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ABSTRACT
Creating and collecting labeled data is one of the major bot-
tlenecks in machine learning pipelines and the emergence of
automated feature generation techniques such as deep learn-
ing, which typically requires a lot of training data, has fur-
ther exacerbated the problem. While weak-supervision tech-
niques have circumvented this bottleneck, existing frame-
works either require users to write a set of diverse, high-
quality rules to label data (e.g., Snorkel), or require a la-
beled subset of the data to automatically mine rules (e.g.,
Snuba). The process of manually writing rules can be te-
dious and time consuming. At the same time, creating a
labeled subset of the data can be costly and even infeasi-
ble in imbalanced settings. This is due to the fact that a
random sample in imbalanced settings often contains only a
few positive instances.

To address these shortcomings, we present Darwin, an
interactive system designed to alleviate the task of writing
rules for labeling text data in weakly-supervised settings.
Given an initial labeling rule, Darwin automatically gener-
ates a set of candidate rules for the labeling task at hand,
and utilizes the annotator’s feedback to adapt the candidate
rules. We describe how Darwin is scalable and versatile. It
can operate over large text corpora (i.e., more than 1 million
sentences) and supports a wide range of labeling functions
(i.e., any function that can be specified using a context free
grammar). Finally, we demonstrate with a suite of exper-
iments over five real-world datasets that Darwin enables
annotators to generate weakly-supervised labels efficiently
and with a small cost. In fact, our experiments show that
rules discovered by Darwin on average identify 40% more
positive instances compared to Snuba even when it is pro-
vided with 1000 labeled instances.
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1. INTRODUCTION
Today, many applications are powered by machine learn-

ing techniques. The success of deep learning methods in
domains such as natural language processing and computer
vision is further fuelling this trend. While deep learning
(and machine learning in general) can offer superior perfor-
mance, training such systems typically requires a large set
of labeled examples, which is expensive and time-consuming
to obtain.

Weak supervision techniques circumvent the above prob-
lem to some extent, by leveraging heuristic rules that can
generate (noisy) labels for a subset of data1. A large volume
of labels can be obtained at a low cost this way, and to com-
pensate for the noise, noise-aware techniques can be used
for further improving the performance of machine learning
models [12, 6]. However, obtaining high-quality labeling
heuristics remains a challenging problem. A subset of ex-
isting frameworks, with Snorkel [12] being the most notable
example, rely on domain experts to provide a set of label-
ing heuristics which can be a tedious and time-consuming
task. In contrast, other frameworks aim to automatically
mine useful heuristics using further provided supervision.
For instance, Snuba [17] circumvents dependence on domain
experts by requiring a labeled subset of the data, and then
utilizing it to automatically derive labeling heuristics. Bab-
ble labble is another example which asks expert to label a
few examples and explain their choice (in natural language).
This explanation is used to derive labeling heuristics. While
these approaches have been quite effective in certain set-
tings, we elicit their limitations with the following real-world
example on text-data.

Example 1. Consider a corpus that are questions sub-
mitted by a hotel’s guests to the concierge. Our goal is to
build an intent classifier to find (and label) the set of ques-
tions asking for directions or means of transportation from
one location to another. Below is a sample of messages from
the corpus with positive instances marked as green.

S1  What is the best way to get to SFO airport? +
S2  Is there a bart from SFO to the hotel? +
S3  What is the best way to check in there? -
S4  Is Uber the fastest way to get to the airport? +
S5  Would Uber Eats be the fastest way to order? -
S6  What is the best way to order food from you? -

1To be more concise, we refer to heuristic rules simply as
heuristics or rules as well throughout the paper.
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Figure 1: Comparing weak-supervision frameworks

Relying on domain experts to provide labeling heuristics
for tasks such as the one presented in Example 1 is a common
approach but it has a number of shortcomings:

• It is time consuming. Annotators must be familiar with
the rule language (e.g., Stanford’s Tregex or AI2’s IKE
language). Moreover, they need to be acquainted with
the dataset to specify useful rules, i.e., rules that label
a reasonable number of instances with a small amount of
noise. This is normally done with trial-and-error and fine-
tuning of the rules on a sample of the corpus, which can
be quite tedious.

• Oftentimes, some useful rules remain undiscovered.
This is because annotators may miss important keywords
or possess limited domain knowledge. For example, the
word ‘bart ’ (which refers to a transportation system in
California) is clearly useful for the task in Example 1.
However, annotators may miss the important keyword
‘bart’ or they may not even know what ‘bart’ is (especially
those who are not from the area).

• It yields rules with overlapping results. If multiple an-
notators work on writing rules independently, they are
likely to end up with identical or similar rules. since
Hence, the number of distinct labels obtained does not al-
ways grow linearly with the number of annotators, which
is rather inefficient.

The alternative approach would be to automatically mine
useful heuristics with systems such as Snuba or Babble lab-
ble. Both systems require a set of labeled instances (accom-
panied by natural language explanations in case of Babble
labble) which can be costly and oftentimes infeasible to col-
lect in imbalanced settings. For instance while Example 1
shows a balanced number of positive and negative instances,
in practice, the positive instances often make up only a tiny
fraction of the entire corpus. Hence, labeling a random
sample would not be sufficient to obtain enough positive
instances. Consequently, automatically inferring heuristic
rules is not feasible using the few discovered positive in-
stances.

To mitigate the above issues, we present Darwin, an
adaptive rule discovery system for text data. Figure 1 high-
lights how Darwin compares with other state-of-the-art weak-
supervision frameworks. Compared to Snuba, Darwin re-
quires far less labeled instances. In fact as we show in our
experiments, a single labeling rule (or a couple of labeled
instances) would be sufficient for Darwin. Compared to
Snorkel and Babble labble, Darwin requires a lower degree

Figure 2: Sample query to annotators.

of supervision by domain experts. More explicitly, Darwin
requires experts to simply verify the suggested heuristics
while Snorkel requires them to manually write such rules
and Babble labble requires them to provide explanations for
why a particular label is assigned to a given data point.

Given a corpus and a seed labeling rule, Darwin identifies
a set of promising candidate rules. The best candidate rule
(along with a few example instances matching the rule) is
then presented to the annotator to confirm whether it is
useful for capturing the positive instances or not. Figure 2
presents an example of this step for the intent described
in Example 1. The annotator is presented with examples
that satisfy the rule and asked to answer whether the rule
is useful for the intent (a YES/NO question). Based on
the response, Darwin adaptively identifies the next set of
promising candidate rules. This interactive process, where
rules are illustrated with examples, facilitates annotators
to identify the most effective set of rules without the need
to fully understand the corpus or the rule language. Our
contributions are as follows.

• Darwin supports any rule language that can be specified
using a context-free grammar. Therefore, it can generate
a wide range of rules, from simple phrase matching to
complex conditions over the dependency parse trees of
the sentences.

• Darwin can effectively identify rules over a large text cor-
pora, even when the number of candidate rules is expo-
nentially large. In fact, we show that verifying 50 heuris-
tics suggested by Darwin is enough to achieve a F1-score
of 0.80. Furthermore, we present theoretical results on
approximation guarantees of Darwin.

• Darwin does not require annotators to be familiar with
the rule language. By analyzing the similarity and the
overlap between the set of sentences matching different
rules, Darwin automatically surface patterns in data and
also supports parallel discovery of rules by asking different
annotators to evaluate different rules.

• We demonstrate how Darwin can be used for a variety of
labeling tasks: classify intents, find sentences that men-
tion particular entity types, and identify sentences that
describe certain relationships between entities (i.e., rela-
tion extraction).
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In the following sections, we define our problem, describe
Darwin, and demonstrate its effectiveness and efficiency
through a suite of experiments. Specifically, we show that
Darwin outperforms other baseline approaches in its abil-
ity to generate a larger set of labeled examples by asking a
limited number of questions.

2. PRELIMINARIES & PROBLEM DEFINI-
TION

In a nutshell, Darwin takes as input an unlabeled cor-
pus of sentences along with an initial seed labeling heuris-
tic (which is assumed to generate at least two positive in-
stances). Darwin then identifies promising candidate label-
ing heuristics. Darwin leverages an oracle to verify whether
a particular candidate heuristic is effective at capturing posi-
tive instances or not. Finally, the set of discovered heuristics
are forwarded to Snorkel [12]2 to train a high precision clas-
sifier. Before describing Darwin’s rule discovery pipeline in
detail, we provide a formal definition of labeling heuristics
along with a description of an oracle.

