in Fig. 4 to five steps in Fig. 6. This indicates 

that the convergence rate of the storage function has decreased due to the drop in the number 

of actuators.

V. Conclusion

This paper enhances the usefulness of passivity-based control for biped walkers and the 

stabilization of their limit cycles by generalizing both the expression used for the system 

energy and the control method to arbitrary degrees of underactuation. This underactuation 

can be enforced by physical properties of a system model such as rolling foot contact, or a 

result of actuator placement in the system. We show that with these changes the system still 

enjoys improved properties such as an increase in the basin of attraction, robustness to 

changes in slope, and increases in convergence rate. The immediate goals of the authors are 

to perform similar simulations with a variety of more complex inner loop controllers that are 

commonly applied on legged robots (e.g., Feedback Linearization [26] or HZD [4]). In 

addition, the ideas presented could have significant impact in the application on powered 

prostheses. Passivity-based methods are speculated to have good properties for human-

machine interaction [16], and this paper specifically addresses the issues of underactuation 

and saturation that powered prosthetic devices inevitably face.
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Fig. 1. 
Kinematic model of the biped. COP denotes the Center of Pressure. The solid links denote 

the stance leg, the dashed links denote the swing leg.
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Fig. 2. 
System energy of the biped and PD controller while traversing the limit cycle. There are 

three constant energy levels with discrete jumps between them.
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Fig. 3. 
A comparison of the perturbed system storage function with and without PBC. The PBC 

trajectory has k = 0.1.
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Fig. 4. 
The biped’s phase portraits with (left) and without (right) the PBC under perturbations. 

Mechanical energy is plotted over a phase variable for the sake of visualizing the limit cycle 

in two dimensions.
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Fig. 5. 
Biped limit cycle with slope α = 0.12 rad compared with the nominal slope α = 0.095 rad. 

The left figure shows the change in biped’s phase portrait when varying slope and gain using 

the PBC. The right figure shows the biped’s phase portrait without the PBC.
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Fig. 6. 
Phase portrait of the biped with actuation at both ankle joints (saturated at 100 Nm).
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