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Abstract

Film genres in digitavideo can bedetected automatically. In a three-step approach wyzafast
the syntactic properties of digital flmsolor statistics, cut detection, camera motiolsject motion
and audio. In a second step we use these statistics to derive at a more abstract leswlefilm
attributes such as camepanning andzooming, speechand music. These are distinguishing
properties for film genres, e.g. newscasts vs. sports vs. commercigie third and finaktep we
map thedetected stylattributes to film genreglgorithmsfor the threestepsare presented in detail,
and we report on initisgdxperience with realideos. It is our goal to automaticalljassifythe large
body of existing video for easier access in digital video-on-demand databases.

1. Introduction

The first generation of multimedia workstatioasd PCs presented digitalideo and audio to the user without
doing any content processing. Audiadvideo wereintegrated into the user interfacnd theopemting system
extensionsand application software conceated on maintainingontinuous streams. Video compression and
decompression, already quite demandamgl sophisticated, were typical functions executed atream [11] [3].
There are still manyinsolved problems with streahandling, in particular irdistributed multimedissystems;
examples are real-time multicast [fjJality-of-service specificatioand mappingforward error correction and
advance reservation.

But a general-purpose computan do moraghanjust route continuous media streams. Only recently researchers
have begun to usthe computerfor content recognition ofligital video. Pioneer work describes cut-detection
algorithms thaidentify scene cuts in compressed streams Qther groups are working on tle®mputation of
linear transformations, such agomsand pans, irtompressed or uncompressed video [15]. Urtlika for digital
videos,pattern recognitioffior still-imageshas a longhistory and hageached a maturevel [13]. In our context,
object recognition is of particular interest, and recent work shows thatdiigeasible to use images to qustil-
image databases [20] [16].

Our CoP project{Content Processing) aims tombine existing techniquesd developadditional algathms in
order to understand as muchpassible abouthe content of films. Automatic content recognition carubed to
classify and index the huge amounts of existing stored video. It can also be used to selpatthosenlinevideo
relevant to an individual. In thgears to comehe prevalenproblem will no longer be thhow to get access to
multimedia information, buthow to automatically filter outhe relevanpieces. Pioneering work ithis area islso
reported by the National University of Singapore [24].

We describénere content processitfigr the recognition ofideogenres, such as news casts, sports, commercials or

cartoons. Our input isncompressed digitalideo; each frame is aRGB pixel image. We procedse video in

three steps, at increasing levels of abstraction:

» The syntactic propertie®f a videoare extracted. Weompute color statistics, cut detection, motion vectors,
simple object segmentation and audio statistics at this level.

» Style attributesarederived fromthe syntactic properties. Examplasescendengths, camera motion (pang,
zooming, parallel drive)scenetransitions (i.e. cutss. fades vsmorphs),objectmotion, speech vs. music etc.
Film directors use such style elements for artistic expression.



» Thestyle profileof a video is compared to profiles typicaltbé variousvideo genres, and afeducated guess”
is made as to the genre to which a film belongs.

The algorithmsused inthe threestepsare described in Section 2 dhe paperSection 3 reports experimental
results for five genres. Section 4 concludes the paper.

2. A Three-Step Approach to Genre Recognition

The basis for our recognition process is a compresggithl video ondisk. We accept either MPEG-1 or Motion
JPEG streams. As the stream is read from the disk, it is decompressedlyrttime by frame. If the workstation
is equipped with appropriate decompression hardwhi,is invoked bythe decompression module; otherwise
decompression is done in software. The decompressed video is then run through our threeshteps,iag-igure
1. A detailed description of each step follows.
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Figure 1: Genre recognition in three steps

2.1 Step 1: Syntactic Analysis of Digital Videos
In the first step, syntactic analysis, we compute simple statistics for the sequence of RGB frames.

2.1.1 Color Statistics and Cut Detection

The color contents othe framesand color changeovertime are thenost importanbasicdata. Wecompute the
color histogramfor each frame as a basis for cut detectiod motion energy. The cut detectiosed is based on
histogram comparison, similar to [22].

A general problem with color histogramstli® precision-performandeade-off: If everypixel is sampled irevery
frame, precision is high, but performance is low. If sub-sampling is tis=@, might no longer be enough detail in
the histograms tprecisely identify cuts ocamera motion. Therefore we combine color histograms thwhresults

of motion detection whicthas to becomputed in step anyway (see below). Wiacrease histogram detahly
where needed: Our cut detection normaligs with alow spatial andemporal resolution, sampliranly every 4th
pixel. Thecolor histogram modulduffers asmall number of frames. We re-process these frames at full resolution
when vector flux indicates a cuthis is thecase when webserve vectors aill sizes inall directions. This
combines high resolution, where needed, with good overall performance.



