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ABSTRACT
Hugging Face (HF) has established itself as a crucial platform for
the development and sharing of machine learning (ML) models.
This repository mining study, which delves into more than 380,000
models using data gathered via the HF Hub API, aims to explore
the community engagement, evolution, and maintenance around
models hosted on HF – aspects that have yet to be comprehensively
explored in the literature. We first examine the overall growth and
popularity of HF, uncovering trends in ML domains, framework
usage, authors grouping and the evolution of tags and datasets used.
Through text analysis of model card descriptions, we also seek to
identify prevalent themes and insights within the developer commu-
nity. Our investigation further extends to the maintenance aspects
of models, where we evaluate the maintenance status of ML mod-
els, classify commit messages into various categories (corrective,
perfective, and adaptive), analyze the evolution across development
stages of commits metrics and introduce a new classification system
that estimates the maintenance status of models based on multiple
attributes. This study aims to provide valuable insights about ML
model maintenance and evolution that could inform future model
development strategies on platforms like HF.

CCS CONCEPTS
• Information systems → Data mining; • Software and its
engineering → Software maintenance tools; Software libraries
and repositories.

KEYWORDS
repository mining, software evolution, maintenance

1 INTRODUCTION
The rapid evolution of machine learning (ML) models, especially
on community platforms, is redefining the landscape of AI research
and application. Hugging Face (HF) and its Hub [1] stand out in this
regard due to their critical role in the development, sharing, and de-
ployment of a wide array of ML models, including Large Language
Models (LLMs) and generative AI. HF represents an ecosystem
where technical and social dynamics converge, forming a nexus of
collaborative development that is continuously evolving. Despite
its significance, the understanding of HF’s model evolution and
maintenance practices remains underexplored.

Previous studies have explored various facets of HF, includ-
ing pre-trained model reusability [2], the platform’s carbon foot-
print [3], or the challenges in reusing pre-trained models across
different domains [4]. Our study aims to provide a holistic view of
the current state of ML models on HF, focusing on their evolution,
maintenance, and broader implications for the ML community. The
novelty of our work lies in the comprehensive examination of these
aspects on HF, which, to our knowledge, has not been explored in
such detail before.

We delve into the dynamics of ML model maintenance and evo-
lution on HF, investigating domain-specific trends, author collab-
oration patterns, content evolution in model cards, and detailed
maintenance practices. These practices include analyses of com-
mit types, file edits, and maintenance categorization, along with
their correlations with model characteristics. Such information can
guide users towards actively maintained models and inform their
decision-making by highlighting the likelihood of future model
updates. Moreover, our findings reveal the unique nature of ML
model development compared to traditional software, emphasizing
the diverse array of tools used, the crucial role of collaboration, and
the distinctive developmental approaches.

The insights garnered from this study are not limited to the HF
platform. They offer implications for the maintenance of ML mod-
els in general. The patterns and trends identified provide valuable
lessons for the broader ML community, regardless of the specific
platform, repository or environment used. Therefore, this research
aims to guide the development of structured maintenance frame-
works, enhancing transparency, and setting community-wide stan-
dards for ML model maintenance. Our study paves the way for
future research in ML model evolution, offering both a framework
and a replication package that can be adapted and applied beyond
HF to improve maintenance activities of ML models in general.

2 BACKGROUND AND RELATEDWORK
2.1 ML Model Maintenance and Evolution
In recent decades, the rise in data and computing power avail-
ability has significantly enhanced ML applications across various
domains [5]. ML models, integrated into ML systems [6], require
regular maintenance to address concept drift—a decline in predictive
accuracy over time due to changing data characteristics [7, 8]. Main-
tenance tasks, crucial yet challenging [9, 10], involve ensuring op-
erational stability and efficiency through corrections, adjustments,
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and optimizations, aligning with ISO 25059’s software maintenance
standards [11] and interpretations by Rowe et al. [12].

Contrastingly, evolution in ML models signifies substantial adap-
tations to new datasets and technologies [13]. As outlined by Ben-
nett and Rajlich [14] and Lehman et al. [15], this encompasses
a range of changes across the lifecycle of software, including the
introduction of new features andmeeting new requirements. Our re-
search separates the overall evolution of the HF community, which
involves trends in model development, framework usage, and au-
thor dynamics, from the specific maintenance of individual ML
models that focuses on routine updates for current functionality.

2.2 The Hugging Face Hub
Training complex ML models requires considerable expertise and
resources. Therefore, it is advantageous to reuse existing pretrained
models. One community platform to facilitate such sharing and
reuse is provided by the company Hugging Face, Inc. (HF). Founded
in 2016 as a Natural Language Processing (NLP) company, HF be-
came popular for releasing their NLP models as open source [16]
and creating a user-friendly library for NLP transformers [17]. To-
day, the HF Hub represents their most important product, i.e., a
public platform to train, share, download, and deploy ML models
and datasets. The Hub adopted the Model Cards idea by Mitchell
et al. [18]: published models can provide a README.md and addi-
tional metadata, e.g., tags or prediction quality metrics, which leads
to better documentation, transparency, and reproducibility. Models
and datasets hosted on the Hub are represented as Git repositories1,
i.e., they are under version control, with multiple people being able
to commit changes to them. All in all, the HF Hub is slowly but
surely establishing itself as the “GitHub of ML models”.2 However,
unlike with GitHub, we know little about the state of the HF Hub
and how the community uses it.

2.3 Related Work
Two types of publications are related to our study: a) publications
about the maintenance and evolution of ML, and b) publications
about analyzing the HF Hub. Topic a) has mostly been studied from
the perspective of maintainability challenges or technical debt, as
visible through the secondary studies by, e.g., Shivashankar and
Martini [19] and Bogner et al. [20]. However, some studies also
analyzed maintenance and evolution activities in more detail. Tang
et al. [21] analyzed 26 open-source ML projects on GitHub and
studied how refactoring took place in these repositories to remove
technical debt items. Based on their analysis, they conceptualized
new refactorings and technical debt categories specific to ML. They
also proposed refactoring-related best practices and antipatterns.
Dilhara et al. [22] conducted a mixed-method study to analyze the
usage and evolution of ML libraries. They first analyzed over 3,000
open-source repositories containing ML libraries and how their
usage evolved. Afterward, they surveyed 109 developers using ML
libraries. They identified that ML library updates frequently lead
to the update of additional libraries, and that ML libraries are also
downgraded in 20% of the cases. Lastly, they highlighted specific

1https://huggingface.co/docs/hub/repositories
2https://www.forbes.com/sites/kenrickcai/2022/05/09/the-2-billion-emoji-hugging-
face-wants-to-be-launchpad-for-a-machine-learning-revolution

challenges for the maintenance and evolution of ML software. To
combat the decay of ML models through concept drift, Leest et al.
[23] proposed an architectural framework to support making de-
sign decisions to prepare an ML-enabled system for evolution. The
framework uses scenarios to capture different facets of evolution
and to analyze trade-offs between evolvability and other quality
attributes. However, the framework has not been empirically evalu-
ated so far, which the authors plan to do via industrial case studies.

