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In many research and application areas, such as information retrieval and machine learning, we often en-
counter dealing with a probability distribution which is mixed by one distribution that is relevant to our task
in hand and the other that is irrelevant and we want to get rid of. Thus, it is an essential problem to separate
the irrelevant distribution from the mixture distribution. This paper is focused on the application in Infor-
mation Retrieval, where relevance feedback is a widely used technique to build a refined query model based
on a set of feedback documents. However, in practice, the relevance feedback set, even provided by users
explicitly or implicitly, is often a mixture of relevant and irrelevant documents. Consequently, the resultant
query model (typically a term distribution) is often a mixture rather than a true relevance term distribution,
leading to a negative impact on the retrieval performance. To tackle this problem, we recently proposed a
Distribution Separation Method (DSM), which aims to approximate the true relevance distribution by sep-
arating a seed irrelevance distribution from the mixture one. While it achieved a promising performance in
an empirical evaluation with simulated explicit irrelevance feedback data, it has not been deployed in the
scenario where one should automatically obtain the irrelevance feedback data. In this article, we propose a
substantial extension of the basic DSM from two perspectives: developing a further regularization frame-
work and deploying DSM in the automatic irrelevance feedback scenario. Specifically, in order to avoid the
output distribution of DSM drifting away from the true relevance distribution when the quality of seed ir-
relevant distribution (as the input to DSM) is not guaranteed, we propose a DSM regularization framework
to constrain the estimation for the relevance distribution. This regularization framework includes three al-
gorithms, each corresponding to a regularization strategy incorporated in the objective function of DSM. In
addition, we exploit DSM in automatic (i.e., pseudo) irrelevance feedback, by automatically detecting the
seed irrelevant documents via three different document re-ranking methods. We have carried out extensive
experiments based on various TREC data sets, in order to systematically evaluate the proposed methods.
The experimental results demonstrate the effectiveness of our proposed approaches in comparison with
various strong baselines.
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Categories and Subject Descriptors: H.3.3 [Information Storage and Retrievall: Information Search and
Retrieval

General Terms: Theory, Algorithms, Experimentation

Additional Key Words and Phrases: Relevance feedback, mixture distribution, distribution separation
method, irrelevant term distribution, regularization

1. INTRODUCTION

In many fields, e.g., information retrieval, natural language processing and machine
learning, we often need to deal with a mixture distribution consisting of two distri-
butions. One is a distribution that is relevant to our task in hand, while the other is
irrelevant and we want to remove it from the mixture one. For instance, if a term dis-
tribution is generated from texts, this distribution may have both relevant terms as
useful information and irrelevant terms as noises, with each kind of terms having its
own distribution. It is, therefore, an essential research problem to separate the irrel-
evant distribution from the mixture one and obtain the truly relevant distribution. In
this article, we are focused on the investigation of the distribution separation process
in the field of Information Retrieval (IR), particularly the relevance feedback area [Ri-
jsbergen 1979; Lavrenko and Croft 2001].

Relevance feedback is a typical post-query process, from which we can build a refined
query model (often a term distribution) in order to better represent users’ underlying
information need [Rijsbergen 1979; Lavrenko and Croft 2001]. The process of relevance
feedback can be explicit, implicit or pseudo, each of which has its own advantages and
disadvantages. Explicit relevance feedback, where users explicitly indicate which doc-
uments are relevant, has been shown useful to improve the IR performance [Buckley
and Salton 1995]. However, users may be constrained and reluctant to provide explicit
relevance feedback [Dumais et al. 2003; Jansen et al. 2000]. Due to users’ reluctance
and carelessness, the explicit feedback documents, are not always truly relevant and
may contain irrelevant terms. Implicit relevance feedback aims to infer the user’s pref-
erences based on his/her interactions with the system, such as the user’s click-through
record [White et al. 2005; Chapelle and Zhang 2009; Liu et al. 2010]. However, it is
still under exploration on what interactions should be taken into account and how
good they are as relevance factors [Melucci 2012]. Pseudo relevance feedback (PRF)
simply assumes a number of top ranked documents returned by an IR system as rele-
vant. It is simple, fully automatic, and in general can improve the IR effectiveness, but
may suffer from problems caused by the irrelevant documents in the pseudo relevant
document set. For the above three scenarios, we can observe that users may be reluc-
tant or careless to provide explicit relevance feedback, while implicit and automatic
relevance feedback are not reliable enough. As a result, in all the three kinds of rele-
vance feedback, the feedback document set may be mixed by relevant and irrelevant
documents. Based on feedback documents, the refined query model is often a mixture
of the relevance and irrelevance models, which damages the retrieval effectiveness.
Thus, how to approximate the true relevance distribution from the mixture model is
an important research problem.

Our approach will conquer the problem of relevance modeling, by making use of its
counterpart, i.e., irrelevant information. The motivation is that, while the truly rele-
vant information is difficult to obtain, we may relatively easily get some irrelevance
feedback information, i.e., a small number of irrelevant documents. For example, when
the relevant documents are sparse, the cognitive overhead for a user to find the truly
relevant ones would be high. The user may have to click as many as possible docu-
ment links, even though some of them may not look relevant enough. Some documents
clicked by the user may not be relevant at all, while the documents ignored, or clicked
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but skipped quickly by the user, may be regarded as irrelevant [Bennett et al. 2012;
Fox et al. 2005; Gao et al. 2009]. We can draw an analogy in the language of machine
learning: if two classes are unbalanced (e.g., one class has much fewer samples than
another), standard supervised or unsupervised learners tend to be overwhelmed by
the larger class and ignore the smaller one [Chawla et al. 2004]. Similarly, in IR, given
a query, the number of relevant documents is often much smaller than the number of
irrelevant ones in the document collection. Therefore, from both cognitive and learning
perspectives, it would seem more difficult to identify the relevant feedback documents,
than to find out the irrelevant ones.

Recent research in negative relevance feedback has already attempted to make use
of irrelevant documents to improve the retrieval performance [Dunlop 1997; Singhal
et al. 1997; Wang et al. 2008]. By assuming that a set of seed irrelevant documents
is available, a Distribution Separation Method (DSM) has been proposed in our ear-
lier work [Zhang et al. 2009]. Essentially, given a mixture distribution and a seed
irrelevance distribution, DSM aims to derive an approximation of the true relevance
distribution, in other words, to separate the irrelevance distribution from the mixture
one. It has been shown in [Zhang et al. 2009] that, compared with directly removing
irrelevant documents, separating the irrelevance term distribution (derived from the
assumingly available irrelevant documents) from the mixture term distribution (de-
rived from the whole feedback document set including both relevant and irrelevant
feedback documents) is theoretically more general and practically has led to a better
performance.

Nevertheless, the basic DSM has a number of notable limitations. In this article, we
aim to propose a substantial extension to the basic DSM from two perspectives, i.e.,
the algorithm design and implementation scenario.

On the Regularization Algorithms The original DSM’s effectiveness relies on
the quality of the seed irrelevance distribution. An important limitation is that: when
the seed irrelevant information is limited or “impure” (i.e., containing relevant docu-
ments/terms), the output distribution of DSM may not be a good estimate of true rel-
evance term distribution. Especially, if there is no irrelevance documents/distribution
explicitly available, one should automatically derive a seed irrelevance distribution,
which is inevitably mixed with some relevance information. Separating such an im-
pure irrelevance distribution may make DSM’s output term distribution drift away
from the true relevance distribution.

To overcome the above limitation, in this article, we propose a regularization frame-
work, which includes three specific algorithms, each with a different regularization
term in the objective function. The regularization term acts as a penalty term to con-
strain the output distribution of DSM. Based on the regularization term, such a frame-
work is expected to avoid the above-described relevance drifting problem and make
DSM’s estimated relevance distribution approach the true relevance distribution as
closely as possible.

Specifically, the first regularization algorithm utilizes the idea of sparse represen-
tation, which is a standard way for regularization methods used in machine learning.
Intuitively, it pushes more term probabilities to be zero and make the probabilities
of relevant terms be more dominant. The second algorithm involves a regularization
term that enforces the estimated relevance distribution to be close to a reference rel-
evance distribution. Such a reference distribution reflects certain relevance evidences
in a different way (e.g., by using contextual information). Therefore, if the output dis-
tribution of DSM is closer to the reference distribution, it is more likely that DSM can
estimate the relevance distribution accurately. The third algorithm not only uses the
reference distribution, but also adopts the mixture distribution to control the possible
estimation of the relevance distribution. This is to avoid the unexpected situation that
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the output distribution of DSM has too few relevance information, even less than the
original mixture distribution.

On Deployment in the Automatic Irrelevance Feedback Scenario In the im-
plementation of the original DSM, the seed irrelevant distribution was derived from
irrelevant documents, which are manually selected based on ground-truth relevance
judgements (available in TREC collections used for our experiments). This is actually
a simulated explicit “irrelevance” feedback scenario. However, it limits the model’s
practicality when deployed in broader IR scenarios.

Thus, in this article, we will investigate how the seed irrelevant documents can be
detected by automatic methods. To this end, we implement DSM in the automatic
irrelevance feedback, by automatically detecting the irrelevant documents from the
pseudo-relevance feedback document list, via three document re-ranking methods.
These re-ranking methods are designed in order to rank the irrelevant documents in
the low positions of the document list. After the re-ranking, it is reasonable to assume
that, the lowly ranked documents in the re-ranked list are more likely to be irrelevant,
compared with those in the original rank list.