Heuristic search space. Naturally, labeling heuristics can
be of different types with distinct semantics. For example,
a heuristic may check for certain phrases in a sentence [17]
or it may enforce some conditions on the parse tree [19] and
POS tags of a sentence. In Darwin, the space of possible
heuristics are specified using a collection of Heuristic Gram-
mars, where each grammar describes a particular type of
labeling heuristics. These concepts are formally defined as
follows.

Definition 1 (Heuristic Grammar). A Heuristic Gram-
mar G is a Context-Free Grammar (CFG). Recall that a
CFG consists of a collection of derivation rules.

For a given heuristic grammar G, we define labeling heuris-
tics as follows.

Definition 2 (Labeling heuristic). A labeling heuris-
tic r is a derivation of the grammar G. We use Cr to denote
the set of sentences in the corpus that satisfy the heuristic
r, and refer to |Cr| as it’s coverage.

To further clarify the above definitions, let us consider a
simplified regular expression grammar called TokensRegex.
TokensRegex captures all regular expressions over tokens
considering ‘+’ and ‘*’ operators3. This grammar can be
formally writen using a CFG grammer as shown below.

Example 2 (TokensRegex Grammar). Let V denote
the set of all possible words. The regular expression grammar
on the tokens comprises of the following derivation rules.

A→ vA (∀v ∈ V)
A→ A+A
A→ A ∗A
A→ ε

The above TokensRegex grammar allows for a regular expres-
sion of words as a candidate labeling heuristic. For example,

2Note that Snorkel both provides a framework for writing la-
beling rules as well as tools for training noise-aware models.
Here we refer to the latter.
3We use TokenRegex to explain Darwin’s pipeline. Dar-
win functionality is not restricted to this grammar and we
discuss more complex grammar.

Uber 
PROPN

is 
VERB

way 
NOUN

 the 
DET

 best 
ADJ

 to 
ADP

 hotel 
NOUN

 our 
ADJ

Figure 3: An example of a parse tree.

this grammar generates heuristics such as ‘best way to’ or
‘shuttle’ as well as less meaningful heuristics such as ‘shuttle
is airport’ as candidates for the task described in Example 1.
A sentence satisfies the heuristic if it contains that phrase.
The sentences s1, s3 and s6 in Example 1 satisfy the heuris-
tic r = ‘best way to’, hence Ch = {s1, s3, s6}.

As a default setting, Darwin comprises of two different
grammars (a) TokensRegex (b) TreeMatch, with the abil-
ity to plug in more heuristic grammars as long as they are
context-free. While TokensRegex is capable of capturing
lexical patterns and phrases, it fails to capture syntactic
patterns and pattern over parse trees. TreeMatch grammar
captures such patterns to identify more complex and generic
heuristic functions.

Definition 3 (TreeMatch Grammar). Let V denote
the set of terminals comprising of all the tokens and Part-of-
Speech (POS) tags [11] present in the corpus. E.g., NOUN,
VERB, etc.
Derivation Rules: The grammar has three fundamental
operations that make up a heuristic, namely And (∧), Child
(/), and Descendant (//). The symbol ‘a/b’ implies that
terminal ‘b’ should be a child of terminal ‘a’ in the depen-
dency parse tree. The symbol ‘a//b’ implies that terminal
‘b’ should be a descendant of terminal ’a’ in the parse tree.
Given that, the derivation rules of the grammar are:

A → /A

A → A∧A
A → //A

A → v (∀ v ∈ V)

It is important to mention that the complexity of heuris-
tics that can be specified using the TreeMatch grammar ex-
ceeds what rule-mining frameworks such as Snuba or Babble
labble can capture.

Oracle Abstraction. Finally, we formalize the feedback
that we may either obtain from a single annotator, a group
of annotators, or a crowd-sourcing platform using the notion
of Oracles as follows.

Definition 4 (Oracle). An Oracle O is a function
which given a heuristic r and a few samples from its cov-
erage set Ch outputs a YES/NO answer indicating whether
or not r is adequately precise.

An Oracle plays the role of a perfect annotator who always
answers the questions correctly. In practice, annotators may
provide incorrect answers (as we show in our experiments),
but the notion of an oracle enables us to provide insights
into the theoretical aspects of our problem.

Problem statement. We are now ready to formally define
our problem. Given a labeling task, our goal is to find a set
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R of labeling heuristics such that the union of the coverage
of the heuristics in R, denoted as P =

⋃
r∈R Cr, would have

a high recall (i.e., to contain a high ratio of the positive in-
stances in the corpus). We would like to maximize the recall
of set P without posing too many queries to the oracle. We
empirically observed that users label a heuristic as precise
only when the heuristic has precision at least 0.8. Hence,
in this paper, we do not focus on optimizing the precision
of heuristics, which we can also rely on various de-noising
techniques from the weak supervision literature [12].

Problem 1 (Maximize Heuristics Coverage). Given
a corpus S, a seed labeling function r0, an oracle O, and a
budget b, find a set R of labeling heuristics using at most b
queries to the oracle, such that the recall of set P , i.e., the
union of the coverage of heuristics in R, is maximized.

Lemma 1. The Maximize Heuristics Coverage prob-
lem is NP-hard.

Proof. We show the hardness of our problem by reduc-
ing the maximum-coverage problem to an instance of our
problem. Given a collection of sets A = {A1, A2, . . . , An}
and a budget b, the maximum-coverage problem aims to find
b sets from A such that the size of their union is maximized.
Given an instance of the maximum-coverage problem, we
create an instance of our problem as follows. For each set
Ai, we define a heuristic ri with coverage set Cri = Ai and
mark all the instances as positives. Consequently, the oracle
O would always respond with a Yes as all the heuristic are
perfectly precise. Now, it is easy to see that the coverage
of set P in our setting is equivalent to the coverage of se-
lected sets in the maximum-coverage problem. As a result,
if our heuristic discovery problem can be solved in poly-
nomial time, then the corresponding sets would form the
optimal maximum-coverage solution. Hence, our problem is
also NP-hard.

Note that while we focus on maximizing the recall, it is
also useful to report the performance of the classifier that
is trained using our weakly-supervised labels. Therefore, in
our experiments, we also record the F-score of our trained
classifier to provide a better evaluation of Darwin.

3. THE Darwin SYSTEM
In this section, we describe the architecture of Darwin

which is illustrated in Figure 4. Darwin operates in multi-
ple phases that aim to identify diverse set of heuristics used
to identify positives. The pipeline is initialized with a seed
labelling function or a couple of positive sentences. Darwin
learns a rudimentary classifier using these positive sentences
and the classifier is refined with evolving training data. In
order to identify new heuristics Darwin leverages the fol-
lowing properties. (i) The generalizability of the trained
classifier helps guide the search towards semantically simi-
lar heuristics. For example, on identifying the importance
of ‘bus’ as a heuristic, Darwin identifies ‘public transport’
as another possibility due to their related semantics4. (ii)
Local structural changes to the already identified heuristics
helps identify new heuristics eg. consider ‘What is the best

4This generalization is possible via word embeddings which
are provided as an input to the classifier. We provide more
details of our classifier in the experiments.

Algorithm 1 Darwin

Input: Input Corpus S, seed heuristic r0, budget b
Output: Collection of heuristics R, Set of positive instances P ,

Classifier C
1: I ← generate index(S)
2: Q← φ
3: P ← coverage(r0)
4: C,P ′ ← train classifier(P, {r0}, S)
5: while |Q| ≤ b do
6: H ← generate hierarchy(S, P ′, I)
7: q ← traversal (H,P,Q,C)
8: if oracle query(q) then
9: P ← P ∪ coverage(q)

10: C,P ′′ ← train classifier(R,P, S)
11: P ′ ← P ′′ \ P ′
12: H ← update scores(H)
13: Q← Q ∪ {q}
14: return R,P,C

way to the hotel?’ as input seed sentence, Darwin con-
structs local modifications by dropping and adding tokens
(derivation rules in general) and identifying a new heuristic
‘shuttle to the hotel’. Darwin leverages these intuitions to
adaptively refine the search space and simultaneously learn
a precise classifier with high coverage over the positives.

