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ABSTRACT
Modern conflict-driven clause-learning (CDCL) Boolean SAT
solvers provide efficient automatic analysis of real-world fea-
ture models (FM) of systems ranging from cars to operat-
ing systems. It is well-known that solver-based analysis of
real-world FMs scale very well even though SAT instances
obtained from such FMs are large, and the corresponding
analysis problems are known to be NP-complete. To better
understand why SAT solvers are so effective, we systemati-
cally studied many syntactic and semantic characteristics of
a representative set of large real-world FMs. We discovered
that a key reason why large real-world FMs are easy-to-
analyze is that the vast majority of the variables in these
models are unrestricted, i.e., the models are satisfiable for
both true and false assignments to such variables under the
current partial assignment. Given this discovery and our un-
derstanding of CDCL SAT solvers, we show that solvers can
easily find satisfying assignments for such models without
too many backtracks relative to the model size, explaining
why solvers scale so well. Further analysis showed that the
presence of unrestricted variables in these real-world models
can be attributed to their high-degree of variability. Addi-
tionally, we experimented with a series of well-known non-
backtracking simplifications that are particularly effective in
solving FMs. The remaining variables/clauses after simplifi-
cations, called the core, are so few that they are easily solved
even with backtracking, further strengthening our conclu-
sions. In contrast to our findings, previous research charac-
terizes the difficulty of analyzing randomly-generated FMs
in terms of treewidth. Our experiments suggest that the
difficulty of analyzing real-world FMs cannot be explained
in terms of treewidth.

CCS Concepts
•Software and its engineering → Software product
lines;
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1. INTRODUCTION
Feature models (FM) are widely used to represent the

variablility and commonality in product lines and reusable
software, first introduced in 1990 [12]. Feature models de-
fine all the valid feature configurations of a product line,
whether it be a car or software. The process of feature mod-
eling helps to ensure that relevant features are reusable, and
unused features are removed to lower the complexity of the
system under design [9]. Promoting the reuse of features
shortens the time of delivering new products and lowers the
cost of production. Such models can be automatically ana-
lyzed using conflict-driven clause-learning (CDCL) Boolean
SAT solvers to detect inconsistencies or errors in the design
process of a product, thus lowering the cost of production.

Modern CDCL Boolean SAT solvers are known to effi-
ciently solve many large real-world SAT instances obtained
from a variety of domains such as software testing, pro-
gram analysis, and hardware verification. More recently,
inspired by the success of SAT solvers in other domains,
many researchers proposed the use of solvers to analyze fea-
ture models [2, 3, 4]. Subsequently, solvers have been widely
applied to perform all manner of analysis on feature mod-
els, and have proven to be surprisingly effective even though
the kind of feature model analysis discussed here is an NP-
complete problem. Furthermore, real-world FMs tend to
be very large, often running into hundreds of thousands of
clauses and tens of thousands of variables. This state of
affairs has perplexed practitioners and theoreticians alike.
Problem Statement: Hence, the problem we address in
this paper is “Why is CDCL SAT-based analysis so effective
in analyzing large real-world FMs?”
Contributions: Here we describe the contributions made
in this paper.

1. We found that the overwhelming number of variables oc-
curing in real-world FMs (or its equivalent Boolean for-
mula) that we studied are unrestricted. We say that a
variable v in a Boolean formula φ given partial assign-
ment S is unrestricted if there exist two satisfying ex-
tensions of S (i.e., extensions of the partial assignment
of S to all variables in φ such that φ is satisfiable), one
with v = true and the other with v = false. Intuitively,
an unrestricted variable does not cause modern CDCL
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SAT solvers to backtrack because under the given par-
tial assignment, the solver cannot assign the unrestricted
variable to a wrong value. This is important because if
the number of backtracks a solver performs remains small
relative to the size of inputs, then the solver is likely to
scale very well for such class of inputs. Indeed, this is ex-
actly what we observed in our experiments, CDCL SAT
solvers perform very few, near-constant, number of back-
tracks even as the size of FMs increase. Prior to our
findings, there was no known reason to believe that a
majority of variables in real-world FMs are unrestricted.
Note that in CDCL SAT solvers, the number of back-
tracks can be worst-case exponential in the number of
Boolean variables. Hence, our finding of the link between
large number of unrestricted variables in real-world FMs
and near-constant number of backtracks by CDCL solvers
in solving such instances goes to the heart of the ques-
tion posed in the paper. Modern CDCL SAT solvers con-
tain many features that improve their performance. We
found that switching off these features, excluding Boolean
constraint propagation (BCP) and backjumping, had no
negative impact on performance while solving FMs. This
observation is consistent with the fact that the vast ma-
jority of variables in real-world FMs are unrestricted.