Another color statistic on a per-frame basis is the estimated standard deviation of the color values. Calculated as the
sample mean of the estimated standard deviation of the red, ayndétue component ofhe whole frame, it is

used here to recognize monochrome frames imdao stream:they have aminimum standarddeviation.
Consecutive monochrome framae grouped into a monochrome frableck. An example othe occurrence of
monochrome frame blocks in videos are separators in commercials.

2.1.2 Motion Detection

Color statisticscan beused notonly for cut detection, but also for motion analysis. We comblaek-wise
difference histogrambetween subsequent framsasnilar to [4]. In avery simple experiment wenly compute to
total amount of motion in a sceramd we call itmotion energylt contains both camera motiamdobjectmotion.

We can thertlassify scenes dsigh-, medium- olow- motion scenes. We computee motionenergy by simple
image subtraction applied to consecutive images, smoatitked spatial Gaussian filter. The sum of diesolute
differences serves as the motion energy indicator. Examples of motion energy statistics are shown in Figure 6.

The motion energy computed from color statistics does not always deliver enough informatixpectemdcamera
motion; thus we alse@ompute motion vector fieldasing the opticaflow technique. Having initially used the
algorithm proposed by Horand Schunck, originally designed for motion in fluids [9], aee also testing other
algorithms, e.g. from [14].

These algorithmsllow us todistinguish camera motion, such @snning orzooming, fromobjectmotion. When
the cameranoves,all blocksare linearly transformed in the samvay, whereasobjectmotion only affects some of
the blocks within a frame. In manyases, camera motiand object motion occur simultaneously, but we can
computationally subtract the camera motion out ohtlbgie. The amount of camera moti@mdobjectmotion in a
film is an important style attribute. The motion detected in a clip is stored in accumulated form.

2.1.3 Pattern Analysis and Object Segmentation

In principle, objectrecognition would also beery helpful to identify a film genreHowever, it is amost difficult
and computationally intensive task.

In a newly developedlgorithmfor objectsegmentation we take advantage of fd that weoften have moving
objects in a video. Anoving objectcan be segmentdzhsed orthe fact that all itspixels are moving at theame
speed inthe same directiorand thatthey are theonly pixels moving inthis manner. Weisethe motionvector

fields computed in step 1, as described above. Once we have conmgutatneranovementgpanning, zooming,
tilting) and fading, we arable to correcthe motionvector field by subtractinthe camera motion, leaviranly a

vector field ofpure objectmotion. As movingobjectshave parallel motiorvectors,this new vector “image” is
rathereasy tosegment using the Watershed algorithraposed by Vincerdind Soille [17]. Inthis way weobtain

objectboundaries of moving object$his approactworks well for movingobjectsand isalso much fastethan

traditional still-image algorithms.

Object segmentation already allows us to "cotijects "out" of a moviebut we do notyet have a database of
predefined objects other than logos with which to compare them.

2.1.4 Audio Statistics

In the multimedia literature, researcheften concentrate othe analysis of themagecomponents of films while
ignoring audio. In step 1 we also rectrasic audio frequencgndamplitude statistics. These help us to determine
phases of speech, music, sileacglnoise in step 2. Again, thosee importanstyle attributes. Examples of audio
statistics are shown in Figuresiid 8.

2.2 Step 2: Derivation of Style Attributes

After completing step 1, we have a number of basic statistics on color, motion, g@attents an@udio for each
scene in the video clip. In step 2 we now try to assegnanticdo the scenes. We start with a small numbestyle
attributesand explain how we derive them from the basic statistics.



2.2.1 Scene Length and Scene Transitions

Cut detection is used ttecomposehe videointo scenesand thesceneength isstored together with each scene.
Our algorithm is similar to thene described in [22]The maindifference isthat we do nogapply cut detection
several times recursively, but use sudden changes in motion as an additional indicator, as @désaredur
algorithm is quite reliable, detecting more than 95 % of all cuts.

In our current implementatiorgnly hard cuts are accepted as scene separatdiisere might be othescene
transitions in films, e.gfades omorphs. These am@ten used as an artistityle element. Hard cutandfades are
typical for feature films while wipes, blockband slides, etc. are more frequent in sportscastgsand music
videos. But in fact, most scetransitionsare hardcuts,and this iscurrently our basis. turnsoutthat thescene
length as such is already an important style attribute.