We also propose a metric, called as Penalized Weighted Precision of Irrelevance
(PWPI), to measure the quality of seed irrelevant documents (either explicitly selected
or automatically detected). Based on a number of TREC data sets, we have carried out
extensive experiments in the scenario of explicit and automatic ‘irrelevance” feedback.
Experimental results have shown the effectiveness of our approaches.

Although this paper focuses on the application of DSM in the irrelevance feedback
task, the basic framework of DSM can be generalized and can also benefit other re-
search areas where the irrelevance/noise distribution needs to be removed from a mix-
ture distribution. For example, a modified DSM may be useful for query reformulation
[Diaz 2016] and filtering tweets for online reputation monitoring [Spina et al. 2013].

2. RELATED WORK

A classical relevance feedback approach is the Rocchio’s method [Rocchio 1971], which
aims to boost terms from relevant documents and suppress terms from irrelevant doc-
uments. Recently, a widely used relevance feedback method is Relevance Model (RM)
[Lavrenko and Croft 2001]. RM and its variants utilize top ranked documents D to con-
struct a relevance term distribution R, from which the terms with highest probabilities
can be used as the expanded query model. One limitation of RM-based methods is that
the feedback document set D is often a mixture of relevant and irrelevant documents,
so that R is likely a mixture distribution rather than true relevance distribution that
is supposed to be derivable from the truly relevant documents only.

Recently, negative relevance feedback techniques have been studied to deal with dif-
ficult queries. For difficult queries, there are relatively few relevant documents in the
top-ranked document list. In [Wang et al. 2008], it is assumed that all the top-ranked !
documents are irrelevant, from which a negative language model is derived. After that,
the ranking score (such as KL-divergence value) of each document will be revised based
on the similarity between the document language model and the negative language
model. The ranking scores of those documents close to the negative language model
will be penalized. Rocchio’s model can also perform negative feedback by ignoring the
component w.r.t. the relevant documents [Zhang et al. 2009]. In [Karimzadehgan and
Zhai 2011], a generalized negative language model is developed to penalize/prune the
non-relevant documents that are close to the negative language model.

In [Zhang et al. 2009], we proposed a Distribution Separation Method (DSM), which
is distinct from other approaches in the following aspects. First, DSM develops an
idea of distribution separation by utilizing a small amount of seed irrelevant data, in
order to approximate the true relevance distribution. Second, it automatically estimate
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Table I. Notations

Notation | Description
M Mixture term distribution
R Relevance term distribution
1 Irrelevance term distribution.
Is Seed Irrelevance distribution
Is Unknown Irrelevance distribution
F(i) Probability of the i*” term in any distribution F'
I(F,G) Linear combination of distributions F' and G

the linear combination coefficient of the desired relevance distribution in the mixture
distribution.

Another well-regarded feedback method is the Mixture Model proposed in [Zhai and
Lafferty 2001a]. It was further developed in [Zhai et al. 2004; Tao and Zhai 2006],
and recently had a fast solution [Zhang and Xu 2008]. In [Zhang et al. 2016], we for
the first time analytically show that Mixture Model can be regarded as a distribution
separation process as in DSM, and Mixture Model’s EM algorithm can be simplified by
the linear separation algorithm of DSM. We also generalize DSM’s theoretical analysis
by providing additional KL-divergence analysis in [Zhang et al. 2016].

In this article, we present a substantial extension to the original DSM, in order to
make it more general and more applicable. First, in Section 3, we describe the original
DSM with a reorganized presentation (including the structure, descriptions, exam-
ples and notations, etc.). Second, in Section 4, we propose a regularization framework
to regularize DSM’s estimated relevance distribution. This framework includes three
algorithms, each with a different regularization term in the objective function. Third,
we describe how to obtain the seed irrelevance distribution in two irrelevance feedback
scenarios (i.e., explicit and automatic) in Section 5. Particularly, in Section 5.3.1, we de-
velop three document re-ranking based methods to automatically obtain the irrelevant
documents from the set of feedback documents. Finally, we carry out a systematic eval-
uation to demonstrate the effectiveness of the basic DSM and the regularized DSM, in
the scenarios of both explicit and automatic irrelevance feedback.

3. THE ORIGINAL DISTRIBUTION SEPARATION METHOD (DSM)

This section describes the original DSM proposed in [Zhang et al. 2009]. We first de-
scribe the notations and the task. Let M represent the mixture term distribution de-
rived from all the feedback documents. M is a mixture of relevance term distribution
R and irrelevance term distribution /. We assume that only part of the irrelevance dis-
tribution I (also called as seed irrelevance distribution) is available, while the other
part of irrelevance distribution is unknown (denoted as I3). Specific formulations of
distributions M, R, I and Is based on RM will be shown in Section 5.

The task of DSM can be defined as follows: given the mixture distribution M and a
seed irrelevance distribution Ig, to derive an output distribution that can approximate
R as closely as possible. Specifically, as shown in Figure 1, the task of DSM can be
divided into two problems: (1) How to separate I from A/, and then derive I(R, I5),
which is less noisy but is still a mixture of the true relevance distribution (R) and the
unknown irrelevance distribution (/5)? (2) How to further refine the derived distribu-
tion [(R, Ig) to approximate R as closely as possible?

To solve the above two problems, we assume that a term distribution derived from a
feedback document set D is a linear combination of two term distributions, which are
derived from two document subsets that form a partition of D. This is a linear combi-
nation condition of DSM. Under such a condition, the mixture distribution M derived
from all the feedback documents can be a linear combination of relevance distribution
R (derived from relevant documents) and irrelevance distribution I (derived from ir-
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M =1((R1), 1)

I(R1)

Fig. 1. An illustration of the linear combination (-, -) between two term distributions.

Table Il. Examples of Estimation of A and (R, I)

M [0.16, 0.12, 0.18, 0.22, 0.06, 0.26]17

Is [0.20, 0.00, 0.10, 0.30, 0.10, 0.3017

A I(R, Ig) p(R, Ig),Is)
1 [0.16, 0.12, 0.18, 0.22, 0.06, 0.26]7 0.7734
0.8 | [0.15, 0.15, 0.20, 0.20, 0.05, 0.25]T 0.5641
0.6 | [0.13,0.20, 0.23, 0.17, 0.03, 0.23]7 0.1448
0.4 | [0.10, 0.30, 0.30, 0.10, 0.00, 0.20]17 -0.3636

relevant documents) (see also Section 5 for details). As shown in Figure 1, M can also
be a linear combination of two distributions Is and [(R, Ig), where [(R, I5) is also a
linear combination of R and I5. Bear in mind that both R and I are unknown for DSM.
Therefore, determining the linear combination coefficient is key for solving the above
problems, which will be detailed next.

3.1. Deriving /(R, Ig) by Analyzing the Lower Bound of Linear Combination Coefficient
Recall that A is a nested linear combination I(I(R, I5), Is), which can be represented
as:

M=XxI(R,Ig)+ (1-X) xIs (1)

where A (0<\ < 1) is the real linear coefficient.
The problem of estimating /(R, I5) does not have a unique solution generally. This is
due to the fact that the value of the coefficient ) is also unknown. Therefore, the key is

to estimate A. Let A(0 <A< 1) denote an estimate of )\, and correspondingly let [(R, Ig)
be the estimation of the desired distribution /(R, I5). According to Eq. 1, we have

lA(R,Ig):éxM+(1f§)xIS. 2)

There can be infinite possible choices of A and its corresponding I(R, I5). Table 11
shows some examples of different estimated values of A and I(R, I5), given M and

Is. To obtain a A which can estimate the real coefficient \ as closely as possible, we
introduce a constraint

(R, I3) = 0, (3)

which means that all the values in the distribution I(R, I5) are not less than 0. Based
on Eq. 2 and Eq. 3, we have

Ax 1 (1—M/Is) (4)
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Table Ill. Simplified Notations
Original | Simplified | Linear Coefficient

UR, I5)(@) | () A
IR, I5)(i) | () X (estimate of A)
IL(R I5)(3) | (i) Az, (lower bound of \)

where 1 stands for a vector in which all the entries are 1, and ./ denotes the entry-by-
entry division of M by Is. Note that if there is zero value in Ig, then A > 1 —oco. It is
still valid since A\ > 0. Effectively, Eq. 4 sets a lower bound of X :

)\L:max(lfM./Is) (5)

where max(-) denotes the max value in the resultant vector 1 — M./Ig. Let us look at
the example in Table IT again. Based on Eq. 5, \;, is 0.4. The lower bound )\, itself also
determines an estimate of I(R, I5), denoted as I1.(R, I5).

The lower bound ), is essential to the estimation of A. Now, we present an important
property of Ay in Lemma 3.1. For simplicity, we use some simplified notations listed
in Table III. Lemma 3.1 guarantees that if there exists zero value (e.g., for a term i,
I(i) = 0) in (R, I5), then A\ = \.. In relevance feedback, if there is no distribution
smoothing step involved for feedback model, zero values often exist in I(R; Ig).

LEMMA 3.1. Ifthere exists a zero value in I(R, Ig), then A = \p, leading to [(R, I5) =
IL(R, I5).

The proof can be found in [Zhang et al. 2009]. Intuitively, if /(i) = 0, we can get
A=1—M{(i)/Is(i) based on Eq. 1. This X is actually the lower bound A, in Eq. 5. If not,
increasing or reducing A will force (i) to be a positive or negative value, respectively.
This contradicts the precondition (i) = 0.