Before describing the architecture, we define a data struc-
ture that is critical for efficient execution of Darwin. All
candidate heuristics that are considered by Darwin are or-
ganized in the form of a hierarchy. This hierarchy captures
subset/superset relationship among heuristics. Heuristics
with higher coverage are placed closer to the root and the
ones with lower coverage are closer to the leaves. For ex-
ample. ‘best way to the hotel’ is a subset of ‘best way to’
and will be its descendant. One of the key properties of this
hierarchical structure is that if a heuristic r is identified to
capture positives, then any of its subset (descendant in the
hierarchy) does not capture any new positive. This data
structure has O(1) update time to identify the subsets of a
heuristic. Additionally, it is helpful for efficient execution of
local structural changes to any heuristic. All these benefits
will be discussed in detail in the later sections.

Algorithm 1 presents the pseudo code of the end-to-end
Darwin architecture. Darwin’s input consists of the corpus
to be labeled, a collection of heuristic grammar, and one
(or more) seed labeling function(s). Alternatively, a set of
positive instances can be provided instead of seed labeling
heuristics. The output of Darwin is the set of generated
heuristics, the positive instances that are discovered, and a
classifier that is trained using the labeled data.

Before the heuristic-discovery phase begins, Darwin cre-
ates an index over the input corpus for fast access to the
sentences that satisfy a given heuristic (more details in Sec-
tion 3.1). The heuristic-discovery phase is an iterative pro-
cess where Darwin interacts with annotators and uses their
feedback to identify new candidates and ask further queries.
In a nutshell, each iteration consists of the following steps.
First, the Candidate Generation component generates a small
set of promising candidate heuristics (from the space of all
possible heuristic functions), and organizes them in the form
of a hierarchy H (line 6) with the most generic functions at
the top and the stricter ones at the bottom. We will describe
shortly how H is generated and used to prune less effective
heuristics. Once the hierarchy is built, Darwin’s Hierarchy
Traversal component carefully navigates and evaluates the
heuristics in the hierarchy to find the best candidate (line
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Figure 5: Examples of derivation sketches
7). The best candidate is then presented to the annotator
(line 8). Finally, the updated classifier and scores of heuris-
tics are sent back to hierarchy generation to identify new
candidates and perform traversal for the next iteration. We
describe the details of these components next.

3.1 Indexing the Input Corpus
Darwin creates an index for the input corpus to provide

fast access to sentences that satisfy certain heuristics. This
index aims at constructing a space efficient representation
of each sentence in the corpus for efficient execution of sub-
sequent steps involving traversal through the various candi-
date heuristics. This hierarchical structure of this index is
very similar to that of a trie.

Given a collection of heuristic grammar {G1, . . . , Gt} and
a sentence s, one can enumerate the set of all possible heuris-
tics ofGi, generated using a fixed number of derivation rules,
that s satisfies. For example, using the TokensRegex gram-
mar, the set of all heuristics that a sentence s satisfies is
the set of all regular expressions that correspond to s. We
organize the set of heuristics matching a sentence s into
a structure called the Derivation Sketch, which summarizes
the derivations of all heuristics that match s. Figure 5 shows
(parts of) the derivation sketch for sentences s1 and s4 from
Example 1 based on the TokensRegex grammar.

A derivation sketch is built for each sentence in the cor-
pus. After this, we create an index I which is a compact
representation of all heuristics that are satisfied by at least
one sentence in the corpus. Each node in I represents a
heuristic labeling function and stores the number of sen-
tences that satisfy it, pointers to the children in the index,
and an inverted list that points to sentences that satisfy the
heuristic.

Index (s1, s4)

…best 
Count = 1 

{s1}

way 
Count = 2 

{s1, s4}

to 
Count = 2 

{s1, s4}

get 
Count = 2 
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{s4}

best way 
Count = 1 

{s1}

way to 
Count = 2 

{s1, s4}

to get 
Count = 2 

{s1, s4}

fastest way 
Count = 1 

{s4}

…

…

Figure 6: An example of index creation process

The index I is created by merging the derivation sketch of
sentences, one at a time. The index is first initialized with
the derivation sketch of the first sentence. Thereafter, for
every new sentence s, the derivation sketch of s is merged
into I as follows. The root node of the sketch and the root
node of I is merged, and then all nodes (starting form the
merged root) are considered in a breadth-first fashion; The
children of the node under consideration which are derived
using the same derivation rule are merged together. For
every node that gets merged, the count of the merged node
is increased by one. Also, the inverted list at that node gets
updated to include the new sentence. Figure 6 shows the
index built from derivation sketches of s1 and s4 in Figure 5.
Note that the time taken to construct the index is linear in
the number of sentences since we have limited the number of
derivation rules possible to generate a heuristic. The process
is also highly parallelizable as index structures for different
parts of the corpus can be created independently and then
merged. This index also has a linear update time complexity
for adding the derivation sketch of a new sentence.

TreeMatch Grammar: This grammar has more opera-
tors as compared to TokensRegex and can generate expo-
nentially more candidate heuristics. The derivation sketch
can be created as explained by enumerating all sequence of
derivation rules up to a fixed number of steps. However, a
more compact derivation sketch for the TreeMatch grammar
is simply the dependency parse tree of the sentence, as we
can use it to quickly check whether a heuristic matches the
parse tree or not [19]. Figure 3 shows the dependency parse
tree of a sentence which can serve as its derivation sketch
as well. Given the exponentially many candidate heuristics
generated by this grammar, the candidate generation step
is crucial for ignoring useless heuristics and thereby helping
the subsequent stages to focus on meaningful heuristics. We
evaluate the performance of Darwin with this grammar in
the next section.

3.2 Heuristic-Hierarchy Generation
As mentioned earlier, the number of possible heuristics

under a given grammar G is often exponential in the size
of dictionary. The task of the heuristics-hierarchy genera-
tion component is to generate a manageable set of promising
candidate heuristics from the space of all possible heuristics
and organize the generated candidate heuristics in a hierar-
chy that captures the subset/superset relationship between
the heuristics. Specifically, the hierarchy generation process
consists of the following steps. First, the Candidate Genera-
tion step generates a subset of possible heuristics that have
high coverage over the set of positive instances discovered
so far. This algorithm operates in a greedy best-first search
mechanism to identify valuable candidates. These heuristics
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Algorithm 2 Candidate-heuristic Generation

Input: Index I, Set of positive instances P , Number of desired
heuristics k

Output: Collection of heuristics R
1: R← {∗}, recentHeuristic← ∗, candidates← φ
2: while |R| ≤ k do
3: candidates← candidates ∪ Children(recentHeuristic, I)
4: sortedCandidates← CoverageSort(candidates, P )
5: recentHeuristic← sortedCandidates[0]
6: candidates← candidates.remove(recentHeuristic)
7: R← R ∪ recentHeuristic

8: return R

are promising as they already have some overlap with the
existing positive instances. Next, these candidates are ar-
ranged in the form of a hierarchy along with subset-superset
edges between them. We describe these steps in detail next.

3.2.1 Candidate Generation
The candidate generation step uses the index I to gener-

ate a set of heuristic labeling functions with high coverage
over the set of positive instances P that are discovered so
far by Darwin. Note that heuristics that (at least partially)
cover the set of discovered positive instances, are likely to
be good heuristics and help detect more positive instances.
To efficiently find such heuristics, we rely on one of the in-
teresting properties of index I; Recall that the count of a
node u ∈ I refers to the total number of sentences that
contain the tokens along the path from the root to u in
their derivation sketches. As descendant nodes correspond
to stricter heuristics, the coverage of a heuristic correspond-
ing to a node is never less than the coverage of any of its
descendants in the index. Thus we use a greedy algorithm
to identify a collection of diverse heuristics that have high
coverage over the set of positive instances P .

Algorithm 2 generates candidate heuristics by exploiting
the property described above. The set of candidate heuris-
tics is initialized with heuristic ‘*’ which refers to the root
of index I. This heuristic matches all possible sentences in
the corpus. In each iteration, the algorithm adds the chil-
dren of the previous iteration’s best candidate heuristic to
the candidate list (line 3). The candidates are then sorted
in decreasing order of coverage over the set P (line 4). The
candidate with the highest coverage is removed from the
candidate list and appended to list of final results R (lines
6-7). This process is repeated until there are k heuristics in
R. Note that the time complexity of this greedy algorithm
is linear in the number of candidates generated.