Several studies also analyzed different characteristics of the HF
Hub. Taking a security perspective, Kathikar et al. [24] analyzed the
linked GitHub repositories of 110,000 HF models. They used static
analysis to identify a substantial number of vulnerabilities, even
though the vast majority were of low severity. However, the share
of high-severity vulnerabilities was larger in popular fundamen-
tal repositories such as Transformers, which makes securing ML
models even more complex. In a previous study of ours [3], where
we analyzed around 170,000 models to uncover insights about HF’s
impact on environmental sustainability, we discovered that only
a very tiny percentage of models reported the carbon emissions
from their training. Most of these were models trained on the HF
infrastructure, which reports these emissions automatically. Over
the years, the share of models reporting carbon emissions also
decreased, but for those that did report them, mean emissions de-
creased slightly. We also identified factors correlating with high
carbon emissions. Ait et al. [25] wanted to make the analysis of
HF more convenient and therefore created HFCommunity, a tool
that collects and integrates data about the HF Hub, e.g., data on
repositories, discussions, files, commits, etc. The data is provided as
a relational database dump that can be downloaded and analyzed
offline. The authors envision HFCommunity as a long-term data
source to enable efficient empirical studies of ML projects. Jiang
et al. [2] conducted an interview study with practitioners who use
HF. They identified practices and challenges regarding the reuse
of pretrained models. Afterward, they extended their data with
a security risk analysis based on information mined from the HF
Hub. They concluded that several risky practices exist in the supply
chain of pretrained models, e.g., a frequent lack of signatures. Lastly,
Gong et al. [4] explored pre-trained model usage across repositories
like HF. They emphasized the need for “model contracts” to address
challenges in reusing models due to domain gaps, recommending
specifications on intended usage, limitations, and performance for
better model reuse.

While several studies have analyzed the maintenance and evo-
lution of ML software, no study reports about these activities for
models on the HF Hub. Getting insights into how ML models are
maintained and evolve in the largest community platform could
lead to the identification of important challenges and practices, and
can also inform more design-oriented future research.

3 METHODOLOGY
In this section, we outline our methodology, stating from the study
objective and research questions, followed by an explanation of the
dataset collection process.

https://huggingface.co/docs/hub/repositories
https://www.forbes.com/sites/kenrickcai/2022/05/09/the-2-billion-emoji-hugging-face-wants-to-be-launchpad-for-a-machine-learning-revolution
https://www.forbes.com/sites/kenrickcai/2022/05/09/the-2-billion-emoji-hugging-face-wants-to-be-launchpad-for-a-machine-learning-revolution
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3.1 Study Objective and Research Questions
Following the Goal Question Metric (GQM) guidelines [26], our
research goal is structured as follows:
Analyze pre-trained ML models for the purpose of exploring and
categorizing with respect to their present status, evolution and main-
tenance from the viewpoint of ML researchers and practitioners in
the context of the HF Hub.

Two main research questions (RQ) arise from this goal. We ex-
plore the models in HF to understand their development, popularity,
and maintenance:

RQ1. What is the current status and evolution of the HF
community?

• RQ1.1: How has HF’s popularity changed?
• RQ1.2: How have framework usage, tag, and dataset trends

evolved in HF?
• RQ1.3: Are there prominent authors groups in HF commu-

nity?
• RQ1.4: What trends and insights can be identified from the

content of HF model cards?

RQ2. How can we evaluate and categorize the maintenance
status of ML models on HF through their commit informa-
tion?

• RQ2.1: What do commit metrics reveal about the mainte-
nance of ML models?

• RQ2.2 How does the size and frequency of commits evolve
over time?

• RQ2.3: How do different types of commits (perfective, cor-
rective, adaptive) contribute to the maintenance of models?

• RQ2.4 How do the editing patterns of specific files evolve
across different development stages?

• RQ2.5: How can we classify the maintenance status of indi-
vidual models using their commit data?

• RQ2.6: How do various model characteristics differ between
maintenance levels?

3.2 Dataset Construction
To answer our RQs, we execute a data collection and preprocessing
pipeline, refined to meet the specific demands and objectives of
the current study. The data extraction process was carried out on
November 6th, 2023.

Data availability statement: The datasets, code, and detailed
documentation are available in a replication package hosted on
Zenodo [27].

3.2.1 Data Collection. Our data collection pipeline employs the
HF Hub API using the HfApi class [28], a Python wrapper, to collect
data about users and models stored on the HF platform. To this end,
we collect a range of common model attributes, including: the total
size of datasets used, hardware used for training, evaluation metrics
such as accuracy or F1, size of the model file in the repository,
number of downloads and likes for each model, tags attached to
each model (e.g., PyTorch, Transformer), the raw text of the model’s
card and more. For more detailed information on the data attributes
and collection process, refer to [27].

In addition to these common attributes, our pipeline is enhanced
to collect detailed data related to the commit history of models,
providing insights into their development and maintenance over
time. This approach is complemented by the integration of data
from the HFCommunity dataset [25], an offline up-to-date relational
database built from the data available at the HF Hub. The HFCom-
munity dataset used the PyDriller framework to extract detailed
commit information, thereby providing access to the list of files
edited in each commit, a feature not available through the HF API.
This additional layer of data enriches our analysis by offering a
more complete view of the changes made to each model over time.

In addition to commit data, we retrieve discussion data, which
includes questions, pull requests, and issues related to the models
from the HF API. More details on the data collection are deferred
to the replication package.

3.2.2 Data Preprocessing. Our analysis involves the processing
of the newly incorporated commit and discussion data. The dataset
after the collection phase possesses over 380,000 data entries, each
representing a model on HF.