Let us see the example in Table II. Let I(R, I5) = [0.1, 0.3, 0.3, 0.1, 0, 0.2]7, where a
zero value exists. Given the known M and I in Table II, A = 0.4, based on Eq. 1. Now,
according to Eq. 5, we can get A\;, = 0.4, which equals to \. Based on this coefficient
and Eq. 2, we can then have [, (R, I5) which is actually I(R, I5).

Remark 3.2. If there is no zero value, but there exist a few very small values in
I(R,Ig),i.e.,0 < (i) < 6, where § is a very small value, then I (R, I5) will be approxi-
mately equal to I(R, I5).

The detailed description of this remark can be found in [Zhang et al. 2009].

3.2. Minimum Correlation Analysis
Now, we go in-depth to see another property of the combination coefficient and its lower
bound. Specifically, we analyze the correlation between [(R, I5) and I, along with the

decreasing coefficient \. Pearson product-moment correlation coefficient [Rodgers and
Nicewander 1988], denoted as p (—1 < p < 1), is used as the correlation measurement.

PROPOSITION 1. If A (A > 0) decreases, the correlation coefficient between I(R, I3)

and Ig, i.e., p(I(R, I5),Is), will decrease.
The proof of Proppsition 1 can be found in [Zhang et al. 2009]. According to Propo-
sition 1, among all A € [Ap,1], AL corresponds to min(p), i.e., the minimum correlation

coefficient between I(R, I5) and Is. This can be illustrated by the example in Table II.
We can also change the minimum correlation coefficient (i.e., min (p)) to minimum
squared correlation coefficient (i.e., min (p?)). This idea can be formulated as the fol-
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lowing optimization problem:

min [p(I(R, I3), Is)]?
A ’ (6)
st. Ap<A<1

To solve this optimization problem, we need to first find a A such that the corre-

sponding p(I(R, I5), Is) = 0. According to the proof of Proposition 1 in [Zhang et al.

20091, this A = — 2, where a = 37" (Is(i) — 2)(M (i) — Is(i)), b= 31" (Is(i) — £)%, and m

is the number of terms. Then, we need to check whether \;, < —% <1 holds. If it holds,
the optimal linear coefficient \ for the optimization problem in Eq. 6 is —%. Otherwise,
we just compare the values of [p(i(R, Ig), Is)]* w.r.t. A =1and A = \p, in order to get

the optimal \ of the objective function in Eq. 6.

Practically, in our experiments, we observed that the negative correlation value sel-
dom exists. Then, the solutions of min (p) and min (p?) usually equal to the lower bound
Ar. As discussed in Section 3.1, A\;’s corresponding distribution I (R, I5) can equal to
(R, Ig), which is still a mixture distribution.

3.3. Distribution Refinement in the Original DSM

So far, we obtain an estimation of /(R, I5), which is still a mixture distribution of R and
I5 (see Figure 1). In order to further compute a distribution that can get closer to R,
we need to investigate the difference between [(R, I5) and R. As described in [Zhang
et al. 2009], we observe a difference in terms of the combination coefficient. Specifically,
the linear coefficient of R w.r.t. M is less than that of I[(R, I5) w.r.t. M (see a detailed
example in [Zhang et al. 2009]).

Recall that the lower bound of the coefficient \ is A, (see Eq. 5), and the corre-
sponding distribution of A, is [, (R, Ig)), which has been shown to be equivalent to
or approximately equivalent to [(R, I5)) (see Lemma 3.1 and Remark 3.2). This means
that given the input distributions M and /5, we can only obtain [(R, Ig). Therefore, one
needs to refine/revise the distributions M and Ig, in order to reduce the lower bound
and further compute a distribution that can bridge the gap between [(R, I5) and R. To
this end, in [Zhang et al. 2009], we proposed a strategy as follows: If any term i meets
the following condition:

M (i)
I5(3)

then, the term ¢ will be deleted from both M and Is, where < 1 is a parameter in
our model to control the refinement step. This refinement step can be explained in
an intuitive way as follows. Specifically, if a term ¢ satisfies Eq. 7, M (i) is very small
while Ig() is relatively large, then we can consider this term as irrelevant. According
to Eq. 5 and 7, after the refinement, the new lower bound is less than the current A,
(see [Zhang et al. 2009] for detailed descriptions) .

The reduction of the lower bound value is because of the change of the two input dis-
tributions. It does not mean that the previous theoretical analysis of the lower bound
is invalid. After the refinement step, one can normalize the refined input distributions,
which then meet the probability distribution requirement of the previous analysis. The
refinement step can be regarded as a pre-processing step.

<1—/\LX77 )]

4. A DSM REGULARIZATION FRAMEWORK

As aforementioned, the distribution refinement step can be regarded as a pre-
processing step of the input distributions, but has not further advanced the objective
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function of DSM’s optimization method in Eq. 6. On the other hand, when no explicit
irrelevance feedback data is available, one needs to automatically identify some irrel-
evant documents/distribution, which inevitably involve relevant documents/terms, re-
sulting in an impure irrelevance distribution. In this case, the refinement step, which
is dependent on the quality of the seed irrelevance distribution, may not work as well
as in the explicit feedback scenario. In other words, separating such an “impure” irrel-
evance distribution may make DSM’s output term distribution drift further away from
the true relevance distribution.

In order to solve the relevance drifting problem, we propose to advance the DSM’s
objective function by incorporating a regularization term into it. Such a regularization
term will act as a penalty term to constrain DSM’s output distribution, to make this
distribution approach the true relevance distribution as closely as possible. In this ar-
ticle, we will introduce three different kinds of regularization term, each corresponding
to a specific regularization algorithm.

The different regularization algorithms have different motivations to build the reg-
ularization terms (see Section 4.1-4.3 for details). The first algorithm is based on a
standard regularization strategy, i.e., the sparse representation for the relevance dis-
tribution, which pushes more term probabilities to be zero and make the probabilities
of relevant terms be more dominant. The second algorithm assumes that the estimated
relevance distribution by DSM should be close to a reference distribution which is a re-
flection of some relevance evidence. The third algorithm is to make use of the mixture
distribution. This is to avoid the unexpected situation that the output distribution of
DSM has two few relevance information, even less than the original mixture distri-
bution. Such a case can happen when the input seed irrelevant distribution is also a
mixture that contains much relevant information, so that separating the seed irrele-
vance information can yield a bad estimation for the relevance distribution.

The above three regularization algorithms can form a regularization framework.
Now, we first introduce the general formalism of such a regularization framework. As
aforementioned, such a framework is based on the previous objective function in Eq. 6,
and has a regularization term on DSM’s estimated relevance distribution. The target
of the regularization is to estimate or approximate the relevance distribution R, rathgr
than I(R, Ig) (see Eq. 1). Therefore, we denote an estimated distribution of DSM as R,
with its optimal estimation R* be the output distribution of the regularized DSM.

This framework can then be generally formulated as:

(R*,\") =argmin {[p(ﬁ, Is))> + K x Regularization(f{)}
RA

(8)
st. AL <A<1

where we replace [(R, I5) with R (a possible estimation for the relevance distribution)

in the objective function of Eq. 6, and add a regularization term Regularization(ﬁ) (as
the penalty term) to advance DSM’s objective function. The output distribution R* of

the regularized DSM, is the optimal R. In the following, we are going to describe each

~

specific regularization term Regularization(R) one by one in each algorithm.

4.1. Achieving Sparseness via Formal Sparse-based Regularization

The distribution refinement step can make the estimated relevance distribution of
DSM become more sparse, since this step removes some terms and makes some term
probabilities approaching 0 (see Lemma 3 in [Zhang et al. 2009]). Here, we can have
an alternative approach to such a sparse representation by introducing a regulariza-
tion term directly in DSM’s objective function. Specifically, by considering a sparse
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regularization term ||R|2 on R, we can formulate the following optimization problem:

(R*, ") =argmin { [p(R, Is)]* + x| RII3}

R\ 9)
st. AL <A<1
where R can be obtained via Eq. 2, 1.6,
Belom+a-Y)xis (10)
A A

To simplify the following derivation, we let ¢ = 1/. Then, we get R=¢x M+(1-¢)xIs.
The regularization term H}A%H% is a typical regularization method to make the output
distribution R become sparse, and the coefficient « is a typical parameter to control
the degree of sparseness.

To solve this optimization problem, we let a = 7" (Is(i) — L)(M(i) — Is(i)) =
S Is()(M(i) = Is(i), b = 32" (Is(i) — )% and ¢ = 35" (M(i) — Is(i))?, where m
is the number of involved terms. Let f(¢) be the objective function [p(R, Is)]? + x| R||2.
After a series of mathematical derivations !, the solution of f(¢) = 0 leads to the real
value root of the following 5-order polynomial function:

9(&) = ps&® + pa&® + p3&® + P2 + p1€' +po (11)

where ps = bc’k, py = 5abc®k, ps = 8albek + 2b%c?k, py = a® — abe + 4a3bk + 6ab’ck,
p1 = a?b — b%c + 4a?b*k + b3ck, and py = ab3x.We can compare the objective values of
f(&) between the extreme arguments (i.e., the root of g(¢) in Eq. 11) with two boundary
arguments (i.e.,, 1 and 1/A1), to find the optimal £ and A(A = 1/£), based on which one

can compute the optimal R using Eq. 10 and obtain the output distribution R*.

