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A SUPERLINEAR CONVERGENCE ESTIMATE FOR THE
PARAREAL SCHWARZ WAVEFORM RELAXATION ALGORITHM\ast 

MARTIN J. GANDER\dagger , YAO-LIN JIANG\ddagger , AND BO SONG\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . The parareal Schwarz waveform relaxation algorithm is a new space-time parallel
algorithm for the solution of evolution partial differential equations. It is based on a decomposition
of the entire space-time domain both in space and in time into smaller space-time subdomains, and
then computes by an iteration in parallel on all these small space-time subdomains a better and
better approximation of the overall solution in space-time. The initial conditions in the space-time
subdomains are updated using a parareal mechanism, while the boundary conditions are updated
using Schwarz waveform relaxation techniques. A first precursor of this algorithm was presented 15
years ago, and while the method works well in practice, the convergence of the algorithm is not yet
understood, and to analyze it is technically difficult. We present in this paper for the first time an
accurate superlinear convergence estimate when the algorithm is applied to the heat equation. We
illustrate our analysis with numerical experiments including cases not covered by the analysis, which
opens up many further research directions.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . Schwarz waveform relaxation, parareal algorithm, parareal Schwarz waveform
relaxation

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 65M55, 65M22, 65F15

\bfD \bfO \bfI . 10.1137/18M1177226

1. Introduction. Schwarz waveform relaxation algorithms are parallel algo-
rithms for time-dependent partial differential equations (PDEs) based on a spatial
domain decomposition. The spatial domain is decomposed into overlapping or non-
overlapping subdomains, and an iteration in space-time, based on space-time subdo-
main solutions, is used to obtain better and better approximations of the underlying
global space-time solution. During the iteration, neighboring subdomains are commu-
nicating through transmission conditions. The name Schwarz comes from the fact that
overlap can be used, like in the classical Schwarz method for elliptic problems [62],
and the name waveform relaxation indicates that the iterates are functions in time,
like in the classical waveform relaxation method developed for very large scale inte-
gration of circuits [48]. Waveform relaxation methods have been analyzed for many
different kinds of problems, such as ordinary differential equations (ODEs) [4, 30, 16],
differential algebraic equations [46, 41], PDEs [50], time-periodic problems [44, 43, 68],
and fractional differential equations [45]; for further details, see [42]. In the Schwarz
waveform relaxation algorithm, the transmission conditions play an important role,
and while classical Dirichlet conditions lead to robust, superlinear convergence for
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A SUPERLINEAR CONVERGENCE ESTIMATE FOR PSWR A1149

diffusive problems [13, 35, 34, 29], optimized transmission conditions based on [21]
of Robin or Ventcell type as in the steady case [40] lead to much faster, so-called
optimized Schwarz waveform relaxation methods; see [20, 3] for diffusive problems
and [22, 19, 38] for wave propagation. These are also the same techniques underly-
ing modern time-harmonic wave propagation solvers; for an overview, see [33] and
references therein.

The parareal algorithm is a time-parallel method that was proposed by Lions,
Maday, and Turinici in the context of virtual control to solve evolution problems in
parallel; see [49]. In this algorithm, initial value problems are solved on subintervals
in time, and through iterations the initial values on each subinterval are corrected to
converge to the correct values of the overall solution. The parareal algorithm uses two
approximate propagators which are called the fine propagator and the coarse propa-
gator. The fine propagator determines the final precision, while the coarse propagator
influences the parallel speedup. In most theoretical analyses of the parareal algorithm,
the fine propagator was chosen for simplicity to be the exact solver, and the coarse
propagator was a common one-step method such as the backward Euler method. Pre-
cise convergence estimates for the parareal algorithm applied to linear ordinary and
partial differential equations can be found in [32]; for the nonlinear case, see [14].
The parareal algorithm has also been used in many application areas, like linear and
nonlinear parabolic problems [65, 66, 50], molecular dynamics [1], stochastic ODEs
[2, 8], Navier--Stokes equations [67, 10], quantum control problems [56, 57, 55], time-
periodic problems [25], fractional diffusion equations [72], and low-frequency problems
in electrical engineering [61]; for a parallel coarse correction variant, see [70]. Sev-
eral other new variants of the parareal algorithm have been presented, which use an
iterative method, the spectral deferred correction method, for solving ODEs for the
coarse and fine propagators rather than traditional methods (see [60, 59]), which led
to the parallel full approximation scheme in space-time (PFASST) [7]. The parareal
algorithm has also been combined with waveform relaxation methods [52, 51, 63, 64].
More recently, new time-parallel strategies have also been developed, such as the
PARAEXP algorithm [17, 37] and a new full space-time multigrid method [28] with
excellent strong and weak scalability properties; for earlier time multigrid approaches,
see [53, 68, 69]. There is also MGRIT [11, 9] with a convergence analysis in [27], show-
ing that MGRIT is in fact a multilevel variant of an overlapping parareal algorithm.
A further direct approach based on the diagonalization of the time stepping matrix
was introduced in [54]. These techniques have been applied to the heat equation [23],
the wave equation [12], and the time-periodic fractional diffusion equation [71]. For
a complete overview of the historical development of time-parallel methods over five
decades, see [15].

A first approach to combine Schwarz waveform relaxation and the parareal al-
gorithm for PDEs can be found in [58], where the authors propose to use waveform
relaxation solvers for the coarse and fine propagators in the parareal algorithm; see
also the Ph.D. thesis [36]. This algorithm can be understood in the sense that if
the waveform relaxation algorithms compute the fine and coarse propagators with
enough accuracy, the parareal convergence theory applies. In practice, however, it is
more interesting not to iterate to convergence but just to use one iteration, directly
embedded in the parareal updating process, which leads to the so-called parareal
Schwarz waveform relaxation (PSWR) algorithm that was first proposed in [24]. The
implementation of PSWR is not very difficult, but to prove convergence and obtain a
convergence estimate is, and we present here for the first time a superlinear conver-
gence result based on detailed kernel estimates, when the method is applied to the
one-dimensional heat equation.
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A1150 M. J. GANDER, Y.-LIN JIANG, AND B. SONG

Our paper is organized as follows. In section 2, we present the PSWR algorithm
for a general parabolic problem. In section 3, we prove our technical, superlinear
convergence estimate for the PSWR algorithm with Dirichlet transmission conditions
when applied to the heat equation in one spatial dimension with a two subdomain
decomposition in space and an arbitrary decomposition in time. We illustrate our
analysis with numerical experiments in section 4 and also test cases not covered by our
analysis, like the many spatial subdomain case and optimized transmission conditions.
We finally present our conclusions and several open research directions in section 5.

2. Construction of the PSWR algorithm. We derive the PSWR algorithm
for the time-dependent parabolic PDE

\partial u

\partial t
= \scrL u+ f in \Omega \times (0, T ), \Omega \subset \BbbR d, d = 1, 2, 3,

u(x, 0) = u0(x) in \Omega ,
u = g on \partial \Omega \times (0, T ),

(2.1)

where \scrL is a second-order elliptic operator, e.g., the Laplace operator. We next
describe the parareal algorithm and the Schwarz waveform relaxation algorithm for
problem (2.1), before introducing PSWR.