Firstly, we classify commit data to assess the nature of changes
made to the models based on its messages. This classification aligns
with Swanson’s traditional software maintenance categories — Cor-
rective, Perfective, and Adaptive [29]. The classification of commits
is performed using a neural network approach based on the work
of Sarwar et al. [30], who fine-tuned an off-the-shelf neural net-
work, DistilBERT, for the commit message classification task. We
fine-tune the neural network proposed in the paper and use it to
classify each of the commits.

Beyond classification, we derive metrics that reflect model evo-
lution and ongoing maintenance efforts, such as the frequency and
distribution of various commit types. This process is critical for
understanding the lifecycle and robustness of the models.

Moreover, we harmonize variables, manage missing values and
identify and handle irrelevant or low-impact attributes appropri-
ately ensuring the dataset’s integrity and consistency. The final
step in our preprocessing is the application of one-hot encoding to
the tags associated with the models. This encoding, combined with
a developed tag-to-domain dictionary allows us to filter and map
tags to domains, including: Multimodal, Computer Vision, NLP,
Audio, and Reinforcement Learning.

3.3 Data Analysis
In this section, we describe the methodology for analyzing the data
to answer our research questions. We aim to provide a clear and
reproducible account of how we analyzed the data and derived
conclusions.

3.3.1 RQ1 Analysis. To address RQ1.1, we construct several time-
series graphs using attributes that could indicate and demonstrate
an increase in popularity. Specifically, we analyze trends in the
number of new models added each month, the number of commits
created, likes, the number of new unique authors, and the number
of opened discussions.

For RQ1.2, we analyze the overall statistics of datasets, tags,
and libraries, followed by a time-series plot that demonstrates the
proportion of the attributes that have been in the top 5 each year.
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This analysis helps us to identify the trends and popularity of
specific tags, datasets, and libraries over time. To assess whether
there are statistically significant evolutionary differences over time
in the usage of top frameworks (pytorch, tensorflow, and jax), we
employ a Chi-squared test for independence. This test is particularly
suitable for our analysis, as it allows us to evaluate the relationship
between categorical variables (in this case, the frameworks) across
multiple time periods.

To address RQ1.3, we employ a graph-based approach to uncover
groups of authors using the Louvain algorithm [31]. We choose the
Louvain method for its efficiency and effectiveness detecting com-
munities in a large network such as HF. We construct a graph with
authors as nodes and collaborations as edges, attributing model
popularity to each author and linking co-authors. We define the
popularity on each author as the sum of the popularity of each
model they collaborated on. The Louvain method was then em-
ployed for community detection, identifying clusters of closely
connected authors (i.e., author groups). Subsequently, we calcu-
lated the cumulative popularity of each author group, ranked them
in descending order, and visualized the concentration of popularity
among the top groups.

Lastly, for RQ1.4, we use Latent Dirichlet Allocation (LDA) [32]
to identify common topics and their evolution within the text of
the model cards. For LDA’s hyperparameters tuning, we conduct
experiments with topic coherence metrics, such as 𝐶𝑣 [33], and
perform manual inspection of the topics to ensure they are distinct
and meaningful. This approach is complemented by testing various
hyperparameters, including document and word topic densities.

3.3.2 RQ2 Analysis. For the maintenance status of models, we
analyze the descriptive statistics of five main maintenance metrics
(RQ2.1): the number of commits per model, average number of files
edited by the commits for a model, monthly commit frequency, and
the total number of authors involved in a commit, as in HF a single
commit for a model can be made by multiple authors.

For RQ2.2, we examine the evolutionary trend of the number
of commits and commit size, employing a slope t-test on a fitted
linear regression with a significance level of 𝛼 = 0.05 to test for any
significant trends.

For RQ2.3, we use the classified maintenance types (perfective,
corrective, and adaptive) to analyze their proportions, and how
they evolve throughout a model’s development lifecycle. That is,
we calculate the proportion of commit types across development
stages (from beginning to end) and plot the evolution of these
proportions throughout the development process.

For RQ2.4, we identify themost commonly edited files in commits
and analyze the file editing lifecycle to observe how the patterns
of these edits change over the course of a model’s development.
Equivalently with RQ2.3, we measure the proportion of edits to
specific files at five key stages in the development cycle, providing
insights into the evolving nature of file modifications as the model
matures. Finally, to better understand the relationships between
files commonly edited together, we construct a graph where nodes
represent individual files, and edges denote the co-occurrence of file
edits within the same commit. The weight of each edge corresponds
to the frequency of these co-editing events, offering a quantitative
measure of the strength of the relationship between files. Using

again the Louvain algorithm, we then detect communities within
this graph. These communities are groups of files that are frequently
edited together, which we describe and visualize.

For RQ2.5, we employ a k-means clustering algorithm to classify
the maintenance status of ML models on the HF platform. We opt
for 𝑘 = 2 based on initial observations of minimal variance for
𝑘 > 2, ensuring a distinction between high and low maintenance
models, aligning with similar approaches such as Coelho et al.
[34]. K-means is selected for its simplicity and effectiveness in
generating distinct, interpretable clusters, ideal for delineating clear
maintenance groups. In contrast, methods like DBSCAN [35], which
automatically determines the number of clusters based on data
density, might not explicitly align with our specific objective of
categorizing into two maintenance categories. The classification
is based on several key features: the total number of commits, the
frequency of commits per month, the average interval between
commits, the longest duration without any commits, the count
of contributing authors, and the proportion of discussions that
have been successfully closed. The selection of these features was
influenced by their relevance to maintenance activities, and was
also informed by similar attributes used in parallel research [34].
Details can be further seen in the replication package.

Finally, for RQ2.6, we investigate how various model character-
istics differ between high and low maintenance categories. Our
analysis encompasses both continuous and nominal variables, us-
ing statistical tests appropriate for non-normally distributed data
at significance level 𝛼 = 0.05. For continuous variables, including
likes, downloads, size, model card text length, accuracy, f1, and
datasets size, we employ the Mann-Whitney U test [36]. This test
is suitable for comparing the means of two independent samples
without assuming normality. For nominal variables, specifically the
domain and library usage, we use the Z-test for proportions. This
test allows us to determine whether the proportion of models in
a particular domain or using a specific library significantly differs
between the high and low maintenance categories.

4 RESULTS
In this section, we present the results of the data analysis per RQ.

4.1 Current Status and Evolution of HF
Community (RQ1)

4.1.1 How has HF’s popularity changed? The results dis-
played in Figure 1 clearly showcase HF’s exponential growth in
popularity.