4.2. DSM Regularization with a Reference Distribution A

We can also regularize DSM by introducing a regularization term |R — A||3. We as-
sume an available distribution A, which reflects some kind of evidence of relevance.
One possible relevance evidence, namely the contextual information of query terms
in documents, will be described in Section 4.4. Here, we focus on the regularization
algorithm using an available A. This idea leads to the following optimization problem:

(R*,\*) = arg min {[p(fz, I)? + k|| R — A||§}
R\

(12)
st. AL <A<1

The regularization term || R — A|3 can measure the distance between one estimated
distribution R and the available reference distribution A. The larger ||R — A3 will
enforce more penalty on the objective function, so that this regularization term con-
strains the DSM’s output distribution to be not far away from the reference distribu-
tion A. Note that Section 4.4 will describe how to generate of the distribution A from
the the contextual information of query terms in documents.

Like we did in the previous regularization algorithm, let ¢ = 1/}, and f(¢) =

[p(R, I3)]? + k|R — A2. In addition to the the variables a, b, and ¢ defined previously,
we let d = 37" (M (i) — Is(i))A(i), where m is the number of involved terms.

1 Please refer to the detailed derivations in the supplementary appendix along with this paper.
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After a series of mathematical derivations, the solution of f/(§) = 0 leads to the real
value root of the following 5-order polynomial function:

9(&) = psE® + pa&® + p3€® + p2£® + p1€' + po (13)

where ps = bclk, pa = babc®k—bc2dk, ps = 8a2bek+2b%c?k—4abedk, pa = a® —abe+4a3br+
6ab’ck —4a2bdk — 2b%cdk, p1 = a?b—b*c+4a?b?k+b3ck — 4ab?dk, and py = ab’k —b3dk. We
can then compare the objective values of f(£) between the extreme arguments (i.e., the
root of g(¢) in Eq. 13) with two boundary arguments (1 and 1/\;) , to find the optimal

5\()\ = 1/¢) for estimating the optimal R using Eq. 10. In this way, we get the solution
for the optimization problem in Equation 12, i.e., \* and R*.

4.3. DSM Regularization with Both A and M

As we explained previously, in the automatic irrelevance feedback scenario, separating
an impure irrelevance distribution (i.e., the automatically detected seed irrelevance
distribution is of low quality) from the mixture one will result in a less accurate es-
timation of the relevance distribution. An extreme case is when all the detected seed
irrelevant documents are in fact relevant (rather than irrelevant as they are supposed
to be). In this case, the corresponding seed irrelevance distribution will certainly have
a very low quality. After separating such a low quality irrelevance distribution, the
output distribution of DSM will drift far away from the relevance distribution, and
may even work worse than the original mixture model. Considering that the original
mixture model M usually contains some relevant documents/terms, we think that M
can act as another constraint for the separating process, in addition to the external
relevance distribution A proposed in the previous subsection, to prevent the estimated
relevance distribution R of DSM from drifting too far away from both M and A.

Now, we can add two regularization terms based on |R — Al|; and ||R — M]||1, respec-
tively. 2 We can then formulate an optimization problem using /; norm as:

(R, X") =argmin {[p(R, L)+ (IR - Ally + | R - M|I1) }
R

(14)
st A\ <A<1

_Similar to the regularization term described in Section 4.2, this regularization term
|R — Alj; + ||R — M||; can also push the resultant distribution R* to get close to both
the reference distribution A and the mixture distribution M. The reason why we make
use of the mixture distribution, is to avoid the situation that the output distribution
has less relevance information than the original mixture distribution, in case that the
seed irrelevant distribution to be separated from the mixture one contains too much
relevant information.

The formal solution to the optimization problem presented in Eq. 14 is computa-
tionally intractable. To make this regularization strategy feasible, we propose an ap-
proximate soAlution with two steps. The first step is to solve the first term (/)\f Eq. 14,
i.e.,, ming [p(R, Is)]?. This is the original DSM, and we denote its output as R, and Ao
accordingly. Then, in the second step, we solve the Taxicab metric based optimization

2Here, we adopt the [; norm rather than the previously used /2 norm, since the l> norm based regularization

term for R — A and R — M will result in an approximated solution which linearly combines the mixture
distribution M back for DSM’s output distribution.
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problem as follows:

(R, x*) =argmin {| & — Rolli + | R — Als + | B — M|, }

R (15)
sit. Ap<A<1
The solution to this optimization problem is:
min(M(i), AG)) if Roi) <min(M(), A(i))
R*(i) = ¢ max (M), A(i)) if }A%o(i)>max(M(i),A(i)) (16)

Ro(4) Otherwise

This regularization assures that R*(i) falls in the interval limited by M (i) and A(7),
in order to prevent the estimated value of R*(i) from being too far away from M (7)
or A(i). Specifically, if the output distribution Ry (i) of the basic DSM being too small
(see the first case in Eq. 16) or too large (see the second case in Eq. 16), we let the
estimated value for R* (i) be the intermediate value between M (i) and A(i). Otherwise,

the original Eo(z’) is acceptable as a value of R*(i).
Accordingly, the corresponding linear coefficient \* of R* can be adaptively computed
for each term 7 as:

if R*(i) = A(3)
A1) = 1 if R*(i) = M(i) an
N if RU(i) = Ro(i)
4.4. Incorporating Contextual Information as Evidence of Relevance

Here, we describe a method to construct the reference distribution A (used in the sec-
ond and third regularization algorithms), by extracting a positional dependency-based
context distribution. Specifically, we explore the positional context of query terms in
the feedback documents. Motivated by existing information retrieval models utilizing
positional information [Song et al. 2008; Lv and Zhai 2010; Zhao et al. 2011; He et al.
2011], our intuition is that the words appearing nearer to query terms in the docu-
ments have higher dependencies to query, thus should have higher weights in the true
relevance distribution.

To obtain the positional context distribution, we take a window based approach, i.e.,
only the words co-occurring with a query word within a fixed length window in the
feedback documents are used. Specifically, for each document d, we only choose the
terms that appear at least in one window centered by a query term. With the chosen
words, we reconstruct a new document Recons(d):

Recons(d, o) = {w; € d|3k,w; € Window (g, o)} (18)

where Window(qg, o) is a term sequence within a window centered by a query term g,
o denotes half the window size and w; denotes a term token for the term w.
Formally, this method can be formulated as:

p(w]A) = % Z p(w|Recons(d, ) x Weight(d) (19)
deD

where Weight(d) is the weight of a document. In this article, the weight is the normal-
ized query likelihood of a document (see the next section for details). We also imple-
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Table V. Distributions Obtained by RM

Conditions | Distributions by RM

Dr is the whole feedback document set D Mixture term distribution M

Dr is the relevant feedback document set Dr (Dr C D) Relevance term distribution R
Drp is the irrelevant feedback document set D; (D; = D — Dg) | Irrelevance term distribution I
Dr is the seed irrelevant feedback document set Dy, Seed Irrelevance distribution Ig

mented a kernel-based context distribution, and the prior experiments show that the
window-based distribution outperforms the kernel-based one.

5. DEPLOYMENT OF DSM IN IRRELEVANCE FEEDBACK SCENARIOS

As discussed earlier, the seed irrelevant distribution is one input for DSM. In this
section we present a series of approaches to the seed irrelevance distribution in explicit
and automatic irrelevance feedback scenarios.

5.1. Explicit Irrelevance Feedback

In this paper, we will deploy DSM based on the distributions obtained by Relevance
Model (RM) [Lavrenko and Croft 2001]. The feedback term distribution F' obtained by
RM is formulated as:

pulF) = 3 plja) 2 20)

deDp

where p(w|d) is probability of term w in a document d, p(q|d) is the query likeli-
hood (QL) score of the document d, and Zr = >, . p(qld) is the summed QL
scores over the documents in feedback document set Dr. Since the document prior
p(d) is often assumed as uniform in RM, we omit p(d) in the above formulation. The
feedback distribution can also be smoothed with a collection term distribution C via
p(w|F) = (1 — pc)p(w|F) + pep(w|C).

In the explicit feedback scenario, the seed irrelevant documents can be selected from
a small percentage (e.g., 10%-30%) of top-ranked irrelevant documents in D. In imple-
mentation, we simulate the explicit feedback based on the ground-truth associated to
the test collections [Zhang et al. 2009]. Once we have the seed irrelevant documents
Dy, we can build the seed irrelevance distribution I's by RM based on Eq.20 by setting
Drp as Dy, . To obtain the mixture distribution M and other distributions, one can use
different feedback document set (subject to its availability) illustrated in Table IV.

We adopt a top-down manner, i.e., the highly ranked irrelevant documents (as ap-
posed to the lowly ranked ones) are selected as seeds. This is because, the higher
the documents are in the original ranking, the larger document weights (and thus a
greater impact) they have in construction of the mixture distribution. In RM (Eq. 20),
the normalized score p(q|d)/Z is used as document weight when generating the mix-
ture model. As a consequence, separating the irrelevance model derived from the
highly ranked irrelevant documents (with larger weights) would have more influence
on the DSM process.