All other style attributes are then computed on a per-scene basis.

2.2.2 Camera Motion and Object Motion

Using the motion statistiatescribed ir2.1.2, we arable to calculate camera motigranning, tilting orzooming.
We first identify the motion vector direction with the highest frequency. As more than one maganouocur in a
vectorhistogram, we calculate the normal distribution with ldveesterror approximating thgector distribution.

In our experience, usinthis normal distributiorreducesthe classification error in finding the correct camera
panning direction to less than 10%.

We store each detected camera motion withscene. Examples of motion intensitg shown in Figure 5. The
intensity of camera motion turns out to be a distinguishing film style attribute, as we will see below.

2.2.3  Object Recognition

Decades ofesearch in machine visicand computer-based image analysisw enable us to recognize simple
objects or patterns in well-defined environments [8]. Very interesting resulds@recognition have been reported
recently [18]. We might soon be able to recognize the face of an actor in a movie.

TV channelsoften use typicapatterns in theiproductions, e.g. #go for news casts. Therefore wramine the
video, trying to recognize predefined patterns stored in a database. Our ex@vstbatbecause afheir fixed
size many patterns can be identified ontisis of a colohistogram. Thdogo of a TVchanneltypically always
has thesame sizeandcolor componentéwithin a certain rangaue to quantizatioandnoise). An example of the
color content of the "Tagesschau" logo is shown in Figure 2.
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Figure 2: Pattern Recognition: (a) "Tagesschau" logo (b) Variance in color statistics in different occurrences

So far, we have implemented tlogo recognitioralgorithm. Welook for a logo in everyith frame; if we find one,
we store it with the scene statistics.



2.2.4 Semantics of Audio

Using the amplitudandfrequency statistics of a scene derived in step larmable to distinguish speech phases
from music, noise or silence: spedtds a characteristicequency spectrum, musias abeat, noiséhas none of
these but an amplitudebove acertain threshold, ansilencehas amplitudestayingbelowthe threshold. It turns
out thatamplitudes alone ("loudnessdje not avery helpful criterion;however,the analysis ofrequencydata in
combination with amplitudes is indeegbawefrful discriminator. For example, theagealwayspure speech phases
in a newscast, but almost never in sports.

To distinguishbetween speech, musiadnoise, we uséhe Fourier-transformed sigl of the digitalaudio. Figure
8 showsthe well-known factthat humarspeechhas avery limited frequency spectrum; inontrast, the noise of a
car raceshows amuch morehomogeneous spectrum. Currently are able to distinguistbetween speakers and
noise with a probability bettehan 95 peagent. For the distinctiobetween noiseand music, we are not quite as
adept. Silence detection is well know from telephony [2] [19] and works very reliably in our context as well.

2.3 Step 3: Mapping Style Attributes to Film Genres

Human beingsan recognize the genre wfost TV broadcasts in a split secofidhis ability is based on finger-
print-like style attributes of each genre. Thus, we shouldlide to definestyle profileswhich are characteristic of
specific film genres. These profiles are extracted from large amounts of analyzed video.

A video is classified in step 3 olur methodology in twaounds. In the first round wein asmany classification

modules as we have stydétributes: Eaclimodule processes one filstyle attribute andaccording to its estimation
function, outputs for each genre its estimated likelihiad thestyle attribute indicatehat genre. Thékelihood
valuesrangefrom unlikely over indifferent to likely. A classification module is comparable haraan expert who

is asked aboutis/her evaluation. Thus the first roundllectsthe estimates of different "experts" which we call
classification modules, one for scene lengths and transition styles, one for camera motion and object motion, one for
the occurrence of recognizetijects inthe film, andone for audio. Irthe second round the estimates @mbined

into a final guess.

We now describ¢he algorithmused inthe classificatioormodules in more detail. We have currently implemented
five genres which we will use throughout our examples: news castrace, tennis, animated cartoon, and
commercials.

Eachclassification module works upthe film style attributes to a Fuzzy Set in G with G = {news caat, race,
tennis, commercials, animated cartoon} [21]. A member&hiption value of 0.5or a genre indicatethat astyle
attribute does not indicate any genre, while a membership function value of 1.0 indiatekigh likelihood of a
particular genre, andrmember function value of 0 suggestgesy high likelihood that thefilm doesnot belong to
that genre. As an example we present a classification module in pseudo-code in Figure 3.