2. We also investigated the possible source of unrestricted
variables in real-world FMs. We observed that the large
percentage of unrestricted variables in real-world FMs is
attributable to the high variability in such models. We
say that an FM has high variability if a large number of
features occuring in such a model are optional, i.e., one
can obtain a valid product configuration irrespective of
whether such features are selected. Indeed, this obser-
vation is consistent with the fact that FMs capture all
configurations of a product line, whereas deriving a valid
product from such models only require relatively few fea-
tures to be present.

3. We implemented numerous well-known non-backtracking
simplifications from SAT literature. These techniques
are invoked as a pre-processing step, prior to calling the
solver. Often these simplifications completely solve such
instances. There are few instances where these simplifi-
cations did not completely solve the input FMs, and in-
stead returned a very small simplified formula, we call a
core. These cores tend to consist largely of Horn clauses,
that are subsequently easily solved by solvers with near-
constant number of backtracks in the worst-case. The
point of these experiments was not to suggest new tech-
niques, but to further test our hypothesis that SAT-based
analysis of FM is easy by demonstrating the effectiveness
of polynomial-time simplifications on the FM inputs. The
main simplifications are based on resolution which is the
basis of CDCL solvers. Efficient implementations of such
simplification techniques are part of many modern CDCL
SAT solvers such as Lingeling or Glucose.

4. Following previous work by Pohl et al. [19], we performed
experiments to see if the treewidth of graphs of the for-
mulas correlates with solver running time. We found that
for large real-world FMs the correlation is weak.

5. We also developed a technique for generating hard arti-
ficial FMs to better understand the different characteris-

tics between easy, large, real-world FMs vs. hard, small,
artificial ones.

Prior to our discovery, it was not obvious why SAT-based
analysis is so effective for real-world FMs. Our findings pro-
vide strong evidence supporting the thesis presented in the
paper. We believe the questions we posed are important to
better understand the conditions under which SAT solvers
perform efficiently, guiding future research in technique de-
velopment. Our findings are especially relevant for variabil-
ity aware static analysis, which require making thousands
of SAT queries on the FM. Further, it is possible that SAT
solvers do not perform well on feature models for some spe-
cific future real-world problems; the findings in this paper
will be helpful to identify such challenges and their solu-
tions. Additionally, we want to emphasize that all the FMs
in our experiments are obtained from a diverse set of large
real-world applications [6, 7], including a large FM based off
the Linux kernel configuration model.

2. BACKGROUND

This section provides the necessary background on FMs
and the use of SAT solvers in analyzing them.

2.1 Feature Models (FM)
Structurally, a FM looks like a tree where each node rep-

resents a distinct feature. The terms node and feature will
be used interchangeably. Child nodes have two flavours:
mandatory (the child feature is present if and only if the
parent feature is present) and optional (if the parent fea-
ture is present then the child feature is optional, otherwise
it is absent). Parent nodes can also restrict its children with
feature groups: or (if the parent feature is present, then at
least one of its child features is present) and alternative (if
the parent feature is present, then exactly one of its child
features is present). These are the structural constraints
between the child and the parent.

Structural constraints are often not enough to enforce the
integrity of the model, in which case cross-tree constraints
are necessary. Cross-tree constraints have no restrictions like
structural constraints do, and can apply to any feature re-
gardless of their position in the tree-part of the model. For
this paper, cross-tree constraints are formulas in proposi-
tional logic where features are the variables in the formulas.
Two examples of common cross-tree constraints are A → B
(A requires B) and A → ¬B (A excludes B).

2.2 SAT-based Analysis of Feature Models
The goal of SAT-based analysis of FMs is to find an assign-

ment to the features such that the structural and cross-tree
constraints are satisfied. It turns out that there is a natural
reduction from feature models to SAT [2]. Each feature is
mapped to a Boolean variable, the variable is true/false if
the feature is selected/deselected. The structural and cross-
tree constraints are encoded as propositional logic formulas.
The SAT solver can answer questions like whether the fea-
ture model encodes no products. The solver can also be
adapted to handle product configuration: given a set of fea-
tures that must be present and another set of features that
must be absent, the solver will find a product that satsifies
the request or answer that no such product exists. Opti-
mization is also possible such as finding the product with the



Model Variables Clauses Horn (%) Anti-Horn (%) Binary (%) Other (%)
2.6.28.6-icse11 6888 343944 7.54 50.80 6.19 47.29
2.6.32-2var 60072 268223 61.81 70.66 27.02 5.01
2.6.33.3-2var 62482 273799 63.24 70.05 27.74 5.08
axTLS 684 2155 71.04 52.99 25.85 7.19
buildroot 14910 45603 76.78 61.81 40.24 2.68
busybox-1.18.0 6796 17836 79.79 56.91 37.25 1.94
coreboot 12268 47091 82.67 68.53 45.73 0.59
ecos-icse11 1244 3146 92.59 73.36 73.27 6.64
embtoolkit 23516 180511 29.06 87.65 17.81 0.34
fiasco 1638 5228 84.87 52.85 38.49 1.42
freebsd-icse11 1396 62183 8.25 84.79 2.63 9.52
freetz 31012 102705 76.56 52.35 34.60 3.04
toybox 544 1020 90.49 67.75 46.76 0.00
uClinux-config 11254 31637 69.23 63.42 30.73 0.96
uClinux 1850 2468 100.00 75.04 50.00 0.00