The analysis of various metrics from 2017 to 2023 on the HF
platform reveals a consistent and significant uptrend in engagement
and development activities. Notably, there has been a clear increase
in the number of new models added each month. This trend is
accompanied by a marked spike in community engagement, as
evidenced by the rise in likes and discussions, particularly from 2022
onwards. Additionally, there has been a steady growth in both the
number of commits and the diversity of contributing authors each
month. These trends collectively highlight the growing importance
and popularity of HF in the ML community, aligning with findings
from previous studies [3].
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Figure 1: Popularity metrics evolution on HF.

Finding 1.1. HF’s popularity has exponentially increased
over time, which is evident from the upward trends in the
number of new models, likes, commits, unique authors, and
discussions aggregated monthly.

4.1.2 How have framework usage, tags and datasets trends
evolved in HF?. Regarding the most common libraries, transform-
ers and pytorch hold the first and second positions respectively, with
transformers being used in 163,936 models and pytorch in 150,757
models. This is further supported by the top frameworks on each
domain, where transformers and pytorch appear across domains
such as Audio, Computer Vision, and NLP. For Multimodal models,
the top library is diffusers, which has state-of-the-art pretrained dif-
fusion models for generating images and audio. For Reinforcement
Learning tasks, we have Stable-Baselines3, a set of implementations
of reinforcement learning algorithms built on top of PyTorch.

In total, there are 129 unique libraries used across various models
on HF. The evolution of the relative popularity of top libraries can
be seen in Figure 2. This figure is a line chart showing the trends
of the proportion of various libraries from the fourth quarter of
2018 to the fourth quarter of 2023. It is important to note that a
single model can incorporate multiple libraries, resulting in several
libraries having high proportions (e.g., tensorflow, jax and safeten-
sors at 2019Q1). Furthermore, we recognize that certain libraries
like the transformers (HF Transformers library [37]) may be used
in conjunction with others such as pytorch or tensorflow. In our
analysis, these are only counted if they are explicitly mentioned to
prevent false positives. The following observations can be made:

• Dominant Libraries: pytorch and transformers are con-
sistently the most dominant tags, although the total pro-
portion of models with these tags has been shrinking until
reaching ≈ 40% today, suggesting an increased variety of
tags. The observed decline reflects the increasing diversity
of models on HF. As the platform grew, a wider array of
models emerged, leading to a dilution in the proportion of
models using these libraries.
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Figure 2: Evolution of the relative popularity

• Reinforcement Learning Libraries: stable-baselines3 ex-
perienced a surge in popularity at the beginning of 2022, but
it remains less prominent compared to major NLP libraries.

• Multimodal Libraries: diffusers experienced a surge in
popularity in mid-2022, ranking as the fifth most popular
library in the last quarter.

• Library Comparison: In comparing popular frameworks,
pytorch remains the most popular, while tensorflow and jax
have seen notable decreases in usage. Specifically, pytorch’s
usage declined by 62.79%, whereas tensorflow and jax expe-
rienced sharper declines of 98.85% and 99.85%, respectively.
The Chi-square test confirms these trends are statistically
significant (p-value<0.05).

Finding 1.2.1. ‘transformers’ and ‘pytorch’ are the most
used frameworks overall. Moreover, ‘pytorch’ maintained
the framework dominance while ‘tensorflow’ and ‘jax’ lost
popularity.

As we delve further into the evolution of HF, we observe a shift
in the popularity of tags and datasets over the years. As for the
tags, there are a total of 23,496 unique tags on HF. The most fre-
quent tags encompass a range of topics, from library-specific and
auxiliary tags to language-related tags. However, when we filter
out these non-specific tags, we uncover the true interests of the



Joel Castaño, Silverio Martínez, Xavier Franch, Justus Bogner

HF community. Generative AI and NLP-related tags such as text-
generation-inference, text-classification, and reinforcement-learning
are particularly prevalent.

Figure 2 also illustrates the dynamic landscape of tag popularity
over the years. We observe a steady decline in older NLPmodels like
BERT, while tags related to generative AI have gained momentum.
Although there is a consistent interest in audio-related tasks and
reinforcement learning, they remain less popular than some of the
NLP tags. The last three quarters have witnessed a surge in interest
for text-generation-inference, text-to-image, and llama.

Finding 1.2.2 The analysis of tags reveals a dominant in-
terest in generative AI and NLP within the HF community,
with notable but less significant interest in other domain tags
such as audio-related tasks and reinforcement learning.

Finally, in terms of datasets, a total of 10,525 unique datasets
are used. In Figure 2, we can also observe the changing popularity
of datasets over time. In the earlier years, NLP datasets like GLUE
and Wikipedia were foundational, serving as benchmark datasets.
However, their popularity has waned over time, possibly due to the
emergence of newer datasets or shifting research priorities, without
new hugely dominant datasets on the community.

Finding 1.2.3. Although NLP datasets like GLUE and
Wikipedia were foundational in earlier years, there are no
dominant datasets nowadays.

4.1.3 Who are the prominent authors and what are their
relationships in HF?. An analysis of the most common authors
reveals names such as ’SFconvertbot’ and ’librarian-bot’, which are
automated bots contributing to the platform among other human
authors.
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Figure 3: Cumulative
popularity of author groups

Metric Value

Average Downloads 1,858,571
Average Likes 294.71
Average # of Authors 8.61
Average Length of Card 8,807.55

Table 1: Average Statistics Top
Author Group

To further explore the relationships between authors, we em-
ployed the Louvain algorithm to identify clusters of authors who fre-
quently collaborate with each other. The results were quite telling.
A small number of groups garnered the majority of popularity on
HF, with the first group alone accounting for 40% of the platform’s
popularity as can be seen in Figure 3. This is further evidenced in
Table 1, which displays statistics for the top author group models
that significantly surpass the average metrics of a typical HF model.
For example, while the average number of likes for a model is 1.13,
the top group boasts an average of 294.71. This group consisted of
approximately 580 authors.

The dominance of this group is further emphasized when con-
sidering that HF has over 100,000 unique authors. This means that
a tiny fraction of authors (approximately 0.5%) are responsible for
a significant portion of the platform’s popularity. The collaborative
nature of these authors is evident in their contributions to models

with extensive collaboration such as bigscience/bloom with 22
unique collaborators, among others.