Other constraints can also be added to the candidate-
heuristic generation phase to ensure that the generated heuris-
tics satisfy those criteria. For example, Darwin can apply
heuristics to ensure that the candidate heuristics are diverse
in terms of the set of derivation rules used to derive the
heuristic, their level in the index I, and the set of instances
they cover. Some of these heuristics help Darwin avoid
having to evaluate many similar candidate heuristics.

Hierarchical Arrangement and edge discovery. The
candidates returned by Algorithm 2 have high coverage over
the positives (discovered so far). This component iterates
over the generated heuristics to arrange them into a hier-
archy H following the same parent/child relationship that
index I captures5 and an edge is added between them.
5heuristic r1 is a child of r2 if it can be obtained by applying
a derivation rule to r2.

This hierarchical arrangement of heuristics is followed by
a cleanup to get rid of heuristics that do not add any new
positive sentences than the ones already identified. The goal
of cleanup is to improve the efficiency and space complexity
of Darwin as the traversal component will never query a
heuristic that does not add any new positives.

3.3 Hierarchy Traversal
The result of the heuristic-hierarchy generation is a hi-

erarchy H of promising heuristics. The hierarchy traversal
module determines which heuristic in the hierarchy is the
best heuristic to be submitted to the oracle.

We present three hierarchy traversal techniques: LocalSearch,
UniversalSearch, and HybridSearch. At a high level, LocalSearch
relies on the hierarchy structure to select the next best can-
didate from the immediate neighborhood of heuristics veri-
fied by the oracle in the past. In contrast, UniversalSearch
ignores locality constraints and selects the heuristic with
maximum benefit globally.

Finally, the HybridSearch traversal combines the first two
techniques to find the next best heuristic. The HybridSearch
traversal is more robust than LocalSearch and UniversalSearch.
All three techniques work in an iterative fashion, and in each
iteration, the criteria for selecting a heuristic to be sent to
the oracle is based on how beneficial the heuristic is, which
we elaborate next.

Benefit of a heuristic (r): The benefit of a heuristic r
is the expected gain in the positive set P upon choosing
r. More formally, the benefit is quantified as

∑
s∈Cr\P ps,

where ps is the probability of sentence s being a positive
instance. In Darwin, these probability values are estimated
by training a classifier6 using the set of positive instances
discovered so far and sampling random instances from the
corpus as negatives. The probability estimates improve as
the system iteratively discovers more heuristics and the clas-
sifier is re-trained with more positive training examples.

We describe our three traversal techniques next.

3.4 LocalSearch
LocalSearch traversal algorithm (Algorithm 3) benefits

from the local hierarchy structure around the heuristics al-
ready identified as useful by the oracle to identify the next
best heuristic for querying. Specifically, LocalSearch main-
tains a set of candidate heuristics, and selects the most ben-
eficial heuristic r from the candidates. If the oracle confirms
that r is adequately precise, then it adds r’s parents into the
candidate set as they are generalizations of r and might be
helpful at capturing more positive instances. However, if
the oracle labels r as a noisy heuristic, LocalSearch adds
the children of r to the candidate set instead with the hope
that a specialized version of heuristic r might be less noisy.
LocalSearch is simple and efficient at utilizing the struc-

ture of the hierarchy to find promising heuristics to submit
to the oracle. Since the algorithm only explores the local
neighborhood of the queried candidates, it has a time com-
plexity of O(dt), where d is the maximum degree of an in-
ternal node and t is the number of iterations the algorithm
is running for. However, a disadvantage of LocalSearch

is that it may require many traversal steps in cases where
the initial seed heuristic is quite different from other precise
heuristics the system aims to discover. Also, it does not

6Any short text classifier would be ideal for this task.
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Algorithm 3 LocalSearch Traversal

Input: heuristic hierarchy H, Seed heuristic r0
Output: Collection of positive instances P , Collection of heuris-

tics R
1: QueryCount← 0
2: R← {r0}, P ← Cr0 , C ← TrainClassifier(P )
3: localCandidates← {r0}
4: while QueryCount < b do
5: r ← GetMostBeneficialCandidateheuristic(localCandidates, C)

6: QueryCount← QueryCount+ 1
7: if OracleResponse(r) is YES then
8: R← R ∪ r, P ← P ∪ Cr
9: localCandidates← (localCandidates \ {r})∪Parents(r)

10: C ← TrainClassifier(P )
11: else
12: localCandidates← (localCandidates\{r})∪Children(r)

13: return P,R

exploit the similarity and the overlap between the coverage
sets of different heuristics. The UniversalSearch algorithm,
which we describe shortly, addresses these shortcomings by
utilizing a holistic view of the hierarchy.

Efficient Implementation. Since the LocalSearch traver-
sal only explores a node’s immediate parents/children, it
does not require the entire hierarchy apriori. Hence, in its
implementation, we can skip the heuristic-generation com-
ponent and expand the hierarchy on the fly based on the
oracle’s feedback.

3.5 UniversalSearch
The UniversalSearch algorithm (see Algorithm 4) eval-

uates all heuristics present in the hierarchy to identify the
best heuristic. In each iteration, UniversalSearch omits
any heuristic for which the benefit per instance is smaller
than 0.5, i.e. majority of the instances in Cr are expected
to be negatives. Among the remaining heuristics, it chooses
the heuristic with maximum benefit to submit to the or-
acle. Based on oracle’s feedback, it re-trains the classi-
fier if new positives were discovered or else it continues
to query the next best heuristic to the oracle. Note that
UniversalSearch captures the best candidates irrespective
of the hierarchy structure.

The strength of UniversalSearch is in its capability to
identify semantic similarity between heuristics and their match-
ing instances even if they are far apart in the hierarchy.
However, it has the following shortcomings: (1) compared
to LocalSearch, it is inefficient as it iterates over all heuris-
tics in the hierarchy to identify the best candidate, and (2)
in absence of enough positive instances, the trained classi-
fier is likely to overfit and not generalize well to other precise
heuristics. In such cases, UniversalSearch fails to exploit
the structure of the hierarchy to at least find heuristics that
are structurally similar to the seed heuristics.

We describe the HybridSearch algorithm next, which com-
bines the strengths of UniversalSearch and LocalSearch.

3.6 HybridSearch
HybridSearch (See Algorithm 5) combines the two previ-

ous traversal techniques by maintaining a list of local can-
didates and a list of universal candidates, and imitating the
strategy of the both traversal algorithms. Starting from
the UniversalSearch strategy, the HybridSearch algorithm
queries candidate heuristics (with a benefit per instance
above 0.5) to the oracle. If the algorithm fails to find a

Algorithm 4 UniversalSearch Traversal

Input: heuristic hierarchy H, Seed heuristic r0
Output: Collection of positive instances P , Collection of heuris-

tics R
1: QueryCount← 0
2: R← {r0}, P ← Cr0 , C ← TrainClassifier(P )
3: universalCandidates← {r : r ∈ H}
4: C ← TrainClassifier(P )
5: while QueryCount < b do
6: r ← GetMostBeneficialCandidate(universalCandidates, C)

7: QueryCount← QueryCount+ 1
8: if AvgBenefit(r) ≤ 0.5 then continue
9: if OracleResponse(r) is YES then

10: R← {r0}, P ← Cr0
11: C ← TrainClassifier(P )
12: universalCandidates← universalCandidates \ {r}
13: return P,R

Algorithm 5 HybridSearch Traversal

Input: heuristic hierarchy H, Seed heuristic r0
Output: Collection of positive instances P , Collection of heuris-

tics R
1: universalMode← True, attempt← 0
2: R← {r0}, P ← Cr0 , C ← TrainClassifier(P )
3: localCands← {r0}, universalCands← {r : r ∈ H}
4: QueryCount← 0
5: while QueryCount < k do
6: if attempt ≥ τ then
7: universalMode← not universalMode
8: attempt← 0
9: attempt← attempt + 1

10: candidates = universalCands if universalMode else localCands

11: QueryCount← QueryCount+ 1
12: r ← GetMostBeneficialCandidateheuristic(candidates, C)
13: if universalMode and AvgBenefit(r) ≤ 0.5 then continue

14: if OracleResponse(r) is YES then
15: R← R ∪ r, P ← P ∪ Cr
16: C ← TrainClassifier(P )
17: localCands← localCands \ {r} ∪ Parents(r)
18: else
19: localCandidates← localCandidates \ {r} ∪ Children(r)
20: universalCands← universalCands \ {r}
21: return P,R

precise heuristic within a fixed number of attempts, then
it switches to the LocalSearch strategy. Similarly, if the
LocalSearch strategy has no success within a fixed number
of attempts, the traversal toggles to the UniversalSearch

strategy. The switch between the two strategies is decided
based by a parameter τ (by default 5) which denotes the
number of unsuccessful attempt before the switch happens.
Clearly, higher values of τ discourage switching between the
two strategies.