There are several reasons for developing different and independent classification modules:

* Reduction of the complexity within a module.

» Addition of new knowledge to the matching process without having to change existing classification modules.
» Easy combination of different techniques developed by different researchers.

The second round integrates the output of the classification modules, finally deciding the genre of the film. The
decision is based on weighted avera@silar to humarexperts, classification modules may diffedely in their

range and depth of knowledge. Experience teaches that genres are not homogeneous. For instance, sports casts have
very fewattributes in common: thstyle attributes of car racing are quite differérdm those of tennis asoccer.

While the sheer breadth of tfield of "sports" precludes its recognition as such, sports genres themselves, such as
tennis, are easily recognized.



If (monochrome frame block of length 2 to 5) {
set number_of_commercials =0
fc(@=0 0OgOG
while (another monochrome frame block of length 2 to 5 follows within 100 s ) {
if (time between to monochrome frame blocks > 6 sec.) {
commercial block identified
fc(commercial) = 1
number_of_commercials += 1
if (still motion frames are at the end of a commercial spot) {
use pattern recognition tool from 2.1.3 to extract text

}

save commercial characteristics

}
output Fuzzy Set C

Figure 3: Pseudo-code for a classification module

3 Experiments

Having explained our theoretic framewahkd our algorithms in Section 2 wew present a complex, real-world
example.

3.1 Video Clips

Obviously there exist many different film genres, with many subgenres. Examplaseware casts, sportsalk
shows, feature films, commercials, soap operas, music videos, educational and scientific bienadicesty more.
Each of them can have subgenres. So far, we have tested our algorithms on five genres:

* news cast

» sports: car race

* sports: tennis

» commercials (a block of twelve), and

* animated cartoon.

From each genre we picked awio typical samplevideos of about fouminutes' length each. Thaedeos were
recorded from Germatelevision in S-VHSformat and thencaptured at a rate of ifps (=15 * 4 * 60 = 3600
frames) with a frame size of 384x288 pixels, on a Sun workstation with a Paiidiéaxboardand aDEC Alpha
with a J300 board. Theompressed format was Motion JPEThe videos were analyzedith the algorithms
presented above.

3.2 Experimental Results

3.2.1 News Cast

As far asnews cast recognition is concerned, el¥serve acharacteristic pattern of speaka&nd non-speaker
scenesThe appearance of the channeksvscast logo is also typicalhe motion-energy indicataevealsthat
traditional newscasts always consist of alternating low-motion speaker scenes and high-motion video inserts; Figure
6 clearly shows the low-motion and high-motion phases. As we currently use motion estimators onlyphjgbut
recognition, a news speaker sceaenot be distinguished fromsamilar speakescene in a block of commercials.
However, adistinguishing property ithat thesame speaker returns aftevideoinsert in anews show. Therefore

we compare the histograms of theedbsguent scenes ddw motion. We divide a single frame intopixel blocks
andcompare theolor histogramslock-wise.This also takes care of a possible differencéhm background. Our



experience showthat it suffices to have=9 out of 25 pixeblocks out of &rame; if nineblocksare identical, we
assume that we are seeing the same speaker as before.

3.2.2 Car Race

As far as the recognition of sports is concerned we realiggdearly on in our experimentdat there isalmost

nothing in common between videos of different kinds of sports. For example, if we compare a car race with a tennis
match,scenelengths are much shorter in the car race, there is much more camera motion, thereadljenbre
motion, and theaudio is mostly noise dtigh amplitudes. Thus it is much easier to distinguish a car fraoe

tennis than it is talistinguish tennis frorsome scenes @hother genrésee Figures @&nd 7). Wedecided to give

up on sports as a homogeneous genre, and to look at subgenres of sports only.

Car racing has a unigw®mbination of stylattributes, making ieasy toidentify. We coulddistinguish caraces
from tennis and soccer without problems.

3.2.3 Tennis

Tennis is avery goodexample of the discriminatingower of audio:the bouncing of the ball can learly
identified. If we look atthe tennis audio in Figure 7, it starts witmaise-only phase. Ithe waveform we can
clearly distinguishthe bouncing of the ball as singular peaks. A speaker pfalesvs; in the Fourier
transformation of that phase, thpical frequencypattern ofspeechcan beobserved (sed-igure 7). Such
alternating bouncing-ball and speaker phases characterize the audio of tennis.