Table 1: Clause and variable count of real-world FMs. The last four columns counts the percentage of
clauses with the specified property. “Other” are clauses that are neither Horn, anti-Horn, nor binary. The
percentages do not sum to 100% because Horn, anti-Horn, binary, and other are not disjoint.

highest performance, although for this we need optimization
solvers, multiple calls to a SAT solver, and/or bit-blasting
the feature model attributes’ integer values into a Boolean
formula. Dead features, features that cannot exist in any
valid products, can also be detected using solvers. More
generally, SAT solvers provide a variety of possibilities for
automated analysis of FMs, where manual analysis may be
infeasible. Many specialized solvers [10, 11, 23] for FM anal-
ysis have been built that use SAT solvers as a backend. It
is but natural to ask why SAT-based analysis tools scale so
well and are so effective in diverse kinds of analysis of large
real-world FMs. This question has been studied with ran-
domly generated FMs based on realistic parameters [16, 20,
19] where all the instances were easily solved by a modern
SAT solver. In this paper, we are studying large real-world
FMs to explain why they are easy for SAT solvers.

3. EXPERIMENTS AND RESULTS
In this section, we describe the experiments that we con-

ducted to better understand the effectiveness of SAT-based
analysis of FMs. We assume the reader is familiar with the
translation of FMs to Boolean formulas in conjunctive nor-
mal form (CNF), which is explained in many papers [6, 7].

3.1 Experimental Setup and Benchmarks
All the experiments were performed on 3 different com-

parable systems whose specs are as follows: Linux 64 bit
machines with 2.8 GHz processors and 32 GB of RAM.

Table 1 lists 15 real-world feature models translated to
CNF from a paper by Berger et al. [8]. The number of
variables in these models range from 544 to 62470, and the
number of clauses range from 1020 to 343944. Three of the
models, the ones named 2.6.*, represent the Linux kernel
configuration options for the x86 architecture. A clause is
binary if it contains exactly 2 literals. If every clause is bi-
nary, then the satisfiability problem is called 2-SAT and it
is solvable in polynomial time. A clause is Horn/anti-Horn
if it contains at most one positive/negative literal. If ev-
ery clause is Horn, then the satisfiability problem is called
Horn-satisfiability and it is also solvable in polynomial time
(likewise for anti-Horn). Binary/Horn/anti-Horn clauses ac-
count for many of the clauses, but not overwhelmingly. Lots
of Horn and anti-Horn clauses does not necessarily imply a
problem is easy. For example, every clause in 3-SAT is ei-
ther Horn or anti-Horn yet we currently do not know how
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Figure 1: Solving times for real-world feature mod-
els with Sat4j.

to solve 3-SAT efficiently in general.
The real-world models we consider are also very complex

at the syntactic level. For example, 5814 features in the
Linux models declare a feature constraint, which, on av-
erage, refers to three other features. As shown by Berger
et al. [8], these real-world feature models have significantly
different characteristics than those of the randomly gener-
ated models used in previous studies [16, 19]. In particu-
lar, Mendonca et al. [16] generated models with cross-tree
constraint ratio (CTCR) of maximum 30%, i.e., the per-
centage of features participating in cross-tree constraints.
They also showed that models with higher CTCR tend to
be harder. The real-world feature models we use have much
higher CTCR, ranging from 46% to 96% [8]. Hence, given
the semantics of these real-world FMs, not to mention their
size, it was not a priori obvious at all that such models would
be easy for modern CDCL solvers to analyze and solve.

3.2 Experiment: How easy are real-world FMs
Figure 1 shows the solving times of the real-world feature

models with the Sat4j solver [14] (version 2.3.4). With the
default settings, the hardest feature model took a little over
a second to solve. Clearly, the size of these feature models
is not a problem for Sat4j. Modern SAT solvers have (at
least) 4 main features that contribute to their performance:
conflict-driven clause learning with backjumping, random
search restarts, Boolean constraint propagation (BCP) us-
ing lazy data structures, and conflict-based adaptive branch-
ing called VSIDS [13]. Many modern solvers also implement



Model Variables Solutions

axTLS 684 2142

busybox-1.18.0 6796 2720

coreboot 12268 2313

ecos-icse11 1244 2418

embtoolkit 23516 2725

fiasco 1638 248

freebsd-icse11 1396 21043

toybox 544 257

uClinux-config 11254 21388

uClinux 1850 2303

Table 2: The variability in real-world feature mod-
els, counted by sharpSAT. The computation finished
for 10 of the 15 models.

pre-processing simplification techniques. Sat4j implements
all these features except pre-processing simplifications. Fig-
ure 1 shows the running time after turning off 3 of these
features, but the running times did not suffer significantly.
BCP is surprisingly effective for real-world feature models.
The efficiency even without state-of-the-art techniques sug-
gests that real-world FMs are easy to solve.