These findings reveal a clear concentration of popularity among
a small number of authors who tend to collaborate frequently, indi-
cating a tight-knit community of contributors who play a significant
role in shaping the landscape of HF.

Finding 1.3. A small number of author groups, particularly
one dominant group, convey the majority of popularity in
HF. This indicates a concentrated popularity among authors
who often collaborate with each other.

4.1.4 What trends and insights can be identified from the
content of model cards? An LDA decomposition was conducted
to categorize the prevalent themes within the model card content
on all published model cards on HF (87,775). We chose symmetric
Dirichlet priors, assigning equal prior weight to each topic, as
this yielded similar results across multiple choices and ensured
a balanced representation of topics. With five components, we
ensured that the topics generated were distinct and meaningful.
The identified raw topics (top 10 words for each topic) were:

• Topic 1: Training Info
– Raw: "training information needed model loss hyper-

parameters evaluation results following"
– Interp.: About model training specifics.

• Topic 2: Text Generation
– Raw: "model huggingface llama 7b information use

needed 13b prompt models"
– Interp.: Linked to text generation, with references to

llama, prompting or common number of parameters.
• Topic 3: Reinforcement Learning

– Raw: "agent model td playing baselines3 false python
stable github rl"

– Interp.: Models centered on agent-based learning.
• Topic 4: NSFW Content

– Raw: "png previews click nsfw style f1 strong font suit
maid"

– Interp.: Generation of explicit adult content via HF’s
NSFW mainly with text-to-image generative content.

• Topic 5: Other
– Raw: "model huggingface main github import image

resolve use trained models"
– Interp.: Includesmiscellaneous and uncategorized cards.
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Figure 4: Time series analysis of model cards LDA topics

As observed, our topics do not align perfectly with the categories
presented by Mitchell et al. [18], suggesting unique trends and
focuses in the HF community to explore further.
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The evolution of these topics is presented in Figure 4. A growing
popularity of NSFW content since the mid 2022 aligns with the
urge in popularity of image diffusion models. Simultaneously, the
consistent rise in text generation, also propelled by the generative
AI wave, emphasizes its lasting significance. "Training Information"
dominates the model card topics, indicating that model-specific
training details remain in model cards. Lastly, the cyclical nature
of "Reinforcement Learning", echoing similar patterns in tag evolu-
tion, highlights periodic surges in interest, potentially aligned with
advancements or novel applications in this field.

Finding 1.4. Model cards combine technical terms, training
parameters, and general descriptors, indicative of the nature
their content. Emerging trends like generative AI underscore
evolving user interests and applications.

4.2 Maintenance Analysis (RQ2)
4.2.1 What do commit patterns and classifications reveal
about the diversity in model development on HF?. The diver-
sity in development activities amongHFmodels is clearly evidenced
by the range in the number of commits (Figure 5). The average num-
ber of commits is 7.16, but the median is only 3.0, showing a strong
skew in the distribution with a mean substantially higher than the
median. This discrepancy is also reflected in the top models by
the number of commits. A few models, such as CivitAI_model_-
info with 97,237 commits, have undergone extensive revisions
and updates. In contrast, a significant number of models have very
few commits (e.g., 71% of the models have less than 5 commits),
suggesting disparities in active development or maintenance. The
abnormally large numbers of commits on some models are mostly
attributed to automatic commits using the HF API, e.g., updating
the model file with a commit on every training step, thereby giving
an illusion of high maintenance.
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Figure 5: # of commits and commit size per model histograms

Finding 2.1.1. HF is characterized by a diverse but right-
skewed distribution of commit patterns (influenced by au-
tomated processes), with few models receiving extensive up-
dates and the majority showing limited activity.

The commit size and frequency further highlights the diversity in
development practices (Figure 5). While the average commit size is
5.0 files per commit, the median is 2.0, indicating that most changes
are incremental and minor, but there are occasional substantial
modifications that could represent significant feature additions or
improvements to a model. The frequency of commits also exhibit a

wide range, with some models being updated frequently, while oth-
ers have long intervals between commits: the mean time between
commits is 52.6 days, while the median is 27 minutes.

Finding 2.1.2. Incremental improvements dominate model
development, as evidenced by the prevalence of minor com-
mits.

When we look at the 100 most popular models, we can identify
models with high maintenance metric values from actual develop-
ment processes rather than automated commits. For instance, the
top models by number of commits are OrangeMixs with 185 com-
mits, bloom with 108 commits, and chatglm-6b with 95 commits.
Similarly, models such as lllyasviel/ControlNet-v1-1 with an
average commit size of 5.66 files per commit showcase substantial
modifications indicative of significant developmental efforts.

The involvement of diverse contributors in model development
on HF ranges from individual developers to collaborative efforts.
While the majority of models are developed by a small number of
authors (with a median of 1 author per model), there are notewor-
thy exceptions. Models like bigscience/bloom or bigcode/san-
tacoder are examples of collaborations that bring 22 and 17 unique
authors respectively.

Finding 2.1.3. HF encompasses both individual and collab-
orative efforts. While the average number of unique authors
per model is low, (1.18 mean and 1.0 median), there are no-
table examples of collaboration.

4.2.2 How does the size and frequency of commits evolve
over time? Figure 6 presents the quarterly evolution of the number
of commits and the average commit size for all models.
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Figure 6: Average number of commits for each model quarterly

As observed in Figure 6, there is a slight upward trend in both
the average number of commits and the average commit size over
time. This suggests that there might be an increase in the mainte-
nance efforts put into the models hosted on the HF platform. This
increase can be attributed the increasing awareness of the impor-
tance of model maintenance, an overall increase in the quality and
complexity of the hosted models, or a more distributed usage of
the HF API, which makes automatic commits easier. The p-value
on the slope t-test on both trends is < 0.05, confirming that this
is not just a random fluctuation, but a significant statistical trend.
Furthermore, the peak observed in the number of commits and the
corresponding decrease in the average commit size during 2020-Q3
can be attributed to the ’Helsinki-NLP’ organization. They uploaded
a substantial number of models (over 300), characterized by a high
frequency of commits and a low number of files edited per commit.
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Finding 2.2. There has been a slight but statistically sig-
nificant increase in the average number of commits and the
average commit size over time, indicating a possible increase
in model maintenance efforts on the HF platform.