2.1. The parareal algorithm. The parareal algorithm is for the parallelization
of the solution of problems like (2.1) in the time direction: by decomposing the time
interval (0, T ) into N time subintervals (Tn, Tn+1) with 0 = T0 < T1 < \cdot \cdot \cdot < TN = T ,
as shown in Figure 1 on the left for the case of d = 2 spatial dimensions, we obtain a
series of subproblems in the time subintervals (Tn, Tn+1) with unknown initial values
u(x, Tn), which we denote by Un(x). In order to obtain the solution of the original
problem (2.1), the \{ Un\} have to solve the system of equations

U0 = u0, Un+1 = S(Tn+1, Tn, Un, f, g), n = 0, 1, . . . , N  - 1,(2.2)

where S(Tn+1, Tn, Un, f, g) denotes the exact solution operator on the time subinterval
(Tn, Tn+1), i.e., S(Tn+1, Tn, Un, f, g) is the exact solution at Tn+1 of the evolution
problem (2.1) on the time subinterval (Tn, Tn+1) with a given initial condition Un,
right-hand-side source term f and boundary conditions g,

dun

dt
=\scrL un + f in \Omega \times (Tn, Tn+1), un(x, Tn)=Un(x) in \Omega , un = g on \partial \Omega \times (Tn, Tn+1).

(2.3)

t

T

T1

T2

0

x1

x21]

t

Ωi

T

0

x1

x21]

t

T

T1

T2

0

x1

x2

Ωi1

Fig. 1. Time domain decomposition for parareal (left), space decomposition for Schwarz wave-
form relaxation showing one overlapping space domain global in time (middle), and space-time
decomposition for PSWR showing one smaller space-time domain (right).
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A SUPERLINEAR CONVERGENCE ESTIMATE FOR PSWR A1151

The parareal algorithm solves the system of equations (2.2) by iteration using a
so-called coarse propagator G(Tn+1, Tn, Un, f, g) which provides a rough approxi-
mation in time of the solution un(x, Tn+1) of (2.3) with a given initial condition
un(x, Tn) = Un(x), right-hand-side source term f and boundary conditions g, and a
fine propagator F (Tn+1, Tn, Un, f, g), which gives a more accurate approximation in
time of the same solution. Starting with a first approximation U0

n at the time points
T0, T1, T2, . . . , TN - 1, the parareal algorithm performs for k = 0, 1, 2, . . . the correction
iteration

Uk+1
n+1 = F (Tn+1, Tn, U

k
n , f, g) +G(Tn+1, Tn, U

k+1
n , f, g) - G(Tn+1, Tn, U

k
n , f, g).

(2.4)

It was shown in [32] that (2.4) is a multiple shooting method in time with an approx-
imate Jacobian in the Newton step, and accurate convergence estimates were derived
for the heat and wave equation in [32]; see also [18] for similar convergence estimates
for the case of nonlinear problems.

2.2. Introduction to Schwarz waveform relaxation. In contrast to the
parareal algorithm, the Schwarz waveform relaxation algorithm for the model prob-
lem (2.1) is based on a spatial decomposition only, in the most general case into
overlapping subdomains \Omega = \cup I

i=1\Omega i; see the middle plot in Figure 1. The Schwarz
waveform relaxation algorithm solves iteratively for k = 0, 1, 2, . . . the space-time
subdomain problems

\partial uk+1
i

\partial t
= \scrL uk+1

i + f in \Omega i \times (0, T ),

uk+1
i (x, 0) = u0 in \Omega i,

\scrB iu
k+1
i = \scrB i\=u

k on \partial \Omega i \times (0, T ).

Here \=uk denotes a composed approximate solution from the previous subdomain so-
lutions uk

i using, for example, a partition of unity, and an initial guess \=u0 is needed
to start the iteration. The operators \scrB i are transmission operators, and we did not
write the Dirichlet boundary conditions at the outer boundaries for simplicity. If the
transmission operators \scrB i are the identity, we obtain the classical Schwarz waveform
relaxation algorithm, whose convergence was studied for general decompositions in
higher space dimensions in [34]. If they represent Robin or higher-order transmis-
sion conditions, we obtain an optimized Schwarz waveform relaxation algorithm, if
the parameters in the transmission conditions are chosen to optimize the convergence
factor of the algorithm; see [20, 3] and references therein. A convergence analysis for
optimized Schwarz waveform relaxation methods for general decompositions in higher
spatial dimensions is, however, still an open problem, like for optimized Schwarz
methods in the steady case.

2.3. Construction of PSWR. We decompose the space-time domain \Omega \times (0, T )
into space-time subdomains \Omega i,n := \Omega i\times (Tn, Tn+1), i = 1, 2, . . . , I, n = 0, 1, . . . , N - 1,
as shown in Figure 1 on the right. Like in the parareal algorithm, we introduce a fine
subdomain solver Fi,n(U

k
i,n,\scrB i\=u

k
n) and a coarse subdomain solver Gi,n(U

k
i,n,\scrB i\=u

k
n),

where we do not explicitly state the dependence of these solvers on the time interval
and the right-hand-side f and original Dirichlet boundary condition g to not increase
the complexity of the notation further. There is also a further important notational
difference with parareal: here the fine solver F returns the entire solution in space-
time, not just at the final time, since this solution is also needed in the transmission
conditions of the algorithm. Then for any initial guess of the initial values U0

i,n and the
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A1152 M. J. GANDER, Y.-LIN JIANG, AND B. SONG

interface values \scrB i\=u
0
n, the PSWR algorithm for the parabolic problem (2.1) computes

for iteration index k = 0, 1, 2, . . . and all spatial and time indices i = 1, 2, . . . , I,
n = 0, 1, . . . , N  - 1

uk+1
i,n = Fi,n(U

k
i,n,\scrB i\=u

k
n),

Uk+1
i,n+1 = uk+1

i,n (\cdot , Tn+1) +Gi,n(U
k+1
i,n ,\scrB i\=u

k+1
n ) - Gi,n(U

k
i,n,\scrB i\=u

k
n),

(2.5)

where \=uk
n is again a composed approximate solution from the subdomain solutions

uk
i,n using, for example, a partition of unity, and an initial guess \=u0

n and U0
i,k is

needed to start the iteration.1 Note that the first step in (2.5), which is the expensive
step involving the fine propagator Fi,n, can be performed in parallel over all space-
time subdomains \Omega i,n, since both the initial and boundary data are available from
the previous iteration. The cheap second step in (2.5) involving only the coarse
propagator Gi,n to compute a new initial condition for all space-time subdomains is
still in parallel in space, but now sequential in time, like in the parareal algorithm.

It is worthwhile to look at the PSWR (2.5) again before continuing: it is an
iteration from initial and boundary data on space-time subdomains to initial and
boundary data on space-time subdomains, i.e., it maps traces in space and traces
in time to new traces in space and traces in time. There is also a particular choice
for the new coarse solver in the middle of the second step of (2.5): it uses the most
recent fine approximation for its boundary conditions. This is natural since this can
be reused in the second iteration for the old coarse solver on the right in the second
line of (2.5), like in the classical parareal algorithm, but using the old iterates would
be possible as well. However, this would not lead to more parallelism, because of the
new initial condition that is needed for the parareal update.

3. Convergence analysis of PSWR. To capture the true convergence behav-
ior of the PSWR algorithm by analysis is technically difficult, and we thus consider
from now on the heat equation on an unbounded domain in one spatial dimension,

\partial u(x, t)

\partial t
=

\partial 2u(x, t)

\partial x2
+ f(x, t) in \Omega \times (0, T ), \Omega := \BbbR ,(3.1)

with the initial condition u(x, 0) = u0(x), x \in \Omega , and only a decomposition into two
overlapping subdomains, \Omega 1 = ( - \infty , L) and \Omega 2 = (0,+\infty ), L > 0, and we assume
that the algorithm uses Dirichlet transmission conditions, i.e., \scrB i = \scrI , the identity
in (2.5). We will test the more general case extensively in the numerical experiments
in section 4. We decompose the time interval (0, T ) into N equal time subintervals
0 = T0 \leq \cdot \cdot \cdot \leq Tn = n\Delta T \leq \cdot \cdot \cdot \leq TN = T , \Delta T = T

N , and thus our space-time
subdomains are \Omega i,n = \Omega i \times (Tn, Tn+1), i = 1, 2, n = 0, . . . , N  - 1. We also assume
that the fine propagator Fi,n is exact, as often done in the convergence analysis of the
parareal algorithm, and that the coarse propagator Gi,n is exact in space and uses
backward Euler in time.