3.3 Experiment: Hard artificial FMs
The question we posed in this experiment was whether it

is possible to construct hard artificial FMs, and if so what
would their structural features be. Indeed, we were able to
construct small feature models that are very hard for SAT
solvers. The procedure we used to generate such models is
as follows:

1. First, we randomly generate a small and hard CNF for-
mula. One such method is to generate random 3-SAT
with a clause density of 4.25. It is well-known that such
random instances are hard for a CDCL SAT solver to
solve [1]. We then used such generated problems as the
cross-tree constraints for our hard FMs.

2. Second, we generate a small tree with only optional fea-
tures. The variables that occur in the cross-tree con-
straints from the first step are the leaves of the tree.

The key idea in generating such FMs is that for any pair
of variables in the cross-tree constraints, the tree does not
impose any constraints between the two. The problem then
is as hard as the cross-tree constraints because a solution for
the feature model is a solution for the cross-tree constraints
and vice-versa. Using this technique, we can create small
feature models that are hard to solve. Unlike these hard
artifical FMs, the cross-tree constraints in large real-world
FMs are evidently easy to solve. We also noted that the
proportion of unrestricted variables in hard artificial FMs is
relatively small.

3.4 Experiment: Variability in real-world FMs
Feature models capture variability, and we believe that

the search for valid product configuration is easier as vari-
ability increases. We hypothesized that finding a solution
is easy, when the solver has numerous solutions to choose
from. We ran the feature models with sharpSAT [24], a tool
for counting the exact number of solutions. The results are
in Table 2. We found that real-world FMs display very high
variability, i.e., have lots of solutions.

Variability is the reason feature models exist. The feature
groups and optional features increase the variability in the

model, and the results in Table 2 suggests the variability
grows exponentially with the size of the model measured
in number of variables. High variability in real-world FMs
should have structural properties that make them easy to
solve.

3.5 Experiment: Why solvers perform very
few backtracks for real-world FMs

The goal of this experiment was to ascertain why solvers
make so few backtracks while solving real-world FMs. First,
observe that when a solver needs to make new decision, it
must guess the correct assignment for the decision variable-
in-question under the current partial assignment in order to
avoid backtracking. Also observe that if a decision variable
is unrestricted then either a true or a false assignment to
such a variable would lead to a satisfying assigment. In
other words, a preponderance of unrestricted variable in an
input formula to a solver implies that the solver will likely
make few mistakes in assigning values to decision variables
and thus perform very few backtracks during solving.

Given the above line of reasoning, we designed an exper-
iment that would increase our confidence in our hypothesis
that a vast majority of the variables in real-world FMs are
unrestricted, and that the presence of these large number
of unrestricted variables explains why SAT solvers perform
very few backtracks while solving real-world FMs. The ex-
periment is as follows: whenever the solver branches on a
decision or backtracks (i.e., when the partial assignment
changes), we take a snapshot of the solver’s state. We
want to examine how many unassigned variables are un-
restricted/restricted. This requires copying the state of the
snapshot into a new solver and checking if there are indeed
solutions in both assignment branches of the variable under
the current partial assignment, in which case the variable-
in-question is unrestricted. If only true branch (resp. false
branch) has a solution, then it is a postively restricted (resp.
negatively restricted) variable. If neither branch has a solu-
tion, then the current partial assignment is unsatisfiable.

Figure 2 shows how the unrestricted variables for one
Linux-based feature model change over the course of the
search. The red area denotes unrestricted variables. If the
solver branches on a variable in the red region, the solver
will remain on the right track to finding a solution. The
blue/green area denotes restricted variables. If the solver
branches on a variable in the blue/green region, the solver
must assign the variable the correct value. 1 The 15 real-
world feature models have very large red regions.

A large amount of unrestricted variables suggests that
the instance is easy to solve. When the decision heuris-
tic branches on an unrestricted variable, it does not matter
which branch to take, the partial assignment will remain sat-
isfiable either way. Feature models offer enough flexibility
such that the SAT solvers rarely run into dead ends.