3.2.4 Commercials

In many countries the commercials within a commeidiatk are separated by up to 5 monochrome frarygs,
ically in black. We identify these monochrome frames yamdardcolor deviationbelow 10, using the algorithm
described in SectioB.1.1. Thus, if our monochrome frardetection tool finds a sequence of several monochrome
frameblocks of up to 5 frames overdistance of 8 to 60 sec. vean conclude withhigh probability that we are
within an commerciablock. Table 1 showghe smallcolor variance inthe monochrome frames separating the
commercials.

block | first last block color finished 1096 1097 2 811082 3
. 1328 1330 3 8.0t0 8.2 4
frame | frame | length variance spot
10 1634 1637 4 8.0t08.2 5
1 481 484 4 7.91t08.2 1
11 1944 1947 4 6.2t08.1 6
2 570 572 3 5.6109.7
12 2241 2244 4 791083 7
3 596 600 5 541t07.0
13 2704 2706 3 7.8108.2 8
4 787 788 2 54109.8
14 3312 3314 3 8.0t08.3 9
5 822 823 2 55t07.3
15 3764 3767 4 8.0t08.2 10
6 873 874 2 7.31t08.6
16 4075 4077 3 7.8t08.1 11
7 944 947 4 8.1t084 2
17 4449 4452 4 791083 12

Table 1: Monochrome frames as separators between commercials

In rarecases monochrome framécksappear within a commerciatene or other genres duethe use of “fade
from black” or “fade to black” in scentansitions. For instance, thecead commercial spot (frame 485 to 943)
has such a transitioiklowever,the fadescan be identified as sudlecausehe linear transformations on tleelor
statistics are detected, as described in Section 2.1.2.

Currently we aredeveloping an OCR toolvhich automatically grabshe text of the lasfive frames of a
commercial. In most caséise words foundthere include theompanyname and/or the product name,that a
commercial can be identified by text-pattern matching.



3.2.5 Cartoons

In the cartoon webserve scenengths that are longéhan inother genre¢see Figure 4). Alsthere is muchess
camera motion (see Figure 5).

Audio is also an interesting attribute of cartoons. Figusbdivsthat there arg@eriods of zero amplitude (absolute
silence) between noise or music or speech periods. The reason cthadlehelio for cartoons is typically produced
in a studio, where there is no background noise. All shots taken in thea@lhave background noise even in
phases of (relative) silence.

3.3 Interpretation of the Experiments

From the discussioaboveandfrom the Figures, ibecomestlearthat no singleattribute is sufficient to uniquely
identify a genre. However,style profilebased on all the attributes candadinedthatallows amuch more reliable
classification of video.

Whereasbjectrecognition in still images is known fmove quite difficult, it issurprisinghow far we can get in
motion pictures using brute-force statistics.

4 Conclusions and Outlook

We have presented the CoP systerd itsthree-step methodology for automatically detecting film genrefigial
video. We have implementeithe proposedalgorithms, and initialexperience with genre recognition very
promising. But there is much moweork to be done, newlgorithmsfor additionalstyle attributes are currently
being implemented and tested.

Fundamental to our approach is thge of acombination of many different style attributefsa video for cotent
recognition. Only experiencean showwhat the most significant attributese, and what thstyle profiles of all
major video genres are in terms of those attributes.

In the area obbjectrecognition, we have only implemented simplattern matching andbject segmentation.
More sophisticated techniques for object identification will be integrated into the CoP system in the future.

We have only presentedsanall number of examples here. It will bery interesting to add feature films, music
videos etc., and subgenres for eacthefn. We areow inthe process of establishingrauch broader database. Of
course, we do not expect to ever reach a precision of 100% with our genre recegsitom more experience will
show how close we can get.

Currently we are faremoved from processing videosregmnl-time; our algorithms are quite demanding in terms of
resources. We intend to implement them on a parallel processor (KSR/2 under OSF/1) for better performance.

Having discussetierevideo content analysis with theurpose of genre recognition, it is our ambitious goal to use
similar techniques fotontent understanding.g. the automatic detection of violence in movies.

Important remark for the referees: I this paper is accepted for the conference, we will present an
accompanying video with the talk, showing the sample clips and their graphs. A videotape has been submitted to
the demonstrations chairman of ACM Multimedia 95 (Tom Little).
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Figure 4: Scene lengths derived from color statistics
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Figure 6: Motion energy
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Figure 7: Audio wave forms Figure 8: Audio frequency spectrum