To study the convergence of PSWR, we introduce the error in the space-time
subdomains

eki,n(x, t) := uk
i,n(x, t) - u(x, t) in \Omega i,n(3.2)

and also the error in the initial values

Ek
i,n(x) := Uk

i,n(x) - u(x, Tn), x \in \Omega i.(3.3)

1The latter can, for example, be computed using the coarse propagator once the former is chosen.
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A SUPERLINEAR CONVERGENCE ESTIMATE FOR PSWR A1153

By linearity, it suffices to analyze convergence to the zero solution. Using the defini-
tions of the propagators Fi,n and Gi,n and their linearity, we get for the error on the
first spatial subdomain

ek+1
1,n (x, t) = F1,n(E

k
1,n, e

k
2,n(L, \cdot )),

Ek+1
1,n+1(x) = ek+1

1,n (x, Tn+1) +G1,n(E
k+1
1,n , ek+1

2,n (L, \cdot )) - G1,n(E
k
1,n, e

k
2,n(L, \cdot )),

(3.4)

and similarly on the second spatial subdomain

ek+1
2,n (x, t) = F2,n(E

k
2,n, e

k
1,n(0, \cdot )),

Ek+1
2,n+1(x) = ek+1

2,n (x, Tn+1) +G2,n(E
k+1
2,n , ek+1

1,n (0, \cdot )) - G2,n(E
k
2,n, e

k
1,n(0, \cdot )),

(3.5)

where we do not need to use a partition of unity to compose a general approximate
solution, since each subdomain must take data directly from its only neighbor, which
will simplify the analysis. To study the contraction properties of this iteration, we
need estimates of the continuous solution operator represented by the fine propagator
F and of the time discrete solution operator represented by the coarse propagator G.
We thus start by computing representation formulas for these solution operators.

3.1. Representation formula for the fine propagator \bfitF . The first step
ek+1
1,n (x, t) = F1,n(E

k
1,n, e

k
2,n(L, \cdot )) and ek+1

2,n (x, t) = F2,n(E
k
2,n, e

k
1,n(0, \cdot )) in the error

iteration (3.4), (3.5) requires the solution of homogeneous problems in \Omega i,n, i,= 1, 2,
namely,

\partial ek+1
1,n (x, t)

\partial t
=

\partial 2ek+1
1,n (x, t)

\partial x2
, (x, t) \in \Omega 1,n,

ek+1
1,n (L, t) = ek2,n(L, t), t \in (Tn, Tn+1),

ek+1
1,n (x, Tn) = Ek

1,n(x), x \in ( - \infty , L),

(3.6)

and

\partial ek+1
2,n (x, t)

\partial t
=

\partial 2ek+1
2,n (x, t)

\partial x2
, (x, t) \in \Omega 2,n,

ek+1
2,n (0, t) = ek1,n(0, t), t \in (Tn, Tn+1),

ek+1
2,n (x, Tn) = Ek

2,n(x), x \in (0,+\infty ).

(3.7)

Therefore in \Omega 1, the fine propagator has a closed form representation formula giving
the solution of problem (3.6) (see [5]),

ek+1
1,n (x, t) =

\int 0

 - \infty 
(K(x - L - \xi , t - Tn) - K(x - L+ \xi , t - Tn))E

k
1,n(\xi )d\xi 

+ 2

\int t

Tn

\partial K

\partial x
(x - L, t - Tn  - \tau )ek2,n(L, \tau )d\tau ,

(3.8)

where the heat kernel is given by

K(x, t) =
1\surd 
4\pi t

e - x2/4t.(3.9)

We now define for the initial value part the linear solution operator \scrA 1,n,

(\scrA 1,nE) (x, t) :=

\int 0

 - \infty 
(K(x - L - \xi , t - Tn) - K(x - L+ \xi , t - Tn))E(\xi )d\xi ,(3.10)
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A1154 M. J. GANDER, Y.-LIN JIANG, AND B. SONG

and for the boundary value part the linear solution operator \scrB 1,n,

(\scrB 1,ne) (x, t) := 2

\int t

Tn

\partial K

\partial x
(x - L, t - Tn  - \tau )e(\tau )d\tau .(3.11)

Then (3.8) can be written in the form

ek+1
1,n (x, t) = (\scrA 1,nE

k
1,n)(x, t) + (\scrB 1,ne

k
2,n(L, \cdot ))(x, t).(3.12)

Similarly, we obtain on the second subdomain \Omega 2 using the representation formula
for the solution of (3.7)

ek+1
2,n (x, t) = (\scrA 2,nE

k
2,n)(x, t) + (\scrB 2,ne

k
1,n(0, \cdot ))(x, t)(3.13)

with the linear solution operators

(\scrA 2,nE) (x, t) :=

\int \infty 

0

(K(x - \xi , t - Tn) - K(x+ \xi , t - Tn))E(\xi )d\xi ,

(\scrB 2,ne) (x, t) :=  - 2

\int t

Tn

\partial K

\partial x
(x, t - Tn  - \tau )e(\tau )d\tau .

(3.14)

3.2. Representation formula for the coarse propagator \bfitG . Using the
backward Euler time stepping scheme for the coarse propagator G, and denoting
by e1,G(x) := G(Ek

1,n(x), e
k
2,n(L, Tn+1)) the term that appears in the error recursion

(3.4), we see that e1,G satisfies the equation

e1,G(x) - Ek
1,n(x)

\Delta T
 - \partial 2e1,G(x)

\partial x2
= 0, x \in \Omega 1,

e1,G(L) = ek2,n(L, Tn+1).

This problem has the closed form solution (see the appendix)

e1,G(x) = ek2,n(L, Tn+1)e
x - L\surd 
\Delta T + (\scrC 1Ek

1,n)(x),(3.15)

with the linear solution operator \scrC 1 defined by

(\scrC 1Ek
1,n)(x) := - 1

2
\surd 
\Delta T

\Biggl( \int L

 - \infty 
e

x+\xi  - 2L\surd 
\Delta T Ek

1,n(\xi )d\xi  - 
\int L

x

e
x - \xi \surd 
\Delta T Ek

1,n(\xi )d\xi 

 - 
\int x

 - \infty 
e

 - x+\xi \surd 
\Delta T Ek

1,n(\xi )d\xi 

\Biggr) 
.

Similarly, denoting by e2,G(x) := G(Ek
2,n(x), e

k
1,n(0, Tn+1)) on \Omega 2 the term that ap-

pears in the error recursion (3.5), we see that e2,G satisfies the equation

e2,G(x) - Ek
2,n

\bigtriangleup T
 - \partial 2e2,G(x)

\partial x2
= 0, x \in \Omega 2,

e2,G(0) = ek1,n(0, Tn+1),

and we obtain for the solution

e2,G(x) = ek1,n(0, Tn+1)e
x\surd 
\Delta T + (\scrC 2Ek

2,n)(x),(3.16)

with the linear solution operator \scrC 2 defined by

(\scrC 2Ek
2,n)(x) := - 1

2
\surd 
\Delta T

\biggl( \int +\infty 

0

e
 - x+\xi \surd 

\Delta T Ek
2,n(\xi )d\xi  - 

\int x

0

e
 - x - \xi \surd 

\Delta T Ek
2,n(\xi )d\xi 

 - 
\int +\infty 

x

e
x - \xi \surd 
\Delta T Ek

2,n(\xi )d\xi 

\biggr) 
.
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A SUPERLINEAR CONVERGENCE ESTIMATE FOR PSWR A1155