3.6 Experiment: Simplifications
We hypothesized that since the vast majority of the vari-

ables are unrestricted they can be easily simplified away.
Furthermore, the remaining variables/clauses, we call a core,

1If the solver picks a random assignment for a restricted
variable, then the solver will make a correct choice 50% of
the time. In practice, SAT solvers bias towards false so neg-
atively restricted variables might be preferable to positively
restricted variables. The bias is often configurable.
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would be small enough such that even a brute-force approach
could solve it easily. In point of fact, most, but not all, mod-
ern solvers have both pre- and in-processing simplification
techniques already built-in. The term in-processing refers to
simplification techniques that are called in the inner loop of
the SAT solver, whereas pre-processing techniques are typi-
cally called only once at the start of a SAT solving run.

The goal of these experiments was not to suggest a new
set of techniques to analyze FMs, but rather to reinforce
our findings for the effectiveness of SAT-based analysis of
real-world FMs.

We implemented a number of standard simplifications that
are particularly suited for eliminating variables. These sim-
plifications were implemented as a preprocessing step to the
Sat4j solver. Note that the Sat4j solver does not come pack-
aged with variable elimination techniques, and hence we had
to implement them as a pre-processor. Briefly, a simplifica-
tion is a transformation on the Boolean formula where the
output formula is smaller and equisatisfiable to the input
formula. We carefully chose simplifications that run in time
polynomial in the size of the input Boolean formula.

What we found was that indeed the simplifications were
effective in eliminating more than 99% of the variables from
real-world FMs. In 11 out of 15 instances from our bench-
marks, the simplifications completely solved the instance
without resorting to calling the backend solver. In the re-
maining cases, the cores were very small (at most 53 vari-
ables) and were largely Horn clauses that were easily solved
by Sat4j. The simplifications we implemented are described
below:

Equivalent Variable Substitution: If x =⇒ y and
y =⇒ x where x and y are variables, then replace x and y
with a fresh variable z. The idea behind this technique is to
coalesce the variables since effectively x = y. This simpli-
fication step is useful for mandatory features that produce

bidirectional implications in the CNF translation.

Subsumption: If C1 ⊂ C2 where C1 and C2 are clauses,
then C2 is subsumed by C1. Remove all subsumed clauses.
The idea here is that subsumed clauses are trivially redun-
dant. Initially, no clauses are subsumed in the real-world
feature models. After other simplifications, some clauses
will become subsumed.

Self-Subsuming Resolution: If C ∨ x and C ∨ ¬x ∨ D
where C and D are clauses and x is a literal, then replace
with C∨x and C∨D. The idea here is that if x = true then
C ∨ ¬x ∨D reduces to C ∨D. If x = false then C = true
in which case both C ∨ ¬x ∨D and C ∨D are satisfied. In
either case, C ∨ ¬x ∨D is equal to C ∨D, hence the clause
can be shortened by removing the variable x.

Some features in the 3 Linux models are tristate: include
the feature compiled statically, include the feature as a dy-
namically loadable module, or exclude the feature. Tristate
features require two Boolean variables to encode. This sim-
plification step is particularly useful for tristate feature mod-
els. For example, the feature A is encoded using Boolean
variables a and a′. Table 3 shows how to interpret the val-
ues of this pair of variables.

a a′ Meaning
true true Include A compiled statically
true false Include A as a dynamically loadable module
false false Exclude feature A

Table 3: Interpretation of tristate features.

To restrict the possibilities to one of these 3 combinations,
the translation adds the clause a∨¬a′. Since the interpreta-
tion of the feature requires both variables, they often appear
together in clauses. Any other clause that contains a ∨ ¬a′

will be removed by subsumption. Any other clause that con-
tains a∨ a′ or ¬a∨ ¬a′ will be shortened by self-subsuming



resolution.

Variable Elimination: Let T be the set of all clauses that
contain a variable and its negation. Let x be a variable. Sx

is the set of clauses where the variable x appears only posi-
tively. Sx is the set of clauses where the variable x appears
only negatively. The variable x is eliminated by replacing
the clauses Sx and Sx with:

{C1∨C2 | (x∨C1) ∈ Sx, (¬x∨C2) ∈ Sx, (C1∨C2) /∈ T}
The idea here is to proactively apply an inference rule from

propositional logic called the resolution rule. This simplifi-
cation step is called variable elimination because the variable
x no longer appears in the resulting formula. This rule is
only applied to variables where the number of output clauses
is less than or equal to the number of input clauses.

This simplification step is very effective for pure literals.
A variable is pure if it appears either only positively or only
negatively in the input formula. If a variable is pure, then
variable elimination will eliminate that variable and every
clause containing that variable. 37.8% of variables in the
15 real-world feature models from Table 1 are pure. More
variables can become pure as the formula is simplified.

Asymmetric Branching: For a clause x∨C, where x is a
literal and C is the remainder of the clause, temporarily add
the constraint ¬C. If a call to BCP returns unsatisfiable,
then learn the clause C. The new learnt clause subsumes
the original clause x∨C so remove the original clause. Oth-
erwise, no changes.