4.2.3 How do different types of commits (perfective, correc-
tive, adaptive) contribute to the maintenance of models on
the HF platform? The classification algorithm [30] provided mul-
tiple labels, including combinations between perfective, corrective,
and adaptive. We present examples for each commit type:

• Corrective Commits:
– ’Updated bug in TensorFlow usage code
(README.md) (#5)’

– ’[FIX] Fix Typo (#3)’
• Perfective Commits:

– ’For clarity, delete deprecated modelcard.json’
– ’Update tokenizer.json’

• Adaptive Commits:
– ’Adding ‘safetensors‘ variant of this model
(#1)’

– ’Add size details’

As we can observe, corrective commits address bugs and er-
rors, such as fixing typos or updating incorrect code. Perfective
commits focus on improvements and refinements, like updating a
tokenizer or deleting deprecated files. Lastly, adaptive commits add
new features or variants.

By analyzing the commit type frequencies of 2,760,224 commits,
we found a dominant proportion of perfective commits, as show-
cased in Table 2.

Considering Finding 2.1.2, it is reasonable to infer that the ma-
jority of the commits are perfective in nature. The high proportion
of perfective commits aligns with the trend of incremental small
improvements being dominant in model development.In fact, signif-
icant portion of perfective commits corresponds to routine updates
such as ‘update README.md’, ‘update pytorch_model.bin’, and
other similar enhancements.

Finding 2.3.1. Perfective commits constitute the majority of
maintenance activities on HF. This suggests a strong empha-
sis on incremental improvements and routine updates during
the model development lifecycle.

1
(Beginning)

2 3 4 5
(End)

Development Stages

Perfective

Adaptive

Corrective

Figure 7: Lifecycle of commit
types

Commit Type (%)

Perfective 89.3
Adaptive 6.1
Corrective 2.46
Adaptive Perfective 1.85
Corrective Perfective 0.08
Corrective Adaptive <0.01
Unclassified 0.15

Table 2: Proportions of commit
types

Further, we sought to understand the lifecycle of commit types
over the development of an average model. The results, depicted in
Figure 7, which shows the proportion of different types of commits

across various stages of development, indicates a noticeable trend.
From the graph, we observe the following:

• Perfective commit are dominant at the start and increase
even more towards the end development stage.

• Adaptive commits decrease as development progresses.
• Corrective commitsmaintain a consistent, thin layer through-

out the stages with a slight decrease at the end.
The chart suggests that model development on the HF platform

typically begins with a mix of perfective and adaptive tasks, grad-
ually transitioning towards perfective efforts, which dominate to-
wards the end. This implies that, as the development matures, there
are fewer environmental or requirement changes (adaptive) and a
stable number of bug fixes or issue resolutions (corrective), with
an increasing focus on enhancing existing features (perfective).

Finding 2.3.2. Throughout the lifecycle of a model, there
is an increase on perfective tasks. This indicates a maturing
of model development where enhancements take precedence
over new features or the rectification of defects.

4.2.4 How do the editing patterns of specific files evolve
across different development stages? An analysis of the most
commonly edited files reveals pytorch_model.bin as the most edited
filename followed by README.md and .gitattributes. The lifecycle
of files edited in commits, depicted in Figure 8, provides further
insights. From the figure, we can draw several conclusions:

• The editing proportion of pytorch_model.bin decreases over
development stages, indicating its core component status
and decreasing need for modifications.

• A significant spike in edits for .gitattributes at stage 5.
• A slow and steady drop in edits for README.md.
• An increase in edits to config.json during the middle stages

of development, followed by a gradual decline.
• Files such as special_tokens_map.json and tokenizer_con-

fig.json experience a marginal number of edits throughout
the entire development stage.
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Figure 8: Lifecycle of files edited
in commits
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Figure 9: Files Network Graph
Clustering

Therefore, the development lifecycle of the typical HF model is
characterized by an initial phase of active development and fine-
tuning, followed by a stabilization phase where fewer changes are
needed. This reflects the iterative process of model development,
where the initial focus is on getting the architecture and weights
right, followed by optimization and fine-tuning, and finally docu-
mentation and other supporting files. Additionally, Figure 9 illus-
trates the clustering derived from the Louvain algorithm applied to
a graph representing files that are commonly edited at the same time
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(for a higher resolution version, refer to the replication package).
This analysis identified four primary clusters: tokenizer-related files
(e.g., tokenizer.json, tokenizer_config.json), model and configuration
files (such as pytorch_model.bin, training_args.bin), training results
data (including examples like train_results.json, eval_results.json),
and a miscellaneous cluster featuring files such as README.md and
.gitattributes. These clusters represent groupings of files that are
frequently edited together at the same time.

Finding 2.4.1. Reduced edits in pytorch_model.bin indicate
a shift from initial development to stability, with changes
in README.md or config.json marking the transition from
setup to final tuning in model development.

Finding 2.4.2. The clustering analysis identifies file clusters
that represent files frequently edited concurrently (tokenizer,
model, training results, and miscellaneous files) highlighting
synchronized editing patterns and interdependencies.

4.2.5 Classification of Model Maintenance Using Commit
Data. Our k-means clustering algorithm segregated the ML models
into distinct maintenance categories based on their activity patterns
in the repository, resulting in two primary categories:

• High Maintenance Category: Models with active main-
tenance practices, characterized by a higher number of
commits, regular commit frequency, shorter intervals be-
tween commits, fewer days without commits, and a slightly
higher number of authors.

• Low Maintenance Category:Models with less frequent
maintenance activities, indicated by fewer commits, lower
frequency of commits, longer intervals between commits,
more days without commits, and fewer authors involved.

With 62,818 models classified as high maintenance and 319,477
models as lowmaintenance (83.5% vs 16.4% respectively) the classifi-
cation underscores the diverse nature of model maintenance within
the HF ecosystem. An analysis of the centroids for both clusters
provides quantitative insights into the maintenance behaviors:

Category
Num

Commits

Commit

Frequency

Avg Days

Between Commits

Max Days

Without Commits

Num

Authors

% Closed

Discussions

High Maintenance 28.7 8.0 8.0 170.7 1.5 17.3

Low Maintenance 3.0 0.6 61.2 255.9 1.1 0.1

Table 3: Mean Centroids of Maintenance Categories

The mean centroids clearly illustrate the distinction between
high and low maintenance models, with high maintenance mod-
els showing greater engagement and activity. In Figure 10, the
biplot derived from a Principal Component Analysis (PCA) visually
represents the separation between these two maintenance cate-
gories. This figure effectively represents the division of models into
high and low maintenance categories, with each dot representing a
model, and the positioning informed by the maintenance attributes.