3.3. Matrix formulation of PSWR. We now rewrite the error recurrence
formulation (3.4), (3.5) more explicitly using the representation formulas, and then
collect the complete PSWR map from traces in space and time to traces in space
and time into a matrix formulation, which is amenable to analysis. We start with
\Omega 1: the first equation in the error recursion formula (3.4) can be expressed using the
representation formula (3.12) for the fine propagator as

ek+1
1,n (x, t) = F1,n(E

k
1,n, e

k
2,n(L, \cdot )) = (\scrA 1,nE

k
1,n)(x, t) + (\scrB 1,ne

k
2,n(L, \cdot ))(x, t).(3.17)

For the second equation in (3.4), we have to evaluate (3.17) at t = Tn+1 and use the
representation formula (3.15) for the coarse propagator twice, to obtain

Ek+1
1,n+1(x) = ek+1

1,n (x, Tn+1) +G1,n(E
k+1
1,n , ek+1

2,n (L, \cdot )) - G1,n(E
k
1,n, e

k
2,n(L, \cdot ))

=
\bigl( 
\scrA 1,nE

k
1,n

\bigr) 
(x, Tn+1) +

\bigl( 
\scrB 1,ne

k
2,n(L, \cdot )

\bigr) 
(x, Tn+1)

+ ek+1
2,n (L, Tn+1)e

x - L\surd 
\Delta T + (\scrC 1Ek+1

1,n )(x)

 - ek2,n(L, Tn+1)e
x - L\surd 
\Delta T  - (\scrC 1Ek

1,n)(x).

(3.18)

In (3.17), we still work with the volume function ek+1
1,n (x, t) which is only used in the

iteration either traced at t = Tn+1, i.e., e
k+1
1,n (x, Tn+1), as in (3.18), or traced at x = 0,

i.e., ek+1
1,n (0, t) by the second subdomain. We therefore introduce the following linear

operators which include taking the trace:

\scrA 1,n,0E
k
1,n :=

\bigl( 
\scrA 1,nE

k
1,n

\bigr) 
(0, t), \scrB 1,n,0e

k
2,n :=

\bigl( 
\scrB 1,ne

k
2,n(L, \cdot )

\bigr) 
(0, t),

\scrA 1,n,\Delta TE
k
1,n :=

\bigl( 
\scrA 1,nE

k
1,n

\bigr) 
(x, Tn+1), \scrB 1,n,\Delta T e

k
2,n :=

\bigl( 
\scrB 1,ne

k
2,n(L, \cdot )

\bigr) 
(x, Tn+1),

\scrD 1,\Delta T e
k
2,n := ek2,n(L, Tn+1)e

x - L\surd 
\Delta T ,

(3.19)

and then (3.17) and (3.18) become

ek+1
1,n (0, t) = (\scrA 1,n,0E

k
1,n)(t) + (\scrB 1,n,0e

k
2,n)(t),

Ek+1
1,n+1(x) = (\scrA 1,n,\Delta TE

k
1,n)(x) + (\scrB 1,n,\Delta T e

k
2,n)(x)

+ (\scrD 1,\Delta T e
k+1
2,n )(x) + (\scrC 1Ek+1

1,n )(x) - (\scrD 1,\Delta T e
k
2,n)(x) - (\scrC 1Ek

1,n)(x),

(3.20)

and we see that the first line represents well a function in time obtained by tracing at
x = 0, while the second line represents well a function in space. Similarly, we obtain
on the second subdomain \Omega 2

ek+1
2,n (L, t) = (\scrA 2,n,LE

k
2,n)(t) + (\scrB 2,n,Le

k
1,n)(t),

Ek+1
2,n+1(x) = (\scrA 2,n,\Delta TE

k
2,n)(x) + (\scrB 2,n,\Delta T e

k
1,n)(x)

+ (\scrD 2,\Delta T e
k+1
1,n )(x) + (\scrC 2Ek+1

2,n )(x) - (\scrD 2,\Delta T e
k
1,n)(x) - (\scrC 2Ek

2,n)(x),

(3.21)

where

\scrA 2,n,LE
k
2,n :=

\bigl( 
\scrA 2,nE

k
2,n

\bigr) 
(L, t), \scrB 2,n,Le

k
1,n :=

\bigl( 
\scrB 2,ne

k
1,n(0, \cdot )

\bigr) 
(L, t),

\scrA 2,n,\Delta TE
k
2,n :=

\bigl( 
\scrA 2E

k
2,n

\bigr) 
(x, Tn+1), \scrB 2,n,\Delta T e

k
1,n :=

\bigl( 
\scrB 2e

k
1,n(0, \cdot )

\bigr) 
(x, Tn+1),

\scrD 2,\Delta T e
k
1,n := ek1,n(0, Tn+1)e

 - x\surd 
\Delta T .

(3.22)
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A1156 M. J. GANDER, Y.-LIN JIANG, AND B. SONG

We now collect all the traces in space and time used in the algorithm in the vectors
of functions

\bfite k+1
1 (0, \cdot ) := [ek+1

1,0 (0, \cdot ), ek+1
1,1 (0, \cdot ), . . . , ek+1

1,N - 1(0, \cdot )]
T,

\bfitE k+1
1 (x) := [Ek+1

1,0 (x), Ek+1
1,1 (x), . . . , Ek+1

1,N - 1(x)]
T,

\bfite k+1
2 (L, \cdot ) := [ek+1

2,0 (L, \cdot ), ek+1
2,1 (L, \cdot ), . . . , ek+1

2,N - 1(L, \cdot )]
T,

\bfitE k+1
2 (x) := [Ek+1

2,0 (x), Ek+1
2,1 (x), . . . , Ek+1

2,N - 1(x)]
T,

(3.23)

and define the matrices

I :=

\left[        

\scrI 0 0 \cdot \cdot \cdot 0
0 \scrI 0 \cdot \cdot \cdot 0

0 0 \scrI 
...

...
...

...
. . . 0

0 0 0 0 \scrI 

\right]        , I - 1 :=

\left[        

0 0 0 \cdot \cdot \cdot 0
\scrI 0 0 \cdot \cdot \cdot 0

0 \scrI 0
...

...
...

...
. . . 0

0 0 0 \scrI 0

\right]        ,

where the symbol \scrI denotes the identity operator. We can then write the recurrence
relations for the error in (3.20) and (3.21) in matrix form,

\left[   \bfI 0 0 0
0 \bfI  - \scrC 1\bfI  - 1  - \scrD 1,\Delta T \bfI  - 1 0
0 0 \bfI 0

 - \scrD 2,\Delta T \bfI  - 1 0 0 \bfI  - \scrC 2\bfI  - 1

\right]   
\left[    
\bfite k+1
1 (0, \cdot )
\bfitE k+1

1 (x)

\bfite k+1
2 (L, \cdot )
\bfitE k+1

2 (x)

\right]    

=

\left[   0 \scrP 1,0 \scrQ 1,0 0
0 \scrP 1,\Delta T \bfI  - 1  - \scrC 1\bfI  - 1\scrQ 1,\Delta T \bfI  - 1  - \scrD 2,\Delta T \bfI  - 1 0

\scrQ 2,L 0 0 \scrP 2,L

\scrQ 2,\Delta T \bfI  - 1  - \scrD 2,\Delta T \bfI  - 1 0 0 \scrP 2,\Delta T \bfI  - 1  - \scrC 2\bfI  - 1

\right]   
\left[    
\bfite k
1 (0, \cdot )
\bfitE k

1 (x)

\bfite k
2 (L, \cdot )
\bfitE k

2 (x)

\right]    ,

(3.24)

where we also introduced the diagonal matrices of operators

\scrP 1,0 = diag(\scrA 1,0,0, . . . ,\scrA 1,N - 1,0), \scrP 1,\Delta T = diag(\scrA 1,0,\Delta T , . . . ,\scrA 1,N - 1,\Delta T ),

\scrP 2,L = diag(\scrA 2,0,L, . . . ,\scrA 2,N - 1,L), \scrP 2,\Delta T = diag(\scrA 2,0,\Delta T , . . . ,\scrA 2,N - 1,\Delta T ),

\scrQ 1,0 = diag(\scrB 1,0,0, . . . ,\scrB 1,N - 1,0), \scrQ 1,\Delta T = diag(\scrB 1,0,\Delta T , . . . ,\scrB 1,N - 1,\Delta T ),

\scrQ 2,L = diag(\scrB 2,0,L, . . . ,\scrB 2,N - 1,L), \scrQ 2,\Delta T = diag(\scrB 2,0,\Delta T , . . . ,\scrB 2,N - 1,\Delta T ).