RCheck: For a clause C, temporarily replace the clause
with the constraint ¬C. If a call to BCP returns unsatisfi-
able, then the other clauses imply C so the clause is redun-
dant. Remove C from the formula. Otherwise, no changes.
The idea is to remove all clauses that are implied modulo
BCP. Implied clauses can be useful for a SAT solver to prune
the search space, for example learnt clauses, but they com-
plicate analysis.

BCP: The last simplification step is to apply BCP: if a
clause of length k has k − 1 of its literals assigned to false,
then assign the last literal to true.

3.6.1 Fixed Point
We repeat the simplifications a maximum of 5 times or

stop when a fixed point is reached. The simplifications can
only shorten the size of the input formula with the excep-
tion of variable elimination. It is unclear how many passes
of simplification are necessary to reach a fixed point in the
worst-case with variable elimination in the mix. The upper
limit of 5 passes is to guarantee a polynomial (in the size of
the input formula) number of passes. For the models from
Table 1, 2 to 3 passes are enough to reach a fixed point
using the current implementation built on top of MiniSat’s
simplification routine. Each additional pass, in practice, ex-
periences diminishing returns and 5 passes should be suffi-
cient to simplify real-world feature models. The remaining
formula after the 5 passes of simplifications is the core.

The worst-case execution time of the simplifications is
polynomial in the size of the input formula. We used a
standard encoding of FMs into Boolean formulas that are
polynomially larger than the FMs in the number of features.

3.6.2 Simplified Feature Models
Table 4 shows the simplified feature models. Simplifica-
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Figure 3: Solving Horn clauses for randomized 3-
SAT (200 variables and 850 clauses) with Sat4j. The
clause density is set to 4.25, where random 3-SAT
is hardest to solve.

tion alone is able to solve 11 of the models without resorting
to a backend solver. The remaining 4 are shrunk drastically
in terms of variables and clauses by simplification.

At least 80% of the clauses in the simplified models are
Horn. Horn-satisfiability can be solved in polynomial time.
The algorithm works by applying BCP, and the Horn-formula
is unsatisfiable if and only if the empty clause is derived.
A similar algorithm for anti-Horn-satisfiability also exists.
BCP is the engine for solving Horn-satisfiability in polyno-
mial time and modern SAT solvers implement BCP, hence
we hypothesize that Boolean formulas with ≤ 53 variables
and ≥ 80% Horn clauses are easy for SAT solvers to solve.

Figure 3 shows how Horn clauses make solving easier.
Note that for 3-SAT, every clause is either Horn xor anti-
Horn, hence the symmetry in the graph. Every point in the
graph is the average running time of 100 randomly gener-
ated 3-SAT instances. The instances were generated with
200 variables, which is larger than the simplified coreboot
model. The running times where the Horn clauses exceed
80% is very low. Clause learning, adaptive branching, and
random restarts are not necessary for this case. Although
we originally suspected the core might be hard for its size,
the core itself turned out to be easy as well.

3.7 Experiment: Treewidth of real-world FMs
Experiments by Pohl et al. [19] show treewidth of the CNF

representation of randomly-generated FMs to be strongly
correlated with their corresponding solving times. We repeat
the experiment on the real-world FMs to see if the correla-
tion exists. In our experiments, treewidth is computed by
finding a lower and upper bound because the exact treewidth
computation is too expensive to compute. The longer the
calculation runs, the tighter the bounds are. We used the
same algorithm and package used by Pohl et al. We gave
the algorithm a timeout of 3600 seconds and 24 GB of heap
memory, up from 1000 seconds and 12 GB in the original
experiment by Pohl et al. Figure 4 shows the results. The
computation failed to place any upper bound on 9 FMs, and
we omit these results because we do not know how close the
computed lower bounds are to the exact answer. For the 6
models in the table, the lower and upper bound are close,
and hence close to the exact answer.

We used Spearman’s rank correlation, the same correla-
tion method as in the original experiment, to correlate the
lower bound and time. We found the correlation between



Model Variables Clauses Horn (%) Anti-Horn (%) Binary (%) Other (%)
2.6.28.6-icse11 30 335 93.73 6.87 93.73 0.00
2.6.32-2var 0 0 NA NA NA NA
2.6.33.3-2var 0 0 NA NA NA NA
axTLS 0 0 NA NA NA NA
buildroot 0 0 NA NA NA NA
busybox-1.18.0 0 0 NA NA NA NA
coreboot 53 153 84.31 73.86 58.17 0.00
ecos-icse11 0 0 NA NA NA NA
embtoolkit 20 67 82.09 22.39 17.91 0.00
fiasco 30 384 99.74 7.03 99.74 0.00
freebsd-icse11 0 0 NA NA NA NA
freetz 0 0 NA NA NA NA
toybox 0 0 NA NA NA NA
uClinux-config 0 0 NA NA NA NA
uClinux 0 0 NA NA NA NA