Finding 2.5. K-means clustering categorized 16.4% of HF
models as ’High Maintenance’ and 83.5% as ’Low Mainte-
nance’, underscoring diverse maintenance practices and clear
distinctions in engagement, as reflected in the centroids.

num commits log

commit frequency log

avg time between commits logmax days without commits log

num authors log

percentage closed discussions

Maintenance Category

High maintenance

Low maintenance

Figure 10: Biplot of K-Means Clustering on Maintenance Features

4.2.6 How do various model characteristics differ between
maintenance levels? Our analysis revealed significant differences
in several model characteristics between high and low maintenance
categories. We summarize the findings in two tables: one for con-
tinuous variables analyzed using the Mann-Whitney U test and
another for nominal variables using the Z-test for proportions.

Variable High Maintenance Mean Low Maintenance Mean p-value

Popularity 0.00073 0.000029 <0.001

Likes 5.51 0.25 <0.001

Downloads 11,390.46 241.04 <0.001

Size (MB) 5,976,630.0 1,308,191.6 <0.001

Model Card Text Length 4,132.9 2,070.9 <0.001

Accuracy 0.8002 0.8202 0.13

F1 Score 0.754 0.7370 0.748

Dataset Size (MB) 48,672,083.7 33,105,320.8 0.12

Table 4: Mann-Whitney U Test Results for Continuous Variables

Variable High Maintenance Proportion Low Maintenance Proportion p-value

NLP 0.7303 0.6248 <0.001

Audio 0.0987 0.0798 <0.001

Computer Vision 0.0684 0.0499 <0.001

Multimodal 0.0886 0.0670 <0.001

Reinforcement Learning 0.0140 0.1784 <0.001

tf 0.0552 0.0222 <0.001

jax 0.0319 0.0208 <0.001

transformers 0.6965 0.3830 <0.001

pytorch 0.6473 0.3414 <0.001

Table 5: Z-Test for Proportions Results for Nominal Variables

The results indicate that models with high maintenance tend to
be more popular, have more likes and downloads, and are larger
in size compared to those with low maintenance. In fact, when we
select the leading author group identified in RQ1.3 and classify the
top 500 models that have the most authors in common with this
group, we find that 98% of these models fall into the high mainte-
nance category. This suggests that the concentration of popular
author groups also extends to a concentration of high maintenance
activities within specific author groups. Additionally, the model
card text length is significantly longer for high maintenance models,
suggesting more extensive documentation in this category.

In terms of nominal variables, the domains of NLP, Audio, Com-
puter Vision, and Multimodal showed a higher proportion for high
maintenance, whereas Reinforcement Learning was more prevalent
for low maintenance. For libraries, ’transformers’ and ’pytorch’
were predominantly used in high maintenance models, whereas
the others showed significant but less pronounced differences.
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Finding 2.6. High-maintenance models tend to be more
popular, larger, and better documented than their low-
maintenance counterparts, with a notable concentration of
high maintenance activities within specific author groups.

5 IMPLICATIONS
This study offers a comprehensive examination of the evolution
and maintenance practices within the HF community, providing
significant insights that can spearhead advancements in the ML
domain. These have relevant implications for both researchers and
practitioners, providing them with a deeper understanding of the
dynamics in model evolution that can inform best practices for
model maintenance and evolution in community-driven platforms.

5.1 Status and Evolution of Hugging Face (RQ1)
The evolutionary insights presented significant trends in model de-
velopment on HF, offering a predictive lens for the future trajectory
of ML research and applications. Our findings chart the progressive
details of model evolution, providing a valuable barometer for the
ML community’s direction.

• Predictive Trends for Strategic Alignment: By mapping
the growth patterns in model additions and framework us-
age (Finding 1.1 and 1.2), we provide a predictive foundation
for researchers and developers to strategically align their
efforts with future demands and community directions.

• Emphasis onCollaboration: The insights into authorship
dynamics (Finding 1.3 and Finding 2.6) indicate that high-
maintenance models, which are more popular and better
documented, often emerge from these collaborative multi-
author environments, emphasizing the impact of collective
efforts on model quality and visibility.

• Model Documentation as a Reflective Mirror: The
growing emphasis on generative AI in model cards, as seen
in Finding 1.4, underscores the dynamic development of ML
and the need for robust documentation. This evolving land-
scape underscores the necessity for robust documentation,
echoing Oreamuno et al. [38]’s observation of inadequate
documentation in many HF models and datasets. This is-
sue is compounded by Finding 2.5’s revelation of prevalent
low maintenance in models, aligning with Bhat et al. [39]’s
call for responsible, up-to-date documentation practices.
As ML models evolve in complexity, it is imperative that
their documentation maintains high standards of clarity,
completeness, and ethical considerations, enhancing ac-
countability and usability across applications.

5.2 Maintenance and Evolution of Models (RQ2)
Our analysis reveals significant variance in maintenance practices
across HF models, underscoring the need for systematic, collabora-
tive, and continuously refined maintenance approaches.

• Understanding File Edit Interdependencies: Finding
2.4.2 reveals how clustering analysis can highlight syn-
chronized editing patterns and interdependencies among
file types. This knowledge is valuable for anticipating and

managing linked changes in model files, which can stream-
line maintenance processes and minimize errors. Further-
more, if HF facilitated the retrieval of line-level change
data through its API, the analysis of file interdependencies
could be greatly enhanced. Zimmermann et al. [40] have
demonstrated the importance of mining version archives at
the line level. This granular approach could provide deeper
insights into ML model evolution.

• Lifecycle Planning: Understanding the typical lifecycle of
model development (Finding 2.4.1) offers practical benefits
for developers in optimizing their maintenance strategies.
For instance, the transition from frequent edits in pytorch_-
model.bin to adjustments in README.md or config.json can
be used as indicators to recognize when a model is shifting
from its development phase to stabilization and refinement.
This awareness enables developers to allocate resources
more efficiently, ensuring that the development resources
are used at the right stages of the model’s lifecycle, leading
to more efficient and effective model evolution.