5.2. Quality Measurement of Seed Irrelevant Documents

As we explained, a large document weight in the mixture distribution is a character-
istic of “good” irrelevant document. If we know which documents are irrelevant, it is
better to select the top-ranked irrelevant documents as the seed ones. In automatic ir-
relevance feedback, however, such explicit information is not available. Therefore, we
need to design a quality metric for the automatically detected irrelevant documents.
In order to integrate the document weight in the quality measurement and penalize
the quality when the truly relevant documents are selected, we define a metric, namely
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Penalized Weighted Precision of Irrelevance (PWPI):

>aep,. f(d,q) x ¢'(d,q)
PWPI(Dy,,q) = —2P1s Do (21)

where Dy, is the detected irrelevance document set; f(d, ¢) is the document weight of
d in the mixture distribution given the query ¢; and ¢'(d, ¢) = —1 if d is “relevant” to ¢
and 1 otherwise. In RM, the document weight f(d, q) is p(q|d)/ZFr (see Eq. 20). It turns
out that the document weight f(d, q) is the normalized query likelihood p(g|d).

5.3. Automatic Irrelevance Detection

To automatically detect the seed irrelevant documents, we adopt a two-step approach.
First, we re-rank the feedback documents by a re-ranking method. We will investigate
three re-ranking methods, each corresponding to a different ranking strategy, which
will be detailed later in Section 5.3.1. Second, in the re-ranked feedback document
list, since no explicit judgement data is available, we select irrelevant documents in a
bottom-up manner, i.e., considering a number of the low ranked documents as the seed
irrelevant documents.

We adopt this two-step method due to the following reasons. These re-ranking meth-
ods (detailed next) are designed in order to rank the irrelevant documents in the low
positions of the document list. In other words, a re-ranking method, to some extent,
can more reliably place an irrelevant documents at a lower position in the ranking.
After the re-ranking, the lowly ranked documents in the re-ranked list are more likely
to be irrelevant, compared with those in the original rank list. Therefore, in the sec-
ond step, after the re-ranking, we can select the lowly-ranked documents as irrelevant
documents with a higher confidence.

After we get a set of seed irrelevant documents D;_ automatically, we can derive the
seed irrelevance distribution /g, by setting Dr as D;, in Eq.20. It should be noted that
Dy, is not necessarily a subset of D; (which contains the truly irrelevance documents)
in the automatic irrelevance feedback scenario.

5.3.1. Three Re-ranking Methods. We investigate three re-ranking methods, each corre-
sponding to one ranking strategy or technique. We think that such a variety of re-
ranking approaches can help us better understand how to automatically select irrele-
vant documents. The first one is based on the clustering hypothesis [Rijsbergen 1979],
and it re-ranks the feedback documents according to a k-nn similarity score which
considers the dependencies among the k-nearest neighbouring documents. The second
re-ranking method not only considers the document dependencies, but also utilizes
the original relevance scores of feedback documents. For the third method, we adopt a
learning-to-rank approach which can learn a new ranking of the feedback documents
via a learner trained based on several relevance features. Next, we detail these rank-
ing methods.

Outlier-based Re-ranking Method According to the clustering hypothesis [Rijs-
bergen 1979][Tombros and van 2004], the topically-relevant documents tend to cluster
together, while the irrelevant ones would be scattered. By considering the scattered
irrelevant documents as outlier documents, we then propose to use outlier detection
methods to automatically detect the irrelevant documents. In this article, motivated
by the k-nn distance scores [Ramaswamy et al. 2000; Angiulli and Pizzuti 2002], we
adopt the k-nn similarity scores as the indicator for the outlier documents. The smaller
the k-nn similarity score is, the more likely a document is an outlier. A number of most
likely outlier documents are then selected as the seed irrelevance documents. There-
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fore, the re-ranking is based on the k-nn similarity score, which is calculated as

knn_score(d) = Z Cos(d,d;)
di;di€knn(d)

This method is simple and only considers the inter-document similarities. It does not
take into account the original relevance scores of feedback documents. To some extent,
such simplicity could be a benefit: If a re-ranking method is highly dependent on the
original relevance scores (which are proportional to the document weights described
in Section 5.2), these good irrelevant documents with large document weights (ranked
high in the original ranking), are less likely to be re-ranked to the low positions, where
the seed irrelevant documents are selected. Indeed, this observation may not be al-
ways valid and we need to implement other re-ranking approaches that integrates the
original relevance scores, for a systematic investigation.

QPRP-based Re-ranking Method For a re-ranking method closely dependent on
the original relevance scores, we will utilize a Quantum Probability Ranking Prin-
ciple (QPRP) approach which was recently developed for document re-ranking pur-
pose [Zuccon and Azzopardi 2010]. Regardless of QPRP’s quantum motivation, this
method performs well in the re-ranking scenario and its formulation is simple and
neat. It is argued that QPRP can simplify the parameter estimation in the Portfolio
Theory based re-ranking method that also relies on the original relevance scores and
the inter-document dependencies [Wang and Zhu 2009; Zuccon et al. 2010]. Specifi-
cally, QPRP ranks the documents in a greedy manner using the following strategy:

d, = arg max(f(d) + Z I4.4,) (22)
d.€RA

where f(d) is the original relevance score of the current document d and the interfer-

ence term I q_(Igq, = \/f(d)\/f(ds)Cos(d,d;)) encodes the inter-document similarity
between d and previously ranked documents d,., which is initially set to be the top-most
document in the original ranking. As we can see from Eq. 22, if a document is ranked
higher originally and is closely related to a higher re-ranked document, its rank order
will be promoted in its re-ranked list. This strategy implies that a document with a
large document weight and ranked top in the original ranking, is less likely to be in
the low positions of the re-ranked list.

L2R-based Re-ranking Method In addition to the above two methods, we also
adopt a Learning to Rank (L2R) based re-ranking method, which integrates many rele-
vance features and has a principled learning algorithm. Through training of the learn-
ing model, this method is expected to maximize the effectiveness (e.g., MAP) of the
feedback documents. We re-rank feedback documents with the LambdaMART model
(a widely used learning to rank model [Burges 2010]). We think that by adopting this
L2R-based method, we can explore the potential of a re-ranking method as one step
to detect the irrelevant documents. Note that the features we take into account in-
clude several original relevance scores (e.g., query likelihood scores and BM25 scores).
Please see Section 6.2.2 for some set-up details of the L2R based methods.

5.3.2. Discussion on Different Re-ranking Methods. Now we compare the above three re-
ranking methods from two perspectives: algorithm design and ability to detect irrel-
evant documents. From the algorithm design point of view, the Outlier re-ranking
method is the simplest as it just considers the document dependency for the re-ranking
purpose. It does not utilize the original relevance score as used in the other two meth-
ods. The QPRP-based re-ranking method not only considers the document dependency,
but also incorporates the original relevance score. The L2R-based reranking method
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considers various kinds of relevance scores as features and involves a training proce-
dure. This method would be more time-consuming than the other two.

In terms of the ability to detect irrelevant documents, as we described in Section 5.2,
a large document weight, which corresponds to a large original relevance score, in the
mixture distribution is a characteristic of “good” irrelevant document. If a re-ranking
method is dependent on the original relevance score (as in QPRP and L2R-based re-
ranking methods), these “good” irrelevant documents with large document weights and
ranked highly in the original ranking, are less likely to move down to the lower posi-
tions in the re-ranked list. Therefore, a simple outlier method, which is solely based
on outlier scores, may select the seed irrelevant documents more effectively. We will
continue to explore this analysis in Section 6.4.1.

6. EMPIRICAL EVALUATION
6.1. Test Collections

The evaluation involves four standard TREC collections, including WSJ (87-92,
173,252 documents), AP (88-89, 164,597 documents) in TREC Disk 1 & 2, ROBUST
2004 (528,155 documents) in TREC Disk 4 & 5, and WT10G (1,692,096 documents).
These data sets involve a variety of texts, ranging from newswire articles to Web/blog
data. Both WSJ and AP data sets are tested on queries 151-200, while the ROBUST
2004 and WT10G collections are tested on queries 601-700 and 501-550, respectively.
The title field of the queries is used to reflect the typical keyword based search scenar-
ios. The Lemur 4.7 toolkit [Ogilvie and Callan 2002] is used for indexing and retrieval.
All collections are stemmed using the Porter stemmer and stop words are removed in
the indexing process. 2

6.2. Evaluation Set-up

Initially, the top-ranked n (n = 50) * feedback documents D are retrieved by the query-
likelihood (QL) based language model (LM), with Dirichlet prior [Zhai and Lafferty
2001b] set to a fixed value 700. RM is then selected as the baseline for the second-
round retrieval due to the facts that RM is a successful relevance feedback model and
consistently outperforms the standard LM model by 10%-15% [Lavrenko and Croft
2001]. In query expansion models, top 100 terms in the corresponding distributions are
selected as expanded terms. We smooth the RM based distributions with the collection
term distribution with the smoothing parameter ;. being 0.5 [Zhang et al. 2009].

As for the evaluation metric for the retrieval performance, we use the Mean Aver-
age Precision (MAP), which is the mean value of average precision over all queries
and reflects the overall retrieval effectiveness. Top 1000 documents retrieved by the
negative KL-divergence method [Lafferty and Zhai 2001] are used for performance
evaluation. In addition, we use the Wilcoxon significance test to examine the statisti-
cal significance of the improvements over the baseline (baseline model and significant
test results are shown in the result tables).

6.2.1. Set-up for Explicit Irrelevance Feedback. Based on the TREC relevance judgements,
a small percentage (denoted as r,,) of irrelevant documents in D are selected as the
seed irrelevant documents D; , where 7, can be 10%, 20% and 30%. We denote |Dy]|
as the total number of irrelevant feedback documents and choose a number (i.e.,

3In the supplementary appendix, we report some preliminary evaluation results on another test collection,
i.e., query logs from a commercial search engine. The supplementary appendix also includes more results
on different smoothing configurations, parameter sensitivity study, and quality measurement of detected
irrelevant documents.