(3.25)

In order to understand the convergence behavior of the PSWR algorithm, we therefore
have to understand the matrix iteration (3.24), where the entries of the matrices are
continuous linear operators.

3.4. Tools from linear algebra. The analysis of the matrix iteration (3.24) is
based on the following three lemmas from linear algebra.

Lemma 3.1. If in the two by two block matrix

M =

\biggl[ 
M11 M12

M21 M22

\biggr] 
(3.26)

the diagonal submatrices M11 and M22 are lower triangular, and the off-diagonal
submatrices M12 and M21 are strictly lower triangular, and M22 is nonsingular, then

det(M) = det(M11) det(M22).
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A SUPERLINEAR CONVERGENCE ESTIMATE FOR PSWR A1157

Proof. Since M22 is nonsingular, we can write the block matrix M in the factored
form

M =

\biggl[ 
I M12M

 - 1
22

0 I

\biggr] \biggl[ 
M11  - M12M

 - 1
22 M21 0

0 M22

\biggr] \biggl[ 
I 0

M - 1
22 M21 I

\biggr] 
and therefore obtain for its determinant the formula

det(M) = det(M11  - M12M
 - 1
22 M21) det(M22).(3.27)

Now by assumption, the off-diagonal matrices are strictly lower triangular, and M22 is
lower triangular, which implies that M12M

 - 1
22 M21 is a strictly lower triangular matrix,

and hence

det(M11  - M12M
 - 1
22 M21) = det(M11),

which concludes the proof of the lemma.

Lemma 3.2 (see [39, p. 18]). If the inverse of the block matrix M in (3.26) is
nonsingular, then

M - 1 =

\biggl[ 
[M11  - M12M

 - 1
22 M21]

 - 1 M - 1
11 M12[M21M

 - 1
11 M12  - M22]

 - 1

[M21M
 - 1
11 M12  - M22]

 - 1M21M
 - 1
11 [M22  - M21M

 - 1
11 M12]

 - 1

\biggr] 
,

assuming that all the relevant inverses exist.

Lemma 3.3. For a matrix A with the block structure

A =

\left[    
B1 + \Lambda 1I B2 B3 B4 + \Lambda 2I

B5 B6 B7 B8

B9 B10 + \Lambda 3I B11 + \Lambda 4I B12

B13 B14 B15 B16

\right]    ,

where the submatrices Bi (i = 1, . . . , 16) are all strictly lower triangular, and the \Lambda i

(i = 1, . . . , 4) are scalar values, the spectral radius of A is given by

\rho (A) = max\{ | \Lambda 1| , | \Lambda 4| \} .

Proof. As in the proof of Lemma 3.1, we use the same block factorization to
rewrite the determinant in the form (3.27),

det(A - \lambda I) = det

\left(    
\left[    
B1 + (\Lambda 1  - \lambda )I B2 B3 B4 + \Lambda 2I

B5 B6  - \lambda I B7 B8

B9 B10 + \Lambda 3I B11 + (\Lambda 4  - \lambda )I B12

B13 B14 B15 B16  - \lambda I

\right]    
\right)    

= det

\Biggl( \biggl[ 
B1 + (\Lambda 1  - \lambda )I B2

B5 B6  - \lambda I

\biggr] 
 - 
\biggl[ 
B3 B4 + \Lambda 2I
B7 B8

\biggr] \biggl[ 
B11 + (\Lambda 4  - \lambda )I B12

B15 B16  - \lambda I

\biggr]  - 1

\cdot 
\biggl[ 
B9 B10 + \Lambda 3I
B13 B14

\biggr] \biggr) 
\times det

\biggl( \biggl[ 
B11 + (\Lambda 4  - \lambda )I B12

B15 B16  - \lambda I

\biggr] \biggr) 
.

(3.28)

Now for the inverse on the right in (3.28), we obtain using Lemma 3.2 that\biggl[ 
B11 + (\Lambda 4  - \lambda )I B12

B15 B16  - \lambda I

\biggr]  - 1

=

\biggl[ 
C11 C12

C15 C16

\biggr] 
,
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A1158 M. J. GANDER, Y.-LIN JIANG, AND B. SONG

with the block entries in the inverse given by

C11 = [B11 + (\Lambda 4  - \lambda )I  - B12(B16  - \lambda I) - 1B15]
 - 1,

C12 = (B11 + (\Lambda 4  - \lambda )I) - 1B12[B15(B11 + (\Lambda 4  - \lambda )I) - 1B12  - (B16  - \lambda I)] - 1,

C15 = [B15(B11 + (\Lambda 4  - \lambda )I) - 1B12  - (B16  - \lambda I)] - 1B15(B11 + (\Lambda 4  - \lambda )I) - 1,

C16 = [(B16  - \lambda I) - B12(B11 + (\Lambda 4  - \lambda )I) - 1B12]
 - 1.

We now study the structure of these block entries. For C11, we first observe that
(B16  - \lambda I) - 1 is lower triangular, since B16 is strictly lower triangular, and hence
multiplying on the left and right by the strictly lower triangular matrices B12 and B15

the result will also be strictly lower triangular. The matrix C11 is thus the inverse of
a strictly lower triangular matrix plus the diagonal matrix (\Lambda 4  - \lambda )I, which implies
that C11 = B\prime 

11 +
1

\Lambda 4 - \lambda I for some strictly lower triangular matrix B\prime 
11. Similarly, one

can also analyze the structure of the other block entries of the inverse, and we obtain

\biggl[ 
B11 + (\Lambda 4  - \lambda )I B12

B15 B16  - \lambda I

\biggr]  - 1

=

\left[   B\prime 
11 +

1

\Lambda 4  - \lambda 
I B\prime 

12

B\prime 
15 B\prime 

16  - 
1

\lambda 
I

\right]   ,

where all B\prime 
i (i = 11, 12, 15, 16) are strictly lower triangular matrices. We next study

the product on the right in (3.28),\biggl[ 
B3 B4 + \Lambda 2I
B7 B8

\biggr] \biggl[ 
B11 + (\Lambda 4  - \lambda )I B12

B15 B16  - \lambda I

\biggr]  - 1 \biggl[ 
B9 B10 + \Lambda 3I
B13 B14

\biggr] 
=

\biggl[ 
B17 B18

B19 B20

\biggr] 
,

and find again structurally that the Bi (i = 17, . . . , 20) are strictly lower triangular
matrices. Using Lemma 3.1, the expression for the first determinant in the last line
of (3.28) becomes

det

\biggl( \biggl[ 
B1 + (\Lambda 1  - \lambda )I B2

B5 B6  - \lambda I

\biggr] 
 - 
\biggl[ 
B3 B4 + \Lambda 2I
B7 B8

\biggr] 
\cdot 
\biggl[ 
B11 + (\Lambda 4  - \lambda )I B12

B15 B16  - \lambda I

\biggr]  - 1 \biggl[ 
B9 B10 + \Lambda 3I
B13 B14

\biggr] \Biggr) 

= det

\biggl( \biggl[ 
B1 + (\Lambda 1  - \lambda )I B2

B5 B6  - \lambda I

\biggr] 
 - 
\biggl[ 
B17 B18

B19 B20

\biggr] \biggr) 
= det

\biggl( \biggl[ 
\^B1 + (\Lambda 1  - \lambda )I \^B2

\^B5
\^B6  - \lambda I

\biggr] \biggr) 
= det( \^B1 + (\Lambda 1  - \lambda )I) det( \^B6  - \lambda I) = \lambda n(\lambda  - \Lambda 1)

n

if the matrix subblocks are of size n\times n, and we used again Lemma 3.1, and here the \^Bi

(i = 1, 2, 5, 6) are still strictly lower triangular matrices. For the second determinant
in (3.28) we get directly using Lemma 3.1 that

det

\biggl( \biggl[ 
B11 + (\Lambda 4  - \lambda )I B12

B15 B16  - \lambda I

\biggr] \biggr) 
= det(B11 + (\Lambda 4  - \lambda )I) det(B16  - \lambda I) = \lambda n(\lambda  - \Lambda 4)

n.