• Refined Maintenance Categorization: The implementa-
tion of the maintenance classification, as revealed in Find-
ing 2.5, not only enables users to make more informed
choices by identifying models that are actively maintained
but also introduces the potential for a Long Term Support
(LTS) model in HF. This approach would categorize certain
models as LTS, indicating a commitment to longer-term
stability, regular updates, and support, enhancing trans-
parency and ensuring that users can rely on these models
for extended periods without significant changes disrupting
their projects. For developers, this structured framework
provides a clear roadmap for prioritizing maintenance tasks.

5.3 ML Systems vs. Traditional Repositories
The maintenance of ML models on HF presents a unique pattern
compared to the maintenance of traditional software systems. In
the realm of traditional software system development, such as
those found in repositories like GitHub, the focus typically lies
on bug fixes and feature additions. This involves version releases
and systematic testing cycles [41], reflecting a development para-
digmwhere changes are often driven by evolving user requirements
or efforts at software optimization.

In HF’s ML model development, we noted individual and collab-
orative efforts, highlighted by the varied nature of maintenance
activities. This variance is reflected in the distribution of commit
patterns, where perfective maintenance emerges as the dominant
approach (Finding 2.3). Such an approach, focusing on incremental
model improvements, contrasts with traditional software system
development seen in repositories like GitHub. In the HF context,
the maintenance of ML models prioritizes enhancing model perfor-
mance and aligning with evolving technological advancements.

This trend indicates a departure from the traditional software
maintenance paradigms. It reveals the need for methods and tools
specifically designed for the unique demands of ML model mainte-
nance. Such tools may include advanced version control systems
optimized for data and model tracking, as well as automated moni-
toring tools capable of detecting model drift or degradation. These
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tools and methodologies should align with the principles of con-
tinuous learning, model monitoring, and dynamic adaptation to
data changes, which are crucial for maintaining the quality and
relevance of ML models over time. The exploration of MLOps tools
such as DVC [42] and DagsHub [43], as discussed in Lanubile et al.
[44], showcases the potential in this area.

The implications of these insights extend beyond the HF com-
munity, affecting the broader field of ML. They underscore the
necessity for a paradigm shift in how ML models are conceptual-
ized andmaintained, potentially enhancing the efficiency, reliability,
and overall effectiveness of ML development in community-driven
platforms like HF.

6 THREATS TO VALIDITY
In this section, we discuss the potential threats to the validity of our
study and outline the mitigating actions we have taken to minimize
these threats.

Construct Validity: Although we have employed comprehen-
sive data collection and preprocessing methodologies, there is a
possibility that the data may contain inaccuracies, inconsistencies,
or missing values that could affect the results. This situation is
exacerbated by the absence of standardized reporting for metadata
on ML models. Moreover, to effectively measure constructs like
popularity, maintenance, and evolution, we use relevant indicators
and metrics. However, these might not fully capture the constructs’
complexity, indicating a need for further research and refinement.

Mitigation: We have implemented rigorous data cleaning and
preprocessing procedures. We have also cross-validated the data
obtained from the HF API with the HFCommunity dataset to ensure
consistency and completeness. For future studies, the implementa-
tion of model metadata extractors (e.g., [45]) could be considered
to enhance data quality further.

Internal Validity: Our classification of commits into correc-
tive, perfective, and adaptive types is based on a neural network
approach, which may introduce bias due to the training data or
model architecture used.

Mitigation: To mitigate this threat, we used a proven methodol-
ogy from previous research and performed a validation check to
ensure the accuracy and reliability of the commit classification. Sar-
war et al. [30] reports a test accuracy of 89%. We further manually
analyzed 125 commit messages along its classifications to check
the alignment of the results achieving 86% accuracy.

External Validity:Our study is based on data collected from the
HF platform, which may limit the generalizability of our findings to
other ML model platforms or communities. Additionally, our study
focuses on the HF models as of November 6, 2023, and the findings
may not be applicable to future developments on the platform.

Mitigation: Our methodology is robust and replicable, designed
to be applied to future datasets or similar platforms. We have pro-
vided a detailed methodology and a replication package to enable
validation of our findings with new data, ensuring the broader
applicability and relevance of our approach.

Reliability: Our study relies on a reproducible research method-
ology, where the data collection, preprocessing, and analysis pro-
cedures are clearly outlined. However, there is a possibility that

changes in the HF API or HFCommunity dataset structure could
affect the reproducibility of our study.

7 CONCLUSIONS
This study presented a detailed examination of the evolution and
maintenance of ML models on the HF platform, with a focus on two
central research questions. The results offer a detailed understand-
ing of the dynamics shaping model development and underscore
the importance of systematic maintenance and incremental im-
provement for long-term model efficacy.

We observed that the HF community is not only expanding in
terms of model quantity but also evolving through the adoption of
new frameworks and tags, reflecting shifts in focus and innovation
within the ML landscape, especially in the realm of generative AI.
The analysis unveiled a vibrant ecosystemwhere certainmodels and
tags gain prominence, indicative of the community’s responsiveness
to emerging trends and challenges in the field.

Moreover, our findings revealed that, while model development
on HF encompasses both individual and collaborative efforts, there
is a significant variance in the activity of model maintenance, as
seen in the diverse distribution of commit patterns. Notably, perfec-
tive commits dominate, suggesting a continued focus on refining
and optimizing models. The lifecycle of commits and the editing
patterns of specific files further highlight different phases of model
development, with an initial active development stage that transi-
tions into stability and efficiency optimization in core components.

Additionally, we propose a framework for classifying models by
their maintenance status, which could be instrumental for users
in selecting models that align with their reliability and support
requirements. Encouraging transparency in maintenance logs is
essential in fostering a trust-based relationship between developers
and the community. Moreover, the study highlights the unique
maintenance dynamics of ML models on HF, diverging from tradi-
tional software paradigms with a focus on perfective maintenance,
needing tools and methods tailored to ML’s evolving needs.

For future work, developing advanced tools for automated and
predictive maintenance to proactively address potential model is-
sues is one crucial area. Investigating the social dynamics of model
development can shed light on collaborative patterns, author roles,
and best practices within the community. Extending this study
to other ML platforms and comparing maintenance practices will
provide insights into the broader ML development landscape.

In closing, this paper calls for concerted efforts towards analyzing
the growth trajectory of ML model repositories while emphasizing
the criticality of maintenance practices. We urge for enhanced
transparency, structuredmaintenance frameworks, and community-
wide standards that will propel the ML community towards greater
heights of excellence and innovation.
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