Table 4: Clause and variable count of simplified real-world FMs. If the variable count is 0, then the simplifi-
cation solved the instance because there are no variables remaining.
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Figure 4: Treewidth of real-world FMs plotted
against solving time. 4 models have exact bounds.

the lower bound and time to be 0.257. We get the same
number when correlating between the upper bound and time
(Spearman’s rank correlation is based on the rank and the
lower and upper bound rank the models in the same or-
der). Our results show a significantly poorer correlation than
previous work on randomly-generated FMs. Although our
sample is small, research on treewidth in real-world SAT in-
stances (not FMs) have also found similar results, i.e., that
treewidth of input Boolean formulas is not strongly corre-
lated with running time of solvers and is not indicative of
an instance’s hardness [15].

3.8 Interpretation of Results
It is clear from our experiments that the vast majority

of variables in real-world FMs are unrestricted and can be
solved/analyzed by appropriate simplification and BCP in
time polynomial in the number of variables of the corre-
sponding SAT instance. What remains after BCP and sim-
plification is a very small set of core clauses (small relative
to the number of clauses in the input SAT formula) which
can be solved by a CDCL solver with very few backtracks.
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Figure 5: The effectiveness of simplifications at re-
ducing the number of variables. We try turning off
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The line “normal” is the original input Boolean for-
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4. THREATS TO VALIDITY OF EXPERIMEN-
TAL METHODOLOGY AND RESULTS

In this section, we address threats to validity of our ex-
perimental methodology and results.

Validity of FMs used for the Experiments: The stud-
ied collection of FMs are large real-world feature models [8],
primarily based on software product lines. This collection
includes all large real-world models that are publicly avail-
able. Further, systems software, the domain of these models,
is known to produce some of the most complex configuration
constraints [5]. After taking into account the complexity of
these models, we believe that these findings will likely hold
for many other large real-world models.

Validity of Experimental Methodology: The unrestricted
variables experiment takes the partial assignments we en-
counter during the run of the solver with default parame-
ters. The partial assignments could vary if the branching
heuristic is initiated with a random seed. Ideally, we would
like to show that unrestricted variables are plentiful under
any partial assignment but this would require an infeasible
amount of effort to prove. Having said that, there is no
reason to believe that the number of unrestricted variables



would change drastically for a different random seed. In
fact, once we realized that real-world FMs have large num-
ber of unrestricted variables, we were able to analytically
show that these unrestricted variables occur in such formu-
las due to the high variability of FMs. This high variability
in FMs is a fundamental property of such models, and is
independent of translation to SAT or random seed chosen.

Correctness of Mapping of FMs into SAT: The anal-
yses rely on the correctness of mapping of the Kconfig and
CDL models to propositional logic. We rely on existing work
that reverse engineered the semantics of these languages
from documentation and configuration tools and specified
the semantics formally [7, 8].

Validity of Choice of Solvers: All our experiments were
performed using the Sat4j solver [14]. An important concern
is whether these results would apply to other SAT solvers
and analysis tools built using them. Our choice of Sat4j
was driven by the fact that it is one of the simplest CDCL
SAT solver publicly available, and this simplicity makes it
easier to draw correct conclusions. Note that most other
SAT solvers used in FM analysis are not only CDCL in the
same vein as Sat4j, but also implement efficient variants of
simplification techniques discussed above. Hence, we believe
that our results would apply equally well to other solvers
used in FM analysis. Finally, we did not consider CSP or
BDD-based solvers since CDCL solvers are demonstrably
better for FM analysis based on the standard encoding used
by Benavides et al. [4].

5. RELATED WORK
Using constraint solvers to analyze feature models has a

long tradition. Benavides et al. [3] give a comprehensive
survey of techniques for analyzing feature models, such as
checking consistency and detecting dead features, and for
supporting configuration, such as propagating feature selec-
tions. These techniques use a range of solvers, including
SAT and CSP solvers. Batory [2] was first to suggest the
use of SAT solvers to support feature model analyses.

Several authors have investigated the efficiency of differ-
ent kinds of solvers for feature model analyses. Benavides
et al. [4] compare the performance of SAT, CSP, and BDD
solvers on two sample analyses on randomly generate fea-
ture models with up to 300 features. They show that BDD
solvers are prone to exponential growth in memory usage
on larger models, while SAT solvers achieve good runtime
performance in the experiments. Pohl et al. [18] run similar
comparison on feature models from the SPLOT collection,
including a wider set of solver implementations. SPLOT
models are relatively small—the largest one has less than 300
features—and are derived from academic works. Their re-
sults show that SAT solvers work well also for SPLOT mod-
els, although they detect some performance variation for C-
vs. Java-based SAT solvers; they also confirm the tractabil-
ity challenges for BDD solvers. Mendonca et al. [17] achieve
scalability of BDD-based analyses to randomly generated
feature models with up to 2000 features by optimizing the
translation from the models to BDDs using variable order-
ing heuristics based on the feature hierarchy. Further, Men-
donca et al. [16] show that SAT-based analyses scale to ran-
domly generated feature models with up to 10000 features.
All this previous work shows that SAT solvers perform well
on small realistic feature models (SPLOT collection) and

large randomly generated feature models. Although SAT
solvers have been successfully applied to analyze the feature
model of the Linux kernel [22], we are unaware of prior work
systematically studying the performance of SAT solvers on
large (1000+ features) real-world feature models, which is
what we focus on in this paper.