This yields det(A  - \lambda I(4n)\times (4n)) = \lambda 2n(\lambda  - \Lambda 1)
n(\lambda  - \Lambda 4)

n, and hence the spectral
radius of A is \rho (A) = max\{ | \Lambda 1| , | \Lambda 4| \} .
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3.5. Superlinear convergence of PSWR. We are now ready to prove the
main result of this paper, namely, the superlinear convergence of PSWR. We collect
the norms of the functions appearing in (3.23) into vectors,

[\bfite ]t := [\| e0\| \infty , . . . , \| eN - 1\| \infty ]T , [\bfitE ]x := [\| E0\| \infty , . . . , \| EN - 1\| \infty ]T ,(3.29)

where the infinity norm for a function g : (a, b) \rightarrow \BbbR is given by

\| g\| \infty := sup
a<s<b

| g(s)| .

Note that in [\bfitE ]x the infinity norms are in space, indicated by the subscript x, since
\bfitE represents functions in space, and in [\bfite ]t the infinity norms are in time, indicated
by the index t, since \bfite represents functions in time. We also define the matrix of
norms of the functions in a matrix A = [aij ] by

[A]t = [\| aij\| \infty ].(3.30)

Theorem 3.4 (superlinear convergence). If the fine propagator F is the exact
solver, and the coarse propagator G is backward Euler, then PSWR with Dirichlet
transmission conditions and overlap L converges superlinearly on bounded time in-
tervals (0, T ), i.e., the errors given by the error recursion formulas (3.4) and (3.5)
satisfy the error estimate \left[    

[\bfite 2k1 ]t
[\bfitE 2k

1 ]x
[\bfite 2k2 ]t
[\bfitE 2k

2 ]x

\right]    \leq \~\BbbM 2k

\left[    
[\bfite 01]t
[\bfitE 0

1 ]x
[\bfite 02]t
[\bfitE 0

2 ]x

\right]    ,(3.31)

where ``\leq "" denotes the element-by-element comparison, and for each iteration index
k, the spectral radius of the iteration matrix \~\BbbM 2k can be bounded by

\rho ( \~\BbbM 2k) \leq erfc

\biggl( 
kL\surd 
T

\biggr) 
,(3.32)

where erfc(\cdot ) is the complementary error function with erfc(x) = 2\surd 
\pi 

\int \infty 
x

e - t2dt.

Proof. To obtain a convergence estimate of the matrix iteration (3.24) represent-
ing the error recursion formulas (3.4) and (3.5) of the PSWR algorithm with Dirichlet
transmission conditions, we first invert the matrix of operators on the left-hand side
using Lemma 3.2, which leads to\left[    

I 0 0 0
0 I - \scrC 1I - 1  - \scrD 1,\Delta T I - 1 0
0 0 I 0

 - \scrD 2,\Delta T I - 1 0 0 I - \scrC 2I - 1

\right]    
 - 1

=

\left[    
I 0 0 0
0 I+B\prime 

1 B\prime 
2 0

0 0 I 0
B\prime 

3 0 0 I+B\prime 
4

\right]    ,

(3.33)

where B\prime 
i (i = 1, . . . , 4) are strictly lower triangular matrices of operators. Multiplying

the matrix iteration (3.24) on both sides by the inverse (3.33) thus leads to the matrix
iteration
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\left[    
\bfite k+1
1 (0, \cdot )
\bfitE k+1

1 (x)

\bfite k+1
2 (L, \cdot )
\bfitE k+1

2 (x)

\right]    = \BbbM 

\left[    
\bfite k1(0, \cdot )
\bfitE k

1 (x)
\bfite k2(L, \cdot )
\bfitE k

2 (x)

\right]    ,(3.34)

where the iteration matrix \BbbM of operators is given by

\BbbM =

\left[    
0 \scrP 1,0 \scrQ 1,0 0

B\prime 
2\scrQ 2,L K1 K2 B\prime 

2\scrP 2,L

\scrQ 2,L 0 0 \scrP 2,L

K3 B\prime 
3\scrQ 1,0 B\prime 

3\scrP 1,0 K4

\right]    ,

with the new matrices of operators appearing given by

K1 := (I+B\prime 
1)(\scrP 1,\Delta T I - 1  - \scrC 1I - 1),

K2 := (I+B\prime 
1)(\scrQ 1,\Delta T I - 1  - \scrD 1,\Delta T I - 1),

K3 := (I+B\prime 
4)(\scrQ 2,\Delta T I - 1  - \scrD 2,\Delta T I - 1),

K4 := (I+B\prime 
4)(\scrP 2,\Delta T I - 1  - \scrC 2I - 1).

The key idea of the proof is now not to estimate the contraction over one step, which
would only lead to a linear convergence estimate, but to look at the iteration over all
iteration steps at once, i.e.,\left[    

\bfite 2k1 (0, \cdot )
\bfitE 2k

1 (x)
\bfite 2k2 (L, \cdot )
\bfitE 2k

2 (x)

\right]    = \BbbM 2k

\left[    
\bfite 01(0, \cdot )
\bfitE 0

1(x)
\bfite 02(L, \cdot )
\bfitE 0

2(x)

\right]    .(3.35)

The 2kth power of the iteration matrix of operators has the structure

\BbbM 2k

=

\left[    
L1 + (\scrQ 1,0\scrQ 2,L)k L2 L3 L4 + (\scrQ 1,0\scrQ 2,L)k - 1\scrQ 1,0\scrP 2,L

L5 L6 L7 L8

L9 L10 + (\scrQ 2,L\scrQ 1,0)
k - 1\scrQ 2,L\scrP 1,0 L11 + (\scrQ 2,L\scrQ 1,0)

k L12

L13 L14 L15 L16

\right]    ,

where all the new matrices of operators Li (i = 1, 2, . . . , 16) are strictly lower triangu-
lar, as a detailed verification like in the proof of Lemma 3.3 shows. We now take the
norms defined in (3.29) in each block row of (3.35), and using the triangle inequality,
we obtain the estimate (3.31) shown in the statement of the theorem. Now note that
the matrix \~\BbbM 2k has the same structure as the matrix in Lemma 3.3, and we thus get
for the spectral radius of \~\BbbM 2k

\rho ( \~\BbbM 2k) = max\{ [(\scrQ 1,0\scrQ 2,L)
k]t, [(\scrQ 2,L\scrQ 1,0)

k]t\} .(3.36)

Here [\cdot ]t is defined in (3.30) for the matrices (\scrQ 1,0\scrQ 2,L)
k and (\scrQ 2,L\scrQ 1,0)

k. By the
definitions of \scrQ 1,0 and \scrQ 2,L in (3.25), and using the definitions of \scrB 1,n,0 and \scrB 2,n,L

in (3.19) and (3.22), we see that \scrB 1,n,0 = \scrB 2,n,L, and further \scrQ 1,0 = \scrQ 2,L. Note that
the diagonals of \scrQ 1,0\scrQ 2,L are \scrB 1,n,0\scrB 2,n,L, and therefore it suffices to estimate

\| (\scrB 1,n,0\scrB 2,n,L)
k\| \infty = \| (\scrB 1,n,0)

2k\| \infty \leq \| 
\int t

0

2kL

2
\surd 
\pi (t - \tau )3/2

e - 
(2kL)2

4(t - \tau ) d\tau \| \infty ,

where the infinity norm here is defined for the operator. Using the change of variables
y := kL/

\surd 
t - \tau , we obtain

D
ow

nl
oa

de
d 

05
/1

0/
23

 to
 1

29
.1

94
.1

.4
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A SUPERLINEAR CONVERGENCE ESTIMATE FOR PSWR A1161

\| (\scrB 1,n,0\scrB 2,n,L)
k\| \infty \leq erfc

\biggl( 
kL\surd 
T

\biggr) 
.