4We tested various other values for n (e.g., 30, 50, 70) and obtained similar results.
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Table V. Features for Learning to Rank.

ID Features and Descriptions Category
1 >_gicqnd ©(@i, @) in the document d. Q-D

2 >, i (a7) Q

3 > qieqnd (@i, d) - idf (g;) in document d Q-D

4 |d] document length D

5 BM25 score of document d corresponding to g. Q-D

6 LMIR.ABS score of document d corresponding to q. Q-D

7 LMIR.DIR score of document d corresponding to q. Q-D

8 LMIR.JM score of document d corresponding to g. Q-D

round(|Dy| x r,,)) of top-ranked irrelevant documents as the seed irrelevant docu-
ments. The refinement parameter 7 is chosen from the interval [0.4, 1] with increment
0.1 [Zhang et al. 2009].

6.2.2. Set-up for Automatic Irrelevance Feedback. We will also test DSM without explicit
irrelevance information. As for the irrelevant documents detection methods, we use
the Outlier-based method (Outlier), QPRP-based method (QPRP), and L2R-based
method (L2R), described in Section 5.3.1. For each method, we select a number G.e.,
round(|D| x ry)) of irrelevant documents as the seed irrelevant documents, where | D|
is the total number of feedback documents, and r, (r, = 0.1,0.2,0.3) is the ratio of
selected documents in D, with the retrieval results for »,, = 0.3 are reported. The re-
finement parameter n of DSM is fixed as 1, since in automatic irrelevance scenario, the
quality of the seed irrelevance distribution is not good enough and the refinement step
does not work very well. This also motivates and helps us to focus on the investigation
of a formal regularization algorithm.

In the Outlier-based re-ranking method, the parameter & for the k-nn score is set
to 5, while we have similar results when & is 3 or 7. For the QPRP based re-ranking,
there are no free parameters.

For the L2R-based method, we re-rank the pseudo feedback documents for each
query with the LambdaMART model. We extract a series of widely used features from
corresponding document collections and test queries. They are listed in Table V. In the
“Category” column, Q stands for query feature, D stands for document feature, and
Q-D means a query-document pair of features. 5-folds cross validations are conducted
for each dataset. RankLib® is utilized to run the LambdaMART algorithm, in which
“-norm” is set as “zscore”, and all LambdaMART-specific parameters are set as default
values. In BM25 model, ki, k3 and b are free parameters, and we set k; = 2.5, k3 = 0
and b = 0.8. In language models, we set parameter § = 0.7 in LMIR.ABS, p = 2000 in
LMIR.DIR and A = 0.1 in LMIR.JM [Zhai and Lafferty 2001b].

6.2.3. Set-up for Regularization Methods of DSM. For both explicit and automatic irrele-
vance feedback scenarios, we evaluate the regularized DSM (denoted as DSM+) with
three different regularization algorithms. We denote the three regularization methods
described in Section 4 as DSM+SparseReg (for the sparse regularization method in
Section 4.1), DSM+ContextReg (for the contextual distribution A based regularization
in Section 4.2), and DSM+TaxicabReg (for the Taxicab approximation for the regular-
ization using both A and M in Section 4.3), respectively. In the explicit scenario, we
set x in SparseReg and ContextReg to 10. For the scenario where irrelevant documents
are detected automatically, « is set to 450. The evidence distribution used in regular-
ization experiment is the window-based context distribution as described in Section 4.
We fix the window radius o to 5.

Shttps://sourceforge.net/p/lemur/wiki/RankLib/
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6.2.4. Notations of Various Relevance Feedback Methods for Query Expansion. We now sum-
marize the notations used for the methods that are to be evaluated in the experiment.
RM+ denotes RM running on the documents in D — Dy, which is a feedback document
set with seed irrelevant documents (which forms a set D;.) directly removed from
D. DSM- denotes the distribution separation method (DSM) without the refinement
step (i.e., n = 1 in Section 3.3). DSM denotes DSM with refinement step. Therefore,
DSM equals to DSM— when 7 is set to 1 in DSM. DSM+ denotes the regularized DSM
with three regularization algorithms, i.e., sparse regularization (DSM+SparseReg),
contextual regularization (DSM+ContextReg), and Taxicab approximation based reg-
ularization (DSM+TaxicabReg). DSM+q means that after DSM’s regularization, the
estimated relevance distribution is then interpolated with the original query gq.

In both explicit and automatic irrelevance feedback, we will evaluate the above
methods step-by-step for a systematic evaluation. For the automatic irrelevance feed-
back, we compare DSM+ with two strong baselines, namely RM3 and PRM. RMS3 is
a linear combination between the expanded query by RM and the original query ¢
[Abdul-Jaleel et al. 2004]. Positional Relevance Model (PRM [Lv and Zhai 2010]) is a

state-of-the-art that exploits contextual information.

6.3. Effectiveness of DSM and Regularized DSM in Explicit Irrelevance Feedback

Table VI. Evaluation on DSM and Regularized DSM in Explicit Irrelevance Feedback

[[ MAP (chg% over RM) | rn = 0.1 \ rn = 0.2 \ rn = 0.3 |
WSJ8792
RM (baseline) 0.3538 0.3538 0.3538
RM+ 0.3710(+4.86%) 0.3798(+7.35%)“ 0.3872(+9.44%)“
DSM- 0.3693(+4.38%)° 0.3787(+7.04%)" 0.3776(+6.73%)"
DSM 0.3878(+9.61%)*F | 0.4030(+13.91%)>P 0.4056(+14.64%)>P
SparseReg | 0.3902(+10.29%)*F | 0.4045(+14.33%)>F 0.4108(+16.11%)>7
DSM+ | ContextReg | 0.3886(+9.84%)*F | 0.4035(+14.05%)*" 0.4096(+15.77%)>8
TaxicabReg | 0.4007(+13.26%)*° | 0.4115(+16.31%)" 0.4183(+18.23%)>F
APS8889
RM (baseline) 0.3755 0.3755 0.3755
RM+ 0.3939(+4.90%) 0.4042(+7.64%)“ 0.4109(+9.43%)“
DSM- 0.3898(+3.81%)" 0.4004(+6.63%)" 0.4050(+7.86%)"
DSM 0.4024(+7.16%)>P 0.4125(+9.85%)*F 0.4218(+12.33%)>#
SparseReg 0.4033(+7.40%)*" | 0.4174(+11.16%)P 0.4230(+12.65%)8
DSM+ | ContextReg | 0.4031(+7.35%)*% | 0.4167(+10.97%)*" 0.4223(+12.46%)>8
TaxicabReg | 0.4120(+9.72%)*° | 0.4230(+12.65%)" 0.4270(+13.72%)>5
ROBUST2004
RM (baseline) 0.3262 0.3262 0.3262
RM+ 0.3599(+10.33%) 0.3772(+15.63%)> 0.3853(+18.12%)
DSM- 0.3586(+9.93%)° 0.3745(+14.81%)" 0.3797(+16.40%)"
DSM 0.3813(+16.89%)>F | 0.4033 (+23.64%)P 0.4106(+25.87%)>"
SparseReg | 0.3820(+17.11%)*F | 0.4027(+23.45%)>F 0.4106(+25.87%)F
DSM+ | ContextReg | 0.3819(+17.08%)*% | 0.4023(+23.33%)*" 0.4095(+25.54%)>8
TaxicabReg | 0.3930(+20.48%)*7 | 0.4138(+26.85%)" 0.4152(+27.28%)>8
WT10G
RM (baseline) 0.2004 0.2004 0.2004
RM+ 0.2439(+21.71%)~ 0.2419(+20.71%)* 0.2631(+31.29%)>
DSM- 0.2447(+22.11%) 0.2438(+21.66%)~ 0.2609(+30.19%)*
DSM 0.2468(+23.15%)> | 0.2594(+29.44%)P 0.2724(+35.93%)*P
SparseReg 0.2478(+23.65%)™ | 0.2572(+28.34%)>P 0.2697(+34.58%)>
DSM+ | ContextReg | 0.2471(+23.30%)* | 0.2565(+27.99%)>3 0.2695(+34.48%)
TaxicabReg | 0.2581(+28.79%)% | 0.2734(+36.43%)8 0.2949(+47.16%)>F

a and S, respectively, indicate a statistically significant improvement over RM and RM+, at level 0.05
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Fig. 2. Quality of Automatically Detected Irrelevant Documents

Now, we test the retrieval effectiveness of DSM when the seed irrelevant documents
can be obtained from the explicit relevance feedback. The evaluation results are sum-
marized in Table VI. Since we have reported the detailed results of (RM vs. RM+),
(RM+ vs. DSM-) and (DSM- vs. DSM) in [Zhang et al. 2009], we are going to briefly
summarize the results of the above pair-wise comparisons, and mainly describe the
results of (DSM vs. DSM+) in explicit irrelevance feedback scenario.

The results show that RM+ (i.e., RM on D — D;.) can significantly improve RM on
all collections. A trend we can reveal in Table VI is that the larger scale collections and
the larger ratio of irrelevant documents are involved, the larger improvements can
be achieved. RM+ has a similar performance with DSM—, which supports Remark 3.2
about the smoothing configuration. Next, we evaluate the DSM with the refinement
step (described in Section 3.3). The results show that DSM not only significantly out-
performs RM, but also outperforms RM+ and DSM—, which shows the effectiveness of
the refinement step of DSM in explicit irrelevance feedback.