Our empirical evaluation shows that HybridSearch formed
by combining UniversalSearch and LocalSearch strate-
gies, runs well on all types of datasets even when the other
two traversal algorithms struggle to discover high-quality
heuristics. In short, if the trained classifier is noisy (due to
lack of positive instances), HybridSearch exploits the struc-
ture of the hierarchy to search for precise heuristics. Simi-
larly when no precise heuristics are found by LocalSearch, it
uses UniversalSearch’s ability to generalize to other heuris-
tics.

3.7 Score Update
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After a query is submitted to the oracle, Darwin passes
the feedback to the score update component to (1) re-train
the classifier, (2) re-evaluate the scores of all heuristics in
the hierarchy, and (3) update the set of positive instances
(if feedback is positive) and signal the hierarchy generation
component to generate new candidate heuristics to be added
to the hierarchy.

3.8 Theoretical Analysis
In this section we analyze the ability of UniversalSearch

hierarchy traversal in identifying positive sentences within
a query budget b. For this analysis, we consider a sim-
ple model capturing how positive and negative instances are
scored by a classifier. An ideal classifier assigns a score of
1 to positives and 0 to negatives. However in practice, the
scores follow a different distribution which we model as fol-
lows. Let P ∗ denote the collection of positive sentences in
the corpus of sentences S. We assume that a reasonable
classifier assigns to a positive sentence s ∈ P ∗ a score larger
than θ ≥ 0.5 with probability β, and less than 1 − θ other-
wise. Similarly, the score of a negative sentence s ∈ S \P ∗ is
above θ with probability β′. Naturally, for a classifier is bet-
ter than random β is larger then β′. Under this model, we
can show that the set of heuristics R and the corresponding
positive set P identified by UniversalSearch are constant
approximation of the optimal solution.

We also make a few assumptions about the hierarchy of
heuristics. We assume that the number of heuristics in the
hierarchy H is linear to the number of sentences (i.e., O(n))
and each heuristic has a minimum coverage of Ω(logn). This
is a realistic assumption as we focus on heuristics that can
be derived from their context free grammar using a fixed
number of steps, and our algorithm is aimed at identifying
heuristics that cover a large fraction of positives. Under
this assumption, we show that at any iteration, a heuristic
r chosen by UniversalSearch has coverage |Cr| larger than
α ×maxr′∈H |Cr′ |, where α is a constant. This guarantees
that UniversalSearch identifies at least αPOPT positives
within a query budget of b, where POPT is the total number
of positives identified by an ideal algorithm. To bound the
estimated coverage of a heuristic r, we use the Hoeffding’s
inequality [7].

Notation. We define a random variable Xs which refers
to the score assigned to a sentence s and let µs denote its
expected value. The benefit score of a heuristic r is

∑
s∈C Xs

and its expected value is denoted by µr.

Lemma 2. Given a heuristic function r with coverage of
Cr and precision p, the expected score of the heuristic func-
tion is at least θβ′|Cr|.

Proof. Expected score of the heuristic function is

E

[∑
s∈Cr

Xs

]
=

∑
s∈Cr

µs =
∑

s∈Cr∩P∗
µs +

∑
s∈Cr\P∗

µr

≥
∑

s∈Cr∩P∗
(θβ) +

∑
s∈Cr\P∗

(
θβ′
)

= (θβ) p|Cr|+ (1− p)|Cr|
(
θβ′
)

≥ θβ′|Cr|

We use this calculation to bound the score of a heuristic r
that has more than logn sentences.

Lemma 3. Consider a heuristic function r with coverage
Cr such that |Cr| = c logn sentences, where c ≥ 2

ε2θ2β′2

is a constant. The benefit score of the heuristic is at least
(1− ε)θβ′|Cr| with a probability of 1− 2/n4.

Proof. The score of heuristic function r is
∑
s∈Cr

Xs.

The expected value of the score (denoted by µr) is calculated
in lemma 2. Using Hoeffding’s inequality,

Pr

[
1

|Cr|
∑
s∈Cr

Xs ≤ (1− ε)µr/|Cr|

]
≤ 2e−2ε2µ2

r/|Cr|

≤ 2e−2ε2θ2β′2|Cr|

≤ 2e−4 logn =
2

n4

This shows that 1
|Cr|

∑
s∈Cr

Xs is greater than (1−ε)θβ′|Cr|
with a probability more than 1− 2

n4

Using a similar analysis, we identify an upper bound of the
heuristic score. Due to space constraint, we defer the proof
to Appendix.

Lemma 4. Given a heuristic function r with a coverage
of Cr and precision p, the expected score of the heuristic
function is atmost (β + (1− θ)(1− β)) |Cr|.

Lemma 5. Consider a heuristic r with coverage Cr such
that |Cr| = c logn sentences, where c ≥ 2

ε2(β+(1−θ)(1−β))2

is a constant. The score of the heuristic is atmost (1 +
ε) (β + (1− θ)(1− β)) |Cr| with a probability of 1− 2/n4

Using the calculated bounds on score of a heuristic, we
evaluate the condition when a particular heuristic is pre-
ferred over the other.

Lemma 6. Given a pair of heuristic functions r1 and r2
with respective coverage C1 and C2. If C1 has more positives
than C2, the UniversalSearch score of r1 is higher than that

of r2 whenever |C1|
|C2|
≥ α with a probability of 1− 4

n4 , where
α is a constant.

Using a similar analysis, we can calculate the estimated
average probability of a heuristic. For a heuristic r with
precision pr, we can show that it is considered for benefit
calculation only when pr > γ, where γ is a constant.

Theorem 1. In worst case, UniversalSearch provides a
constant approximation of Problem 1 with a probability of
1− o(1)

Proof. In each iteration, UniversalSearch algorithm sorts
each of the candidate heuristic based on estimated average
probability of a randomly chosen sentence from Cr to be pos-
itive. All these candidates have true precision pr > γ. Given
a pair of heuristics r1 and r2, using Lemma 6, the benefit

score of a block r1 is higher than that of r2 whenever
|Cr1 |
|Cr2

| >

α with a probability of 1 − 4
n4 . Let rOPT be the heuris-

tic chosen by optimal algorithm. Using union bound over(
n
2

)
pairs of heuristics, with a probability of at least 1− 4

n2 ,
the estimated benefit of rOPT is higher than that of any r′

whenever |Cr′ | ≤ |CrOPT |α. Therefore, UniversalSearch

never chooses any block heuristic with coverage smaller than
|CrOPT |α with a probability of 1−o(1). This shows that the
total number of positives identified by UniversalSearchare
at least |CrOPT |αγ, which is a constant approximation of
|CrOPT | with a probability of 1− o(1).
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dataset # Sentences % Positives Labeling

cause-effect 10.7K 12.2 Relations
musicians 15.8K 10 Entities
directions 15.3K 3.8 Intents
profession 1M 1.1 Entities

tweets 2130 11.4 (Food) Intents

Table 1: Dataset statistics

Notice that analysis above makes certain assumptions about
the quality of the classifier. In the initial iterations of Dar-
win the classifier has a low recall and hence, the values
of β and θ are lower. As Darwin identifies new heuristic
functions, the increase in training data pushes these values
higher, thereby improving the approximation factor of our
algorithm. It is important to mention that even when the
classifier is not ideal, our only key assumption is that the
classifier would perform better than random.

Discussion. We proposed three techniques for hierarchy
traversal. UniversalSearch approach is useful to capture
holistic information about the different candidate labeling
heuristics and is proven to achieve constant approximation
of the optimal solution under reasonable assumptions of the
trained classifier. However, due to lack of training data
in initial iterations of the pipeline, this assumption may
not hold and UniversalSearch does not perform optimally.
However, LocalSearch performs local generalization of iden-
tified heuristics to quickly increase the number of identified
positives. HybridSearch is a robust amalgamation of these
two techniques and is recommendation. Since HybridSearch
is a generalization of LocalSearch and UniversalSearch, it
is slightly less efficient than either of these.