Previous work has also investigated the hardness of the
SAT instances derived from feature models, aiming at more
general insights into the tractability of SAT-based analyses.
Mendonca et al. [16] have studied the SAT solving behav-
ior of randomly generated 3-SAT feature models. A 3-SAT
feature model is one whose cross-tree constraints are 3-SAT
formulas. While random 3-SAT formulas become hard when
their clause density approaches 4.25 (so-called phase tran-
sition), this work shows experimentally that 3-SAT feature
models remain easy across all clause densities of their cor-
responding 3-SAT formulas. Our work is different since it
investigates the hardness of large real-world feature mod-
els rather than random ones. Even though random feature
models are easy on average, specific instances may still be
hard; for example, a tree of optional features with a hard
3-SAT cross-tree formula over the tree leaves is, albeit con-
trived, a hard feature model. Segura et al. [20] treat find-
ing hard feature models as an optimization problem. They
apply evolutionary algorithms to generate feature models
of a given size that maximize solving time or memory use.
Their experiments show that relatively small feature models
can become intractable in terms of memory use for BDDs;
however, the approach did not generate feature models that
would be hard for SAT solvers. Again, this work only con-
siders synthetically generated feature models, rather than
real-world ones.

Finally, Pohl et al. [19] propose graph width measures,
such as treewidth, applied to graph representations of the
CNF derived from a feature model as a upper bound of the
complexity of analyses on the model. Their work evalu-
ates this idea on a set of randomly generated feature models
with up to 1000 features using SAT, CSP, and BDD solvers;
they also repeat the experiment on the SPLOT collection.
They find a significant correlation between certain treewidth
measures on the incidence graph and the running time for
most of the solvers. Further, the authors note that it is
still unclear why SPLOT models are easier than generated
ones, and whether that observation would hold for large-
scale real-world feature models. Our work addresses this
gap by investigating the hardness of large-scale real-world
feature models and providing an explanation why they are
easy. Moreover, we were not able to identify any correlation
between the treewidth and easiness of the SAT instances
derived from large real-world models, which calls for more
work to find effective hardness measures for feature models.

Large real-world models have become available to researchers
only recently. While some papers hint at the existence of
very large models in industry [6], these models are typically
highly confidential. Sincero [21] was first to observe that
the definition of the Linux kernel build configuration, ex-
pressed in the Kconfig language, can be viewed as a feature
model. Berger et al. [7] identify the Component Definition
Language (CDL) in eCos, an open-source real-time oper-
ating system, as additional feature modeling language and
subsequently [8] create and analyze a collection of large real-
world feature models from twelve open-source projects in the
software systems domain. We use this collection as a basis



for our work.

6. CONCLUSIONS

In this paper, we provided an explanation, with strong
experimental support, for the scalability of SAT solvers on
large real-world FMs. The explanation is that the over-
whelming majority of the variables in real-world FMs are
unrestricted, and solvers tend not to backtrack in the pres-
ence of such variables. We argue that the reason for the pres-
ence of large number of unrestricted variables in real-world
FMs has to do with high variability in such models. We also
found that if we switch off all the heuristics in modern SAT
solvers, except Boolean constraint propagation (BCP) and
backjumping (no clause-learning), then the solver does not
suffer any deterioration in performance while solving FMs.
Moreover, we ran a set of simplifications with substantial
reduction to the size of the instances. In fact, a majority of
the models were solved outright with these polynomial-time
simplifications. These experiment further bolster our thesis
that most variables in real-world FMs are unrestriced that
can be eliminated by BCP or appropriate simplifications,
and do not cause SAT solvers to perform expensive back-
tracks. Finally, we note that variables/clauses that are not
eliminated through BCP or simplification, namely the core,
are so few and mostly Horn that backtracking solvers can
easily solve them.

Visit the following URL to download further details of the
experiments we performed and additional associated data:
https://github.com/JLiangWaterloo/fmeasy.
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and O. Spinczyk. Is the linux kernel a software
product line. In Proc. SPLC Workshop on Open
Source Software and Product Lines, 2007.

[22] R. Tartler, D. Lohmann, J. Sincero, and
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