We now examine the effectiveness of the regularized DSM (denoted as DSM+). From
Table VI we can find that the performance of DSM+SparseReg and DSM+ContextReg
are close to that of DSM, while DSM+TaxicabReg achieves the best performance among
the three regularization methods and can outperform DSM. Particularly, on WT10G,
compared with DSM, DSM+ with Taxicab metric based regularization method (Taxi-
cabReg) improves the performance by 4.58%, 5.40% and 8.26%, respectively when r,, is
0.1, 0.2 and 0.3. We can observe that for larger collection, the regularization step can
bring more benefit. The performance difference between three regularization methods
may be due to the following reasons. First, compared with the SparseReg and Contex-
tReg, TaxicabReg utilizes more relevance evidence for the relevance model estimation.
Second, in TaxicabReg, the relevance evidences (e.g., the contextual distribution A)
directly constrain the relevance distribution’s estimation R, leading to an adaptive

solution for \ (see Eq. 17).

6.4. Effectiveness of DSM and Regularized DSM in Automatic Irrelevance Feedback

6.4.1. Results of Quality Measurement of Detected Seed Irrelevant Documents. In automatic
irrelevance feedback scenario, the quality measurement results of the detected irrele-
vant documents using three automatic detection methods are shown in Figure 2. The
three methods are Outlier, QPRP and L2R, respectively (see Sections 6.2.3 and 5.3.1
for detailed descriptions).
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Table VII. Evaluation on DSM and Regularized DSM using Automatic Detection Method

MAP (chg% over RM) WSJ8792 AP8889 ROBUST2004 WT10G
RM (baseline) 0.3538 0.3755 0.3262 0.2004
Irrelevant Documents Detection Method: OutlierD

RM+ 0.3635(+2.74%)> 0.3896(+3.75%)“ 0.3362(3.03%)~ 0.1996(-0.40%)

DSM- 0.3683(+4.10%)“ 0.3904(+3.97%)~ 0.3401(4.23%)~ 0.2036(+1.60%)

DSM 0.3683(+4.10%)~ 0.3904(+3.97%)~ 0.3401(+4.26%)~ 0.2036(+1.60%)
SparseReg 0.3547(+0.25%) 0.3805(+1.33%) 0.3423(+4.94%)~ 0.2244(+11.98%)>P

DSM+ | ContextReg 0.3546(+0.23%) 0.3808(+1.41%) 0.3426(+5.03%)~ 0.2241(+11.83%)~#
TaxicabReg | 0.83819(+7.94%) | 0.3966(+5.62%)*8 | 0.83560(+9.14%)# 0.2162(+7.88%)>5

Irrelevant Documents Detection Method: QPRP

RM+ 0.3539(-0.02%) 0.3754(-0.02%) 0.3287(+0.74%) 0.2037(+1.65%)
DSM-— 0.3540(+0.06%) 0.3815(1.60%) 0.3363(+3.10%“ 0.2005(+0.05%)
DSM 0.3540(+0.06%) 0.3815(+1.60%) 0.3363(+3.10%“ 0.2005(+0.05%)
SparseReg 0.3580(+1.19%) 0.3708(-1.25%) 0.3421(+4.87%)*P | 0.2320(+15.77%)*P
DSM+ | ContextReg 0.3583(+1.27%) 0.3741(-0.37%) 0.3442(+5.52%)8 0.2324(+15.97%)>8
TaxicabReg | 0.3764(+6.39%)*P | 0.3949(+5.17%)*F | 0.3622(+11.04%)°8 | 0.2313(+15.42%)8

Irrelevant Documents Detection Method: L2R

RM+ 0.3560(+0.62%) 0.3728(-0.72%) 0.3251(-0.37%) 0.2054(+2.50%)“

DSM- 0.3547(0.25%) 0.3743(-0.32%) 0.3305(+1.32%) 0.2031(+1.35%)

DSM 0.3547(0.25%) 0.3743(-0.32%) 0.3305(+1.32%) 0.2031(+1.35%)
SparseReg 0.3561(+0.65%) 0.3674(-2.16%) 0.3401(+4.26%)>P 0.2331(+16.32%)>?

DSM+ | ContextReg | 0.3565(+0.76%) 0.3678(-2.05%)" 0.3410(+4.54%)8 | 0.2333(+16.42%)#
TaxicabReg | 0.3762(+6.33%)>° | 0.3886(+3.49%)*% | 0.8508(+7.54%)*53 | 0.2373(+18.41%)>8

« and f3, respectively, indicate a statistically significant improvement over RM and RM+, at level 0.05

The quality results for Outlier are the best in terms of the evaluation based on av-
eraged PWPI over queries. This observation is a little surprise but is generally con-
sistent with our analysis in Section 5.3.1, where we discussed the advantages of the
outlier method: it does not take into account the original relevance scores of feedback
documents, as QPRP and L2R do. If a re-ranking method is highly dependent on the
original relevant score, these good irrelevant documents with large document weights
and ranked top in the original ranking, are less likely to be ranked in the low positions
in the re-ranked list. Therefore, a simple outlier detection method whose re-ranked
list is solely based on outlier scores, may select those document with large document
weight (with top positions in the original rank) as seed irrelevant documents, which
helps improve the values of the penalized weighted precision of irrelevance (PWPI).
The PWPI-based irrelevance quality measurement results are also consistent with the
retrieval performances of DSM in Table VII, which we will analyze next.

6.4.2. Results of DSM and Its Regularization using Irrelevant Documents Automatically Detected.
The results of this set of experiments are summarized in Table VII. We can see that
in the automatic detection scenario, DSM and its regularization methods still work
well and can outperform RM+. In addition, we can observe that the Outlier method
achieves better performance among these three automatic irrelevance detection meth-
ods, and this observation is also consistent with the quality measurement results we
just discussed above.

We now report the pairwise comparison results. Firstly, we compare RM and RM+
for each irrelevant documents detection method. For Outlier method, RM+ outper-
forms RM on most of the datasets significantly except for WT'10G. These results imply
that, the irrelevant documents detected by the Outlier method have a relatively good
quality, and the direct removal of them from the feedback documents benefits the es-
timation of a better relevance model. In comparison, QPRP or L2R may not provide
useful irrelevant documents.
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Table VIII. Evaluation on DSM and Regularized DSM Combined with Original Query in Automatic Irrelevance
Feedback

MAP (chg% over RM3) WSJ8792 AP8889 ROBUST2004 WT10G
RM3 (baseline) 0.3717 0.3899 0.3491 0.2332
Irrelevant Documents Detection Method: OutlierD
SparseReg 0.3828(+2.99%)7 | 0.4023(+3.18%)7 0.3550(+1.69%) 0.2318(-0.60%)
DSM+q | ContextReg | 0.3837(+3.23%)" 0.4006(+2.74%) 0.3520(+0.83%) 0.2308(-1.03%)
TaxicabReg | 0.3839(+3.28%)7 | 0.3995(+2.46%)" | 0.3591(+2.86%)" 0.2207(-5.36%)
Irrelevant Documents Detection Method: QPRP
SparseReg 0.3868(+4.06%)" 0.4013(+2.92%)" 0.3560(+1.98%)" 0.2369(+1.59%)
DSM+q | ContextReg | 0.3851(+3.61%)7 | 0.4012(+2.90%)” | 0.3559(+1.95%)" 0.2373(+1.76%)
TaxicabReg | 0.3858(+3.79%)" | 0.4048(+3.82%)” | 0.3648(+4.50%)" | 0.2423(+3.90%)"
Irrelevant Documents Detection Method: L2R
SparseReg 0.3883(+4.47%)7 | 0.4008(+2.80%)" 0.3529(+1.09%) 0.2405(+3.13%)”
DSM+q | ContextReg | 0.3880(+4.39%)" | 0.3973(+1.90%) 0.3520(+0.83%) 0.2402(+3.00%)"
TaxicabReg | 0.3815(+2.64%)" | 0.4008(+2.80%)” | 0.3568(+2.21%)” | 0.2503(+7.33%)"
~ indicates statistically significant improvement over RM3 at level 0.05.

Similar to the explicit feedback scenario, in the automatic scenario, the perfor-
mances of DSM- and RM+ are also very close, which is guaranteed by the theoreti-
cal analysis in Section 3.1. When we compare DSM and DSM-, we find that in the
automatic detection scenario, the refinement of DSM is not helpful when the seed ir-
relevant data is of low quality. We then fix n as 1 (i.e., DSM- is equivalent to DSM),
to help us focus on the DSM’s regularization methods. The results show that DSM
with Outlier detection can significantly outperform the baseline on some collections.
Specifically, DSM with Outlier detection outperforms RM by 4.10%, 3.97% and 4.26%
on WSJ8792, AP8889 and ROBUST2004, respectively.

Now we compare the DSM and DSM+ with three regularization methods. We find
that the DSM with sparse regularization (SparseReg) and contextual regularization
(ContextReg) show stable improvements over DSM on ROBUST2004 and WT10G,
while their performance on the other smaller datasets do not show much improve-
ment. In contrast, DSM with a Taxicab approximated regularization (TaxicabReg) can
stably improve DSM on most of the datasets. Specifically, for DSM+TaxicabReg with
Outlier methods, it can outperform RM by 7.94%, 5.62%, 9.14% and 7.88% respec-
tively on WSJ8792, AP8889, ROBUST2004 and WT10G. It shows that the regulariza-
tion method (especially the Taxicab based one) can work well when the seed irrelevant
documents are detected automatically.