4. EXPERIMENTS
In this section, we perform empirical evaluation of Dar-

win along with other baselines to validate the following.
• The ability of Darwin to identify majority of the positives

even when initialized with a small seed set.
• The positives identified by Darwin outperform other base-

line techniques that use active learning, a human annota-
tor or any other automated techniques. We show that
Darwin can uncover most of positive instances (i.e, 80%
or more) with roughly 100 queries.
• The heuristics identified by Darwin have high precision

and help train a classifier with superior F-score (≥ 0.8).
• Darwin is highly efficient and can generate labels from

a corpus of 1M sentences in less than 3 hrs. Darwin
performance is resilient to variations in the seed set.

4.1 Experimental Setup
Here, we describe the datasets, the baselines, and our

overall experimental setup.
Datasets. We experimented with five diverse real-world
datasets each suitable for one of the following NLP tasks: en-
tity extraction, relationship extraction, and intent classifica-
tion. Table 1 summarizes the statistics of these datasets. All
datasets, except for directions, come with ground-truth
labels which we use for evaluation and to synthesize the
responses from an oracle. For the directions datasets, we
rely on human annotators to generate the gold standard and
validate the heuristics. We describe each of these dataset
below.
• cause-effect [15] is a dataset commonly used as a bench-

mark for relationship extraction between pairs of entities.

We focus on the task of finding sentences that describe a
cause and effect relationship between two entities.
• directions is an internal dataset described in Example 1.

For this dataset, we leveraged Figure-eight7 crowd workers
to verify the heuristics generated by Darwin.
• musicians dataset consists of sentences from Wikipedia

articles. The task is entity extraction with the goal to
extract the names of musicians. The ground-truth is ob-
tained with the help of NELL’s knowledge-base8.
• professions dataset is a collection of sentences from ClueWeb9.

The sentences that mention various professions (e.g., sci-
entist, teacher, etc.) are positives. The ground truth is
generated using NELL’s knowledge-base.
• tweets [18] data set is a benchmark for classifying the

intent of tweets into predefined categories such as food,
travel and career, etc.

Baselines. We evaluate our framework on two fronts: (1)
the ratio of positive instances it discovers (i.e. coverage)
and (2) the performance of the classifier trained using our
weakly-supervised labels. Our baselines for these two eval-
uation criteria are listed below.
• Section 4.2 compares the fraction of positives identified

with Snuba[17]. In this experiment, we consider a small
sample of positives chosen randomly from the dataset.
• Section 4.3 compares the coverage obtained by Darwin

against two baselines, namely HighP and HighC. HighP is
a simpler version of Darwin which selects the rule which
is expected to have a high precision (according to the clas-
sifier) and submits it to the oracle. On the other hand,
HighC selects rules with the maximum coverage, irrespec-
tive of their expected precision10.
• Section 4.4 compares the F-score of the classifier gener-

ated by Darwin with an Active Learning (AL) [14] and
a Keyword Sampling (KS) technique as well as the HighP

baseline mentioned earlier. AL improves its performance
by selecting the instance with the highest entropy and
asking the oracle for its label. It then re-trains the clas-
sifier using the new label. The KS approach is designed
to check if we can quickly obtain a small set of promising
instances by filtering the corpus using a set of relevant key-
words, and label the instances in the smaller set. To do so,
we asked annotators to provide 10 distinct keywords as a
heuristic to filter the dataset. The KS technique randomly
samples instances from the filtered dataset and asks for its
label. We employ the same deep learning based classifier
for all the techniques.

Finally, note that Darwin can use different traversal algo-
rithms: LocalSearch, UniversalSearch, and HybridSearch,
which we refer to as Darwin(LS), Darwin(US), and Dar-
win(HS) respectively.

Settings. We implemented all proposed algorithms and
baselines in Python and ran the experiments on a server
with a 500GB RAM and 64 core 2.10GHz x 2 processors.
The dependency parse trees and the POS tags are gener-
ated with SpaCy11. All text classifiers trained in our ex-

7https://figure-eight.com
8http://rtw.ml.cmu.edu/rtw/kbbrowser/
9https://lemurproject.org/clueweb09/

10HighC’s performance was quite poor as most of its sug-
gested rules are rejected by the oracle. As a result, we omit
HighC from the plots for the sake of clarity.

11https://spacy.io/
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Figure 7: Effects of seed set size on performance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

25 50 200 400 8001600

C
ov

er
ag

e

#seed sentences

Snuba
DARWIN(HS)

(a) directions

 0

 0.2

 0.4

 0.6

 0.8

 1

20 100 500 1000 2000

C
ov

er
ag

e

#seed sentences

Snuba
DARWIN(HS)

(b) musicians

Figure 8: Effects of biased seed set size on performance.
periments (whether used by Darwin or other baselines) are
implemented with a 3-layer convolutional neural network fol-
lowed by two fully connected layers, following the architec-
ture described by Kim et al [8]. The input to the classifier is
a matrix created by stacking the word-embedding vectors of
the words appearing in the sentence. We also used SpaCy’s
word-embeddings for English12. For generating derivation
sketches, the maximum depth is set to 10 and we consider
10K heuristics in candidate selection. When simulating the
responses from an oracle (using the ground-truth data), we
respond YES to heuristic h if at least 80% of its coverage
set consist of positive instances.

4.2 Comparison with Snuba
In this experiment, we initialize Snuba and Darwin(HS)

with the same set of randomly chosen labeled sentences and
compare the total number of positives identified by each
of the techniques13. Note that Snuba does not query the
oracle and infers heuristics based on the provided labeled
instances may infer inaccurate heuristics. For a fair eval-
uation, we choose not compare the accuracy of identified
heuristics. Figure 7 shows the change in fraction of iden-
tified positives by varying the size of the initial seed set.
Darwin(HS) is able to identify majority of positives even
when the pipeline is initialized with less than 25 sentences.
However, Snuba requires at least 200 randomly chosen sen-
tences for directions and 1000 for musicians. If we employ
expert to sample positives, Snuba requires at least 100 pos-
itive samples in musicians.

To further evaluate the generalizability of Snuba and Dar-
win(HS) to identify heuristics that have limited or no evi-
dence in the initial seed set, we construct a biased sample
of seed positives. In this experiment, we choose sentences
randomly from the corpus after ignoring the ones that con-
tain the token ‘shuttle’ in directions dataset and ‘com-

12https://spacy.io/models/en#en_core_web_lg
13In this experiment, we do not start with a single labeling
heuristic as Snuba achieves a very small coverage as it fails
to obtain enough positive instance due to the high degree of
imbalance in these datasets.

poser’ in musicians. Figure 8 shows the fraction of pos-
itives identified with varying size of the seed set. Snuba

is not able to identify the positives that contain the to-
ken ‘shuttle’ in directions and ‘composer’ in musicians.
Henceforth, it achieves poor coverage over the positives in
two datasets. DarwinHS is able to identify majority of posi-
tives irrespective of the number of sentences used to initialize
the pipeline. Snuba requires considerably more labelled sen-
tences in musicians as compared to directions due to the
presence of many diverse heuristics in the dataset, most of
which have limited evidence in the seed subset. We observe
similar performance gap between Snuba and Darwin(HS)
for other datasets.

This experiment validates that Snuba works well when the
initial seed set has enough randomly chosen positives and
lacks the ability to generalize to heuristics that have limited
evidence. On the other hand, Darwin(HS) is able to identify
majority of the positives even when the pipeline is initial-
ized with just 25 sentences and has good generalizability.
To further evaluate Darwin’s ability to identify positives,
the following subsection considers a more challenging sce-
nario where the pipeline is initialized with a single labeling
heuristic or just two positive sentences.

4.3 Rule Coverage
Figures 6a-6d and 10a illustrate the fraction of positives

identified by Darwin and our baselines. We can observe
that Darwin(HS) has the most stable performance and out-
performs other techniques. While Darwin(US) occasionally
outperforms Darwin(HS), we observe that it fails to per-
form well on all datasets. In most cases (with an exception of
cause-effect), the Darwin(HS) achieves a coverage of 0.8
using less than 120 queries to the oracle. The cause-effect

is known to be a tough benchmark in the NLP community
as the best F-score reported by [15] is 82% given complete
access to the training set. Assuming that the oracle con-
siders a majority vote by querying three crowd members
and each query costs 2 cents14, the Darwin(HS) pipeline
generates more than 80% of the positive labels with only
$7.20. Figure 6d demonstrates the behavior for ‘Food’ in-
tent in the tweets. We observed similar behavior for ‘Travel’
and ‘Career’ intents on this data set. We can observe that
the other baselines do not perform well compared to Dar-
win; The highP identifies heuristics with very small cov-
erage as its candidates. Also note that the Darwin(LS)
algorithm shows a high progressive coverage initially but it
converges to a very low coverage value because it is unable
to identify rules that are semantically similar, but far away
in the hierarchy. Overall, we recommend Darwin(HS)
for any practical application as it is more robust and works
better than most of the techniques. On the other hand,
Darwin(LS) and Darwin(US) variants work well in spe-
cific settings. Darwin(LS) performs better than the other
techniques when precise rules are present close to each other
in the hierarchy and Darwin(US) performs well in the pres-
ence of abundant labelled examples.