Therefore the spectral radius of the iteration matrix of operators \~\BbbM 2k can be bounded
as shown in (3.32), which concludes the proof.

Remark 3.5. From Theorem 3.4, we see that the spectral radius of the iteration
matrix of operators \~\BbbM 2k can be bounded for each k, which gives a different asymptotic
error reduction factor for each k. Our result thus captures the convergence behavior
of the PSWR method much more accurately than just an estimate of the decay of the
error over one iteration step; it is obtaining this convolved estimate which made the
analysis so hard. Estimating over one step, we would just have obtained a classical
linear convergence factor, a number less than one. Let us look at an example: let
T := 1, L := 0.1. Then for k = 1, we have erfc(0.1) \approx 0.8875 and thus \rho ( \~\BbbM 2) \leq 0.8875
and PSWR converges asymptotically at least with the factor 0.8875, i.e., the error is
asymptotically multiplied at least by 0.8875 every two iterations. This is, however,
only an upper bound, since if we look at k = 2, we have erfc(0.2) \approx 0.7773 and thus
\rho ( \~\BbbM 4) \leq 0.7773 and PSWR converges asymptotically at least with the factor 0.7773,
i.e., the error is asymptotically multiplied at least by 0.7773 every four iterations.
So the key result we obtained is much more precise than just an asymptotic linear
convergence factor---it proves superlinear asymptotic convergence: if we look at k = 20
in our example, we have erfc(2) \approx 0.004678 \ll (erfc(0.1))20 \approx 0.09199 (!) and thus
\rho ( \~\BbbM 40) \leq 0.004678, an extremely fast contraction rate. We can also compute the
average convergence factor by taking the kth root of \rho (M2k). For k = 1, 2, and
20, the average convergence factor is 0.8875, 0.8816, and 0.7647, which shows that
the average convergence factor decreases as the iteration number k increases. We
will see in our numerical experiments that the PSWR algorithm really converges at
a superlinear rate and that our estimate is quite sharp. In order to get a norm
estimate, we could also consider the norm of the iteration matrix of operators in the
sense induced by the spectral radius (see [47, p. 284, Lemma 1] or [73, p. 795]): for
every \epsilon > 0, we can introduce an equivalent norm \| \cdot \| \epsilon such that the corresponding
operator norm satisfies

\rho ( \~M2k) \leq \| \~M2k\| \epsilon \leq \rho ( \~M2k) + \epsilon ,

where \| x\| \epsilon := supp\geq 0(\rho ( \~M2k) + \epsilon ) - p\| \~M2kpx\| \infty , x \in \BbbR 4N . This then implies that
our algorithm is also converging superlinearly in the above norm sense.

Remark 3.6. The convergence estimate in Theorem 3.4 depends only on the size
of the overlap L and the length of the entire time interval T of simulation, but it does
not depend on the number of time subintervals we use in the PSWR algorithm. We
will investigate in the next section how sharp this bound is and if a similar bound
would also hold for many subdomains, and optimized transmission conditions, cases
which our current analysis does not cover.

4. Numerical experiments. To investigate numerically how the convergence
of the PSWR algorithm depends on the various parameters in the space-time decom-
position, we use the one-dimensional model problem

\partial u(x, t)

\partial t
=

\partial 2u(x, t)

\partial x2
, (x, t) \in \Omega \times (0, T ),

u(x, t) = 0, (x, t) \in \partial \Omega \times (0, T ),

u(x, 0) = u0, x \in \Omega ,

(4.1)D
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Fig. 2. Dependence of the PSWR algorithm on the number of time subintervals (left) and the
total time window length (right).

where the domain \Omega = (0, 3), and the initial condition is u0 = exp - 3(1.5 - x)2 . The
model problem (4.1) is discretized by a second-order centered finite difference scheme
with mesh size h = 3/128 in space and by the backward Euler method with \Delta t =
T/100 in time. The time interval is divided into N time subintervals, while the
domain \Omega is decomposed into J equal spatial subdomains with overlap L. We define
the relative error of the infinity norm of the errors along the interface and initial time
in the space-time subdomains as the iterative error of our new algorithm.

We first study cases which are very closely related to our analysis, with the only
difference that the spatial domain must be bounded in order to perform numerical
computations. We thus decompose the domain \Omega into two spatial subdomains with
overlap L = 2h. The total time interval length is T = 1. We show in Figure 2 on
the left the convergence of the PSWR algorithm when the number of time subinter-
vals equals 1 (classical Schwarz waveform relaxation), 2, 4, 10, and 20. This shows
that the convergence of the algorithm indeed does not depend on the number of time
subintervals, as predicted by Theorem 3.4. We also observe the superlinear conver-
gence behavior predicted by Theorem 3.4, which is typical for waveform relaxation
algorithms (see for example [31]), and the estimate is asymptotically quite sharp, as
one can see from the theoretical bound we also plotted in Figure 2 on the left. Here
the theoretical bound is obtained from the spectral radius bound in Theorem 3.4.

We next investigate how the convergence depends on the total time interval length
T , with T \in \{ 0.1, 0.2, 0.5, 1, 2\} . We divide the time interval (0, T ) each time into 10
time subintervals and use the same decomposition of the domain \Omega into two subdo-
mains with overlap L = 2h as before. The results are shown in Figure 2 on the right
with the corresponding asymptotically rather sharp bounds. We clearly see that the
convergence of the PSWR algorithm is much faster on short time intervals, compared
to long time intervals, as predicted by Theorem 3.4. We also see, however, that the
initial convergence behavior on long time intervals seems to be linear, and independent
of the length of the time interval then, a fact which is not captured by our superlinear
convergence analysis.

We next study the dependence on the overlap. We use L = 2h, 4h, 8h, and
16h, and divide the time interval (0, T ) with T = 1 into 10 time subintervals, still
using the same two subdomain decomposition of \Omega as before. We see on the left in
Figure 3 that increasing the overlap substantially improves the convergence speed of
the algorithm, as predicted by our convergence estimate in Theorem 3.4. This also
increases, however, the cost of the method, since bigger subdomain problems need to
be solved.
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Fig. 3. Dependence of the PSWR algorithm on the overlap (left) and on the number of spatial
subdomains (right).
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Fig. 4. Independence of the PSWR algorithm on the number of time subintervals for four
spatial subdomains (left) and eight spatial subdomains (right).

We now investigate numerically if a similar convergence result we derived for two
subdomains also holds for the case of many subdomains. We decompose the domain
\Omega into 2, 4, 8, and 16 spatial subdomains, keeping again the overlap L = 2h. For
each case, we divide the time interval (0, T ) with T = 1 into 10 time subintervals.
We see in Figure 3 on the right that the algorithm on many spatial subdomains still
converges superlinearly, as predicted by our two subdomain analysis, but using more
spatial subdomains makes the algorithm converge more slowly, like for the classical
Schwarz method for steady problems. This, however, can be remedied by using smaller
global time intervals T and leads to the so-called windowing techniques for waveform
relaxation algorithms in general; see [34].