As for the parameter settings of the three regularization algorithms. Taxicab algo-
rithm does not have an adjustable parameter in its formulation, while the other two
algorithms have a parameter x to control the degree of regularization. In the explicit
scenario, x was set to 10 since the DSM’s performance is already very good and a small
k acts a fine tuning role. In the automatic scenario, however, the performance of DSM
is not good enough due to the relatively low quality of the detected irrelevant docu-
ments. Therefore, we need a larger x, e.g., 450 (used in the reported experiments), to
make more influence on the original optimization problem. As we see in the results, a
large x for SparseReg and ContextReg may be not stable across different collections.
On the other hand, TaxicabReg, which is free of adjustable parameter and directly
integrates multiple evidences, is effective to improve the performance stability across
different collections.

6.4.3. Comparisons with RM3 and PRM. Now, we adopt RM3 as a baseline. For a fair
comparison, we combine the query expansion model given by the regularized DSM
with the original query model, and denote the interpolated model as DSM+q. We first
select the optimal interpolation parameter value in the interval [0,1] with increment
0.1 to obtain the best performance for RM3 on each collection. We then use the same
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Table IX. Comparison of Regularized DSM (in Automatic Irrelevance Feedback) and Positional Relevance Model

MAP(chg% over PRM) WSJ8792 AP8889 ROBUST2004 WT10G
PRM (baseline) 0.3572 0.3907 0.3344 0.2108
DSM+ SparseReg 0.3547(-0.70%) 0.3805(-2.61%) | 0.3423(+2.36%)* | 0.2244(+6.45%)*
(rn =0, ContextReg 0.3546(-0.73%) 0.3808(-2.53%) | 0.3426(+2.45%)* | 0.2241(+6.31%)*
OutlierD) | TaxicabReg | 0.3819(+6.91%)** | 0.3966(+1.51%) | 0.3560(+6.46%)* | 0.2162(+2.56%)*

* indicates statistically significant improvement over PRM at level 0.05
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Fig. 3. Comparison of Regularized DSM (in Automatic Irrelevance Feedback) and Positional Relevance
Model

parameter value for the regularized DSM. The results are reported in Table VIII. We
can find that in most cases DSM+q can significantly outperform RMS3.

Positional Relevance Model (PRM) [Lv and Zhai 2010] is a representative pseudo-
relevance feedback method that exploits term positions and proximity. We implement
PRM1 proposed in [Lv and Zhai 2010] with the window size parameter carefully tuned,
and the best performances of PRM on each collection are reported. For automatic ir-
relevance feedback, as shown in Table IX and Figure 3, compared with PRM, DSM+
(with TaxicabReg) achieves significantly better performances on most collections.

6.5. Summary of Main Findings

In the explicit scenario, RM+ usually outperforms RM. This verifies our assumption
that the removal of irrelevant feedback documents can benefit the query model es-
timation. As for the automatic scenario, RM+ does not achieve stable improvements
over RM, which indicates that the automatically detected irrelevant documents are
not good enough. RM+ with different automatic detection methods show different per-
formance, and in general the outlier-based method achieves the best performance. The
performance of DSM- is close to that of RM+. This is consistent with our theoretical
analysis in Section 3.1 and demonstrates that the basic DSM (without the refinement)
can separate the seed irrelevance distribution from the mixture distribution. DSM—
performs well in explicit irrelevance feedback. However, with the same problem as
RMH+, it does not work stably for the automatic irrelevance feedback, leaving a room
for developing advanced algorithms to improve the performance.

The difference between DSM and DSM- is that DSM has a refinement step with
an adjustable parameter 7. In the explicit scenario, DSM can significantly outperform
DSM-—, showing that the distribution refinement is helpful to improve retrieval perfor-
mance. In contrast, for the automatic scenario, DSM’s refinement step does not help
much. This motivates us to investigate formal regularization methods for the further
improvement. DSM+ with three regularization algorithms can help improve the origi-
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nal DSM. Compared with SparseReg and ContextReg, TaxicabReg can be more helpful
to significantly and stably improve the retrieval performance in both explicit and au-
tomatic scenarios. When we further compare DSM with two strong baselines, namely
RM3 and PRM, the results in automatic scenario show that DSM+q can significantly
outperform RM3, and DSM+ can also significantly outperform PRM.

7. DISCUSSION
7.1. Discussion of Graded Relevance

In this paper, we assume that the relevance is binary, i.e., a document is either rele-
vant or irrelevant. Therefore, the DSM’s theoretical analysis in the previous section
is concerned with three distributions: relevance, irrelevance and their mixture. From
a more general point of view, relevance can be graded, and some test collections have
already incorporated such graded relevance. Theoretically speaking, it is possible to
incorporate the relevance grades into the DSM framework. For example, one possi-
ble solution is that we adjust the linear combination assumption in Eq. 1, so that the
mixture distribution is combined by graded distributions, e.g., irrelevant distribution,
moderately relevant distribution and highly relevant distribution. The procedure of
DSM can be divided into two steps: separating irrelevant distribution from the mix-
ture distribution first, and then separating moderately relevant distribution from the
remained distribution.

For some applications, the irrelevant distribution may be mixed with a moderately
relevant distribution, or with a highly relevant distribution, leading to different mix-
ture distributions. DSM can then be applied directly, with different input mixture dis-
tributions. One problem is that, intuitively, separating a irrelevant distribution from a
moderately relevant distribution can be more difficult than that from a highly relevant
distribution. The seed irrelevance distribution may be more distinct from the highly
relevant distribution, while the moderately relevant distribution can be less easily
distinguished from the irrelevant distribution, especially when the quality of seed ir-
relevance distribution is not satisfactory. We will investigate this problem in-depth in
our future work.

7.2. Discussion of Iteratively Updated DSM

As afore-mentioned, the basic theoretical framework of DSM can be generalized, re-
sulting in variants of DSM that may be useful for other application scenarios. An in-
teresting scenario would be that the relevance distribution estimated by DSM can be
iteratively updated, in order to approximate the true relevance distribution more ac-
curately. In such a scenario, a user or a simulated user picks irrelevant documents in
each loop and accordingly the DSM iteratively separates the irrelevant term distribu-
tion from the mixture distribution. This approach could be applicable to online search
engines, since a large number of online users can contribute to the iterative updating
procedure. In this sense, DSM can make the search system evolutionary. This is simi-
lar to an active learning procedure, where a number of research problems could arise,
e.g., a quality control of the iteratively updated irrelevant distribution, the new cost
function in terms of the effort from the user’s point of view, the estimation precision
from the system’s perspective, and the time cost spent in the iterative process.

8. CONCLUSIONS AND FUTURE WORK

This article aims to substantially enrich and advance a novel Distribution Separation
Method (DSM). The basic idea of DSM is to separate a seed irrelevance term distri-
bution from a mixture term distribution (derived from all feedback documents), and
endeavor to yield a good approximation of the true relevance term distribution, given
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a seed irrelevance distribution. When the seed irrelevant documents are obtained by
the explicit irrelevance feedback, DSM achieved good retrieval performance according
to TREC evaluation results.

In this paper, we have developed a regularization framework with three algorithms,
each with a regularization term added in the objective function of the original DSM.
The first two algorithms can be feasibly computed. The third algorithm is computation-
ally intractable, for which we developed an approximation solution that corresponds
to a minimization for an optimization problem based on the Taxicab metric.

In addition, we have broadened the application scenarios of the original DSM, in-
cluding both explicit irrelevance feedback to pseudo (automatic) irrelevance feedback.
We have developed three re-ranking based methods for the automatic detection of seed
irrelevant documents. To measure the quality of automatically detected irrelevant doc-
uments, we also proposed a quality metric and conducted a separate evaluation on
quality of the irrelevant documents. This evaluation is helpful for investigating the
irrelevance detection issue in-depth.

For the empirical evaluation, we have constructed a series of step-by-step perfor-
mance comparisons between two different methods/configurations. In this way, we can
observe the contribution of each method or a component of DSM. Based on these obser-
vations, we summarize our main findings in Section 6.5. DSM and its regularization
methods can work well in explicit irrelevance feedback. With the help of proposed au-
tomatic irrelevant documents detection methods, the DSM, and particularly the reg-
ularized DSM, can achieve good performance in the automatic irrelevance feedback
scenario. In the automatic scenario, DSM+ even significantly outperforms two strong
baselines, namely RM3 and PRM.

It is worth mentioning that the core algorithms of DSM and its regularization are
based on probability distributions rather than documents. Generally speaking, in our
future work, DSM and its regularized versions are expected to be also applicable to
other IR tasks or other fields, since there is no restriction in DSM that the distribution
should only be about query terms or expanded query terms. For example, the relevance
distribution can be obtained in the implicit feedback scenario, and it is interesting to
construct more systematic study on DSM in the implicit scenario. In addition, for other
dimensions of relevance, e.g., novelty and diversity, the relevance term distributions
can be also better derived and approximated, by applying DSM on the corresponding
mixture distributions and seed irrelevant ones.

The current version of DSM is limited to binary relevance. In the future, we plan to
investigate the generalized DSM with graded relevance. The iteratively updated DSM
using the active learning approach is also an interesting research topic. Furthermore,
we will investigate the adaptation and application of DSM to other applications, such
as online tweets filtering.
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