Figure 11 shows some the heuristics which are queried by
the Darwin(HS) algorithm. In the directions example,
Darwin(HS) started with ‘best way to get to’ and was able
to traverse to ‘shuttle to’, which is quite distinct from the

14These are standard assumptions in crowdsourcing plat-
forms eg. figure-eight. We used the same cost model to
collect labels for directions.
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Figure 9: Comparison of rule coverage and classifier’s F-score for Darwin based pipelines on various datasets.
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Figure 11: Example of traversals by HybridSearch algo-
rithm on two datasets.

initial seed rule. The choice of ‘to the hotel from’ by the
algorithm provides some evidence that ‘shuttle to’ is also a
good rule since the phrases often co-occur together in posi-
tive instances. In the cause-effect example, the traversal
is relatively simple as the algorithm generalizes the initial
rule first and as soon as it reaches the noisy and unhelpful
rule ‘by ’, it again specializes to ‘triggered by ’ which is again
a precise rule. In addition to these simpler heuristics, Dar-
win identified more complex heuristics for professions like
‘/is/NOUN ∧ job’, among others.

4.4 Quality of the Classifier
This section compares the quality of the classifier gen-

erated using the labels identified by Darwin. Figure 6e-6h
and 10b show that Darwin(HS) dominates other techniques
over all the datasets. The active learning technique suffers
from poor F-score initially and improves gradually. Since AL
generates very few training examples, the trained classifier is
highly unstable and shows jittery F-score. The KS approach
shows similar performance and performs comparable to AL.
On the other hand, Darwin based pipelines are much more
stable in terms of F-score. The classifier that was trained
with the labeled data generated by Darwin pipelines always

maintains a high precision. It is interesting to note that [18]
reports the maximum F-score for food intent to be 0.54,
as compared to 0.84 by Darwin. The classifier generated
by Darwin achieved an F-score above 0.8 for other intents
like ‘Travel’ and ‘Career’ too while [18] reports a maximum
F-score of 0.58 for these intents.

4.5 Additional Experiments
To provide better insights into Darwin’s performance, we

have conducted a series of experiments to evaluate (1) how
efficient the framework is in terms of the time required to
obtain labels, (2) how much noise-aware models (trained by
Snorkel) can improve the classification results, (3) how well
human annotators approximate our notation oracles. Due
to space limitations, we present the effect of varying seed
rules and parameters in the Appendix.

Efficiency in Label Collection. As we demonstrated,
Darwin identifies majority of the positive instances in all
the datasets using roughly 100 queries. The time taken to
generate the index structure for all the datasets was less than
5 minutes. The hierarchy generation phase then iterates over
the index to identify the candidate rules. This phase takes
less 15 minutes for a corpus of 100K.

Since the LocalSearch algorithm does not require the in-
dex to be pre-computed and generates candidates on the fly,
it runs in less than 45 minutes for all datasets. HybridSearch
and UniversalSearch traversal algorithms require 60-90 min-
utes on smaller datasets (i.e., directions, musicians and
cause-effect) and about 2 hour and 45 minutes on professions.
The major bottleneck in this process is the time taken by
the classifier to make a prediction for all instances in the cor-
pus (It takes roughly 25 minutes for one round of training
and testing on the professions dataset). We implemented
a simple optimization where we evaluated a sentences only
if it had a confidence score more than 0.3 in the previous it-
eration and only evaluated instances that didn’t satisfy this
constraint once every three iterations. This heuristic helped
us reduce the running time from 2 hours and 45 minutes to
65 minutes for the professions dataset. The total running
time does not grow linearly with the size of dataset because
most of the components use the classifier to identify the
positives. These candidate positives are used for hierarchy
generation and traversal. Hence, the running time grows lin-
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M C D F

Darwin 0.91 0.79 0.89 0.87
Darwin+Snorkel 0.82 0.78 0.97 0.87

Table 2: Performance of Darwin with Snorkel
(M=musicians,C=cause-effect,D=directions,F=food-tweet)

early with positive set size but not with dataset size (after
using the above mentioned optimization).
Training noise-aware classifiers. One of the recent de-
velopments in weak-supervision paradigms has been emer-
gence of frameworks such as Snorkel [12] which are designed
to de-noise the generated labels and train noise-aware clas-
sifiers. In this experiment, we direct the set of rules identi-
fied by Darwin to Snorkel, and compare the quality of the
noise-aware classifier against a classifier trained directly on
the labels generated by Darwin. Table 2 summarizes the F-
score that two classifiers have obtained on our datasets. We
can observe that in most cases, using Snorkel does not yield
any improvements. This is mainly because in many of these
datasets, the rules generated by Darwin already exhibit a
low degree of noise and a good coverage and thus there is
almost no room for improvements. Nevertheless, we can see
that on some datasets such as directions using Snorkel can
be quite beneficial.

Performance of human annotators. Clearly, Darwin’s
performance heavily relies on the quality of responses it re-
ceives from the annotators. To study how well human an-
notators perform, we ran an experimental study on Figure-
eight crowd-sourcing platform for directions dataset. La-
bels were collected for 2 600 heuristics. Each annotator was
paid 2 cents per a single rule evaluation and three evalua-
tions per rule were collected. A manual inspection of the
results reveals that annotators were able to capture most of
the precise heuristics such as ‘best way to get there’, ‘shut-
tle from’, ‘across the street from’, ‘airport to hotel’, and etc.
Overall, we found less than 10 false positives responses in the
69 positive heuristics identified by the crowd labels. These
erroneous responses were due to the fact that the 5 match-
ing sentences presented to the annotator sometimes can have
3 or 4 positive instances by chance which confuses the an-
notators. Presenting more samples lowers the error rate.
Interestingly, Darwin often rates these heuristics lower in
preference to query as it can analyze the complete coverage
set, and mitigate such errors by considering the entire distri-
bution of instances. The annotators took 23 sec on average
to label a heuristic query. For 100 queries, Darwin gener-
ates all the labels in less than 40 min of human effort. This
time can further be reduced by asking various questions in
parallel to different crowd members.

5. RELATED WORK
To the best of our knowledge, Darwin is the first system

that assists annotators to discover rules under any desired
rule grammar for rapid labeling of text data. Our work is re-
lated to studies in areas of weak supervision, crowdsourcing,
and the intersection of the two which we discuss next.

Weak Supervision. There are multiple existing approaches
for generating labels in weakly supervised settings. Some
techniques rely on the notion of distant supervision where
the labels are inferred using an external knowledge base [10,
1, 21]. One notable example is a system named Snuba [17]
which generates labeling rules based on an existing labeled

dataset. In contrast to these systems, Darwin is designed
for scenarios where no additional sources of information are
available. In such cases, it is necessary to rely on annota-
tors to write labeling rules. While using expert-written rules
have proven to be highly effective in many settings [12], there
is limited work on how to facilitate the process of writing
or discovering high-quality rules. One interesting example
is Babble Labble[6], a labeling tool that allows annotators
to explain (in natural language form) why they have as-
signed a label to a given data point. These explanations are
then transformed into labeling rules. While Babble Labble
simplifies the rule writing process, it only handles a single
internal rule language. On the other hand, Darwin allows
experts to pick their desired rule language depending on the
complexity and the dynamics of the task at hand.

There have been several studies on utilizing the weakly-
supervised labels in an optimal way. Snorkel [12] and Coral [16]
are recent examples of systems (based on the data program-
ming paradigm) that de-noise and utilize the labels collected
via weak supervision. Similarly, there are numerous data
management problems spanning data fusion [2, 13] and truth
discovery [9], which focus on identifying reliable sources of
data. Many recent studies in data integration have also
explored techniques that handle error in crowd answers [3,
5]. Note that Darwin is a framework for discovering label-
ing rules which goes hand-in-hand with the aforementioned
systems since Darwin’s generated rules can be further pro-
cessed using these de-noising techniques to achieve better
results.