We further investigate whether the convergence of the algorithm still does not
depend on the number of time subintervals for the case of many subdomains. We see
in Figure 4 that the convergence behavior for four spatial subdomains (left) and eight
spatial subdomains (right) is the same as the convergence behavior for two spatial
subdomains.

Finally, we compare the convergence behavior of the PSWR algorithm with
Dirichlet and optimized transmission conditions. Using optimized transmission condi-
tions leads to much faster, so-called optimized Schwarz waveform relaxation methods;
see, for example, [32, 3]. We divide the time interval (0, T ) with T = 1 into 20 time
subintervals, and the domain \Omega is decomposed into 8 spatial subdomains. We use
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Fig. 5. Comparison of the PSWR algorithm with Dirichlet and optimized transmission con-
ditions. Left: third iteration and corresponding error for Dirichlet (top) and optimized (bottom)
transmission conditions. Right: corresponding convergence curves.

iteration

1 2 3 4 5 6 7 8 9 10

e
rr

o
r

10
-4

10
-3

10
-2

10
-1

1 time subinterval

2 time subintervals

4 time subintervals

10 time subintervals

20 time subintervals

iteration

1 2 3 4 5 6 7 8 9 10

e
rr

o
r

10
-4

10
-3

10
-2

10
-1

T=0.1

T=0.5

T=1

T=2

Fig. 6. Dependence of the PSWR algorithm with optimized transmission conditions on the
number of time subintervals (left) and the total time window length (right).

first-order transmission conditions and choose for the parameters p = 1, q = 1.75 (for
the terminology, see [3]). In Figure 5 we show on the left on top the third iteration
and corresponding error using Dirichlet transmission conditions, and below the third
iteration and corresponding error using optimized transmission conditions. We clearly
see that with optimized transmission conditions, the error is much more effectively
eliminated both from the initial line and the spatial boundaries. On the right in Fig-
ure 5, the corresponding convergence curves show that using optimized transmission
conditions lead to substantially better performance of the algorithm, even better than
very generous overlap, and this at no additional cost, since the subdomain size and
matrix sparsity is the same as for the case of Dirichlet transmission conditions. We
also investigate the dependence on the number of time subintervals (on the left in Fig-
ure 6), and the total time interval length T (on the right in Figure 6), where we choose
the problem configuration as in the case of the Dirichlet transmission conditions in
Figure 2. We observe that convergence is much faster with optimized transmission
conditions (less than 10 iterations instead of over 100), and convergence has also be-
come linear, indicating that there is a different convergence mechanism dominating
now, due to the optimized transmission conditions. We also observe that in contrast
to the Dirichlet transmission condition case, convergence now does not depend any
longer on the length T of the overall time interval. We also test the dependence on
the overlap size L (on the left in Figure 7) and on the number of spatial subdomains
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Fig. 7. Dependence of the PSWR algorithm with optimized transmission conditions on the
overlap (left) and the number of spatial subdomains (right).

J (on the right in Figure 7). Comparing with the Dirichlet transmission condition
case in Figure 3, we see again much faster convergence for all overlaps and spatial
subdomain numbers, and convergence is also more linear again, except in the case
of many spatial subdomains, where after some iterations a superlinear convergence
mechanism seems to become active.

5. Conclusion. We designed and analyzed a new PSWR algorithm for solving
time-dependent PDEs. This algorithm is based on a domain decomposition of the
entire space-time domain into smaller space-time subdomains, i.e., the decomposition
is both in space and in time. The new algorithm iterates on these space-time sub-
domains using two different updating mechanisms: the Schwarz waveform relaxation
approach for boundary condition updates, and the parareal mechanism for initial con-
dition updates. All space-time subdomains are solved in parallel, both in space and
in time. We proved for the model problem of the one-dimensional heat equation and
a two subdomain decomposition in space, and arbitrary subdomain decomposition
in time, that the new algorithm converges superlinearly on bounded time intervals
when using Dirichlet transmission conditions in space. We then tested the algorithm
numerically and observed that our superlinear theoretical convergence estimate also
seems to hold in the case of many subdomains, and as predicted, for fast convergence
the overall time interval should not be too large (which can be achieved using a time
windowing technique), or the overlap should not be too small. We then showed nu-
merically that both these drawbacks can be greatly alleviated when using optimized
transmission conditions, and we also observed that convergence then is more linear.
Our results open up the path for many further research directions: is it possible to
capture the different, linear convergence mechanism in the case of optimized transmis-
sion conditions using a different type of convergence analysis from ours? Can we prove
that convergence then becomes independent of the length of the overall time interval?
Is it possible to remove the dependence on the number of spatial subdomains using
a coarse space correction, as done in [6] for optimized transmission conditions in the
steady case? What is the convergence behavior when applied to the wave equation?
Can one use in space also a Dirichlet--Neumann or Neumann--Neumann iteration, as in
[26] without time decomposition? Answering these questions by analysis will be even
more challenging than our first convergence estimate for this new algorithm presented
here.
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Appendix A. Representation formula for the solution of the \bfitG propa-
gator. We derive here the representation formula for the solution of the G propagator
using backward Euler. For the ODE

\partial 2u

\partial x2
 - a2u = f, a > 0,

its general solution can be expressed in the form

u(x) = C1e
ax +

\int 
eax - a\tau f(\tau )

2a
d\tau  - C2

e - ax

a
 - 
\int 

ea\tau  - ax df(\tau )

2a
d\tau .

On a bounded domain in the presence of boundary conditions, as in

\partial 2u

\partial x2
 - a2u = f, x \in [L1, L2], a > 0,

u(L1) = g1, u(L2) = g2,

one can still obtain a closed form solution, namely,

u(x) = C1e
ax +

\int x

L1

eax - a\tau f(\tau )

2a
d\tau  - C2e

 - ax

a
 - 
\int x

L1

ea\tau  - ax f(\tau )

2a
d\tau ,

where

C1 =
g2  - g1e

aL1 - aL2  - 
\int L2

L1
(eaL2 - a\tau  - ea\tau  - aL2) f(\tau )2a d\tau 

eaL2  - e2aL1 - aL2
,

C2 = a
g2  - g1e

aL2 - aL1  - 
\int L2

L1
(eaL2 - a\tau  - ea\tau  - aL2)

f(\tau )

2a
d\tau 

eaL2 - 2aL1  - e - aL2
.

Denoting by \delta L := L2  - L1 we obtain after some simplifications

u(x) =
eax - aL1  - e - ax+aL1

ea\delta L  - e - a\delta L
g2 +

eaL2 - ax  - e - aL2+ax

ea\delta L  - e - a\delta L
g1

+
eaL1 - ax  - eax - aL1

ea\delta L  - e - a\delta L

\int L2

L1

(eaL2 - a\tau  - ea\tau  - aL2)
f(\tau )

2a
d\tau 

+

\int x

L1

(eax - a\tau  - e - ax+a\tau )
f(\tau )

2a
d\tau .

In particular, if L1 \rightarrow  - \infty , L2 = L and g1 = 0, then we have

u(x) =g2e
a(x - L) +

\int L

 - \infty 
ea(x+\tau  - 2L) f(\tau )

2a
d\tau  - 

\int L

x

ea(x - \tau ) f(\tau )

2a
d\tau 

 - 
\int x

 - \infty 
e - a(x - \tau ) f(\tau )

2a
d\tau ,

and if L1 = 0, L2 \rightarrow +\infty and g2 = 0, then we have

u(x) = g1e
 - ax+

\int +\infty 

0

e - a(x+\tau ) f(\tau )

2a
d\tau  - 

\int x

0

e - a(x - \tau ) f(\tau )

2a
d\tau  - 

\int +\infty 

x

ea(x - \tau ) f(\tau )

2a
d\tau .
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