Crowdsourcing Frameworks. There has been many stud-
ies on devising oracle based abstractions that handle anno-
tations from a crowd and minimize the noise in answers [20,
4]. Perhaps, more relevant to our work, are existing studies
on how labeling rules can be verified with the help of the
crowd. One recent example is a system named CrowdGame
[22] which validates a rule by showing either the rule or its
matching instances to the annotators. The authors demon-
strate that their proposed game-based techniques yields the
best results for rule verification. Unlike Darwin Crowd-
Grame assumes a pre-existing (manageable) set of possible
rules from which the best rule should be selected. Dar-
win, on the other hand, has no such assumption and has
to create a promising set of rules from the rule grammar.
Additionally, the game-based approach to annotate a rule
can be modeled as an Oracle in Darwin.

6. CONCLUSION
We present Darwin, an interactive end-to-end system

that enables annotators to rapidly label text datasets by
identifying precise labeling rules for the task at hand. Dar-
win compiles the semantic and syntactic patterns in the cor-
pus to generate a set of candidate heuristics that are highly
likely to capture the positives instances in the corpus. The
set of candidate heuristics are organized into a hierarchy
which enables Darwin to quickly determine which heuris-
tic should be presented to the annotators for verification.
Our experiments demonstrate the superior performance of
Darwin in wide range of labeling tasks spanning intent clas-
sification, entity extraction and relationship extraction.
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[17] P. Varma and C. Ré. Snuba: Automating weak
supervision to label training data. PVLDB, 2019.

[18] J. Wang, G. Cong, W. X. Zhao, and X. Li. Mining
user intents in twitter: A semi-supervised approach to
inferring intent categories for tweets. 2015.

[19] X. Wang, A. Feng, B. Golshan, A. Halevy, G. Mihaila,
H. Oiwa, and W.-C. Tan. Scalable semantic querying
of text. PVLDB, 11(9), 2018.

[20] P. Welinder, S. Branson, S. J. Belongie, and
P. Perona. The multidimensional wisdom of crowds. In

NIPS, 2010.

[21] F. Yang, Z. Yang, and W. W. Cohen. Differentiable
learning of logical rules for knowledge base reasoning.
In NIPS, 2017.

[22] J. Yang, J. Fan, Z. Wei, G. Li, T. Liu, and X. Du.
Cost-effective data annotation using game-based
crowdsourcing. 2018.

13



APPENDIX
A. PROOF OF LEMMA 4

Proof. Expected score of the heuristic function is

E[
∑
s∈Cr

Xs] =
∑
s∈Cr

µs

=
∑

s∈Cr∩P

µs +
∑

s∈Cr\P

µs

≤
∑

s∈Cr∩P

(β + (1− θ)(1− β))

+
∑

s∈Cr\P

(
β′ + (1− θ)(1− β′)

)
= (β + (1− θ)(1− β)) p|Cr|

+(1− p)|Cr|
(
β′ + (1− θ)(1− β′)

)
≤ (β + (1− θ)(1− β)) |Cr|

B. PROOF OF LEMMA 5
Proof. The score of heuristic function r is

∑
s∈Cr

Xs.
The expected value of the score is calculated in lemma 4.
Using Hoeffding’s inequality,

Pr[
1

|Cr|
∑
s∈Cr

Xs ≤ (1 + ε)µr/|Cr|] ≤ 2e−2ε2µ2
r/|Cr|

= 2e−2ε2(β+(1−θ)(1−β))2|Cr|

= 2e−4 logn =
2

n4

This shows that 1
|Cr|

∑
s∈Cr

Xs is smaller than (1 + ε)(β +

(1− θ)(1− β))|Cr| with a probability more than 1− 2
n4

C. PROOF OF LEMMA 6
Proof. Using Lemma 3 and 5, we can observe that the

calculated benefit of heuristic h1 is atleast (1 − ε)θβ′|Cr1 |
with a probability of 1 − 2

n4 . Similarly, the score of r2 is
atmost (1 + ε) (β + (1− θ)(1− β)) |Cr2 | with a probability
of 1− 2

n4 . This shows that

score(r1) > score(r2) (1)

(1− ε)θβ′|Cr1 | > (1 + ε) (β + (1− θ)(1− β)) |Cr2 |(2)

|Cr1 |
|Cr2 |

>
(1 + ε) (β + (1− θ)(1− β))

(1− ε)θβ′ (3)

|Cr1 |
|Cr2 |

> α (4)

where α is a constant.

D. ADDITIONAL EXPERIMENTS
Sensitivity to HybridSearch’s traversal parameters.
Here, we study to what extent Darwin’s performance is
sensitive to parameter τ in the HybridSearchtraversal al-
gorithm. Recall that parameter τ determines how often the
HybridSearch algorithm switches between exploiting the lo-
cal structure of the hierarchy as opposed to evaluating all
possible candidates using the classifier. Figure 12a shows
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Figure 12: Sensitivity of Darwin to τ and seed rules.
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Figure 13: Sensitivity of Darwin(HS) to the number of can-
didates generated.

that Darwin(HS) performs very similar on varying τ . The
solution quality tends to improve slightly on increasing τ
because the effective rules for the musicians dataset are
not close to each other in the hierarchy. However, note
that choosing large values of τ can affect the efficiency of
the pipeline. More precisely, large values of τ force the
HybridSearch system to rely on its internal classifier to eval-
uate all rule candidates for too many steps which can be
quite time consuming.

Sensitivity to seed rule. This experiment establishes that
Darwin has a robust performance given different types of
input seed rule. Focusing on the musicians dataset, we
initialize Darwin with the following seed rules. Rule 1 is
the keyword ‘composer ’ stating that any sentence containing
this word mentions a musician. Rule 2 is the keyword ‘piano’
and finally Rule 3 is the sentence ‘Beethoven taught piano
to the daughters of Hungarian Countess Anna Brunsvik.’.
Note that Rule 2 is an extremely generalized version of Rule
3. Figure 12b compares the performance of Darwin(HS) for
all three seed rules. Darwin performs equally well on three
different types of input seed rules. We can observe that for
Rule 3, Darwin requires the initial 8 queries to generalize
the seed rule, and as soon as it identifies a rule with high
coverage, it performs very similar to the other seed rules.

Sensitivity to number of generated candidates. One
of the parameters of the Darwin framework is the num-
ber of candidates that gets generated by the candidate-rule
generation component. In our experiments, Darwin gener-
ates 10K candidates rules with high coverage and organizes
them into an index. The goal is to make sure the set of gener-
ated candidates contain some (if not all) of the precise rules.
Choosing a large value for the index size would satisfy this
objective but affects the efficiency and increases the num-
ber of candidates that UniversalSearchand HybridSearch

algorithms need to consider. We observed that generating
10K candidates per iteration helped Darwin identify precise
candidate rules. Figure 13 shows that the performance of
Darwin(HS) algorithm is consistently similar for different
number of candidate rules generated.

Sensitivity to classifier quality. Figure 14 compares
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musicians dataset)

the performance of HybridSearch strategy on musicians

dataset by varying the number of epochs for which the neu-
ral network classifier is trained. With more epochs, the clas-
sifier tends to overfit more to the training data. We measure
the number of questions from Darwin(HS) to the oracle in
order to label at least 75% of the positive sentences. It is
evident that the Darwin performance is robust to change
in behavior of the classifier.

15


	1 Introduction
	2 Preliminaries & Problem Definition
	3 The Darwin System
	3.1 Indexing the Input Corpus
	3.2 Heuristic-Hierarchy Generation
	3.2.1 Candidate Generation

	3.3 Hierarchy Traversal
	3.4 LocalSearch
	3.5 UniversalSearch
	3.6 HybridSearch
	3.7 Score Update
	3.8 Theoretical Analysis

	4 Experiments
	4.1 Experimental Setup
	4.2 Comparison with Snuba
	4.3 Rule Coverage
	4.4 Quality of the Classifier
	4.5 Additional Experiments

	5 Related work
	6 conclusion
	7 References
	A Proof of Lemma 4
	B Proof of Lemma 5
	C Proof of Lemma 6
	D Additional Experiments

