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VERIFICATION OF GENERAL MARKOV DECISION

PROCESSES BY APPROXIMATE SIMILARITY RELATIONS

AND POLICY REFINEMENT

S. HAESAERT1, S. ESMAEIL ZADEH SOUDJANI2, AND A. ABATE2

Abstract. In this work we introduce new approximate similarity relations
that are shown to be key for policy (or control) synthesis over general Markov
decision processes. The models of interest are discrete-time Markov decision
processes, endowed with uncountably-infinite state spaces and metric output
(or observation) spaces. The new relations, underpinned by the use of metrics,
allow in particular for a useful trade-off between deviations over probability
distributions on states, and distances between model outputs. We show that
the new probabilistic similarity relations, inspired by a notion of simulation
developed for finite-state models, can be effectively employed over general
Markov decision processes for verification purposes, and specifically for control
refinement from abstract models.

1. Introduction

The formal verification of computer systems allows for the quantification of their
properties and for their correct functioning. Whilst verification has classically fo-
cused on finite-state models, with the ever more ubiquitous embedding of digital
components into physical systems richer models are needed and correct functioning
can only be expressed over the combined behaviour of both the digital computer
and the surrounding physical system. It is in particular of interest to synthesise the
part of the computer software that controls or interacts with he physical system
automatically, with low likelihood of malfunctioning. Furthermore, when comput-
ers interact with physical systems such as biological processes, power networks, and
smart-grids, stochastic models are key. Consider, as an example, a power network
for which we would like to quantify the likelihood of blackouts and to synthesise
strategies to minimise this.

Systems with uncertainty and non-determinism can be naturally modelled as
Markov decision processes (MDP). In this work, we focus on general Markov deci-
sion processes (gMDP) that have uncountable state spaces as well as metric output
spaces. The characterisation of properties over such processes cannot in general
be attained analytically [3], so an alternative is to approximate these models by
simpler processes that are prone to be mathematically analysed or algorithmically
verified [19], such as finite-state MDP [20]. Clearly, it is then key to provide formal
guarantees on this approximation step, such that solutions of the verification or
synthesis problem for a property on the simpler process can be extended to the
original model. Our verification problems include the synthesis of a policy (or a
control strategy) that maximises the likelihood of the specification of interest.
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In this work we develop a new notion of approximate similarity relation, aimed
to attain a computationally efficient controller synthesis over Markov decision pro-
cesses with metric output spaces. We show that it is possible to obtain a control
strategy for a gMDP as a refinement of a strategy synthesised for an abstract model,
at the expense of accuracy defined on a similarity relation between them, which
quantifies bounded deviations in transition probabilities and output distances. In
summary, we provide results allowing us to quantitatively relate the outcome of
verification problems performed over the simpler (abstract) model to the original
(concrete) model, and further to refine control strategies synthesised over the ab-
stract model to strategies for the original model.

The use of similarity relations on finite-state probabilistic models has been
broadly investigated, either via exact notions of probabilistic simulation and bisim-
ulation relations [27, 31, 32], or (more recently) via approximate notions [16, 17].
On the other hand, similar notions over general, uncountable-state spaces have been
only recently studied: available relations either hinge on stability requirements on
model outputs [26, 37] (established via martingale theory or contractivity analy-
sis), or alternatively enforce structural abstractions of a model [15] by exploiting
continuity conditions on its probability laws [1, 2].

In this work, we want to quantify properties with a certified precision both in
the deviation of the probability laws for finite-time events (as in the classical no-
tion of probabilistic bisimulation) and of the output trajectories (as studied for
dynamical models). Additionally, we impose no strict requirements on the dynam-
ics of the given gMDP and its abstraction. To these ends, we first extend the exact
probabilistic simulation and bisimulation relations based on lifting for finite-state
probabilistic automata and stochastic games [31, 32, 38] to gMDP (Section 3). We
then generalise these notions to allow for errors on the probability laws and devi-
ations over the output space (Section 4). Two case studies in the area of smart
buildings (Section 5) are used to evaluate these new approximate probabilistic sim-
ulation relations. Unlike cognate recent work [1, 26], we are interested in similarity
relations that allow refining over the concrete model a control strategy synthesised
on the abstract one. We zoom in on relations that, quite like the alternating notions
in [5, 35] for non-probabilistic models and in [38] for stochastic ones, quantitatively
bound the difference in the controllable behaviour of pairs of models (namely a
gMDP and its abstraction). In Appendix C we show how over a class of Markov
processes (without controls), this newly developed approximate similarity relation
practically generalises notions of probabilistic (bi-)simulations of Labeled Markov
processes [13, based on zigzag-morphisms],[14, based on equivalence relations], and
their approximate versions [15, 16, 17, based on binary relations].

2. Verification of general Markov decision processes: problem setup

2.1. Preliminaries and notations. Given two sets A and B, the Cartesian prod-
uct of A and B is given as A×B = {(a, b) : a ∈ A and b ∈ B}. The disjoint union
of A and B is denoted as A ⊔ B and consists of the combination of the members
of A and B, where the original set membership is the distinguishing characteristic
that forces the union to be disjoint,i.e., A ⊔ B = (A × {0})⋃(B × {1}). As usual
for C ⊂ A ⊔ B we denote C ∩ A = {a ∈ A : (a, 0) ∈ C}. For the sets A and B
a relation R ⊂ A × B is a subset of their Cartesian product that relates elements
x ∈ A with elements y ∈ B, denoted as xRy. We use the following notation for the
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mappings R(Ã) := {y : xRy, x ∈ Ã} and R−1(B̃) := {x : xRy, y ∈ B̃} for Ã ⊆ A

and B̃ ⊆ B. A relation over a set defines a preorder if it is reflexive, ∀x ∈ A : xRx;
and transitive, ∀x, y, z ∈ A : if xRy and yRz then xRz. A relation R ⊆ A × A
is an equivalence relation if it is reflexive, transitive and symmetric, ∀x, y ∈ A : if
xRy then yRx.

A measurable space is a pair (X,F) with sample space X and σ-algebra F defined
over X, which is equipped with a topology. As a specific instance of F consider
the Borel measurable space (X,B(X)). In this work, we restrict our attention to
Polish spaces and generally consider the Borel σ-field [9]. Recall that a Polish space
is a separable completely metrisable topological space. In other words, the space
admits a topological isomorphism to a complete metric space which is dense with
respect to a countable subset. A simple example of such a space is the real line.

A probability measure P (·) for (X,F) is a non-negative map, P (·) : F → [0, 1]
such that P (X) = 1 and such that for all countable collections {Ai}∞i=1 of pairwise
disjoint sets in F , it holds that P (

⋃

iAi) =
∑

i P (Ai). Together with the mea-
surable space, such a probability measure P defines the probability space, which
is denoted as (X,F ,P) and has realisations x ∼ P. Let us further denote the set
of all probability measures for a given measurable pair (X,F) as P(X,F). For
a probability spacei (X,FX,P) and a measurable space (Y,FY), a (Y,FY)- valued
random variable is a function y : X → Y that is (FX,FY)-measurable, and which
induces the probability measure y∗P in P(Y,FY). For a given set X a metric or
distance function dX is a function dX : X× X → R

+
0 .

2.2. gMDP models - syntax and semantics. General Markov decision pro-
cesses are related to control Markov processes [1] and Markov decision processes
[7, 30, 24], and formalised as follows.

Definition 1 (Markov decision process (MDP)). The tuple M = (X, π,T,U) de-
fines a discrete-time MDP over an uncountable state space X, and is characterised
by T, a conditional stochastic kernel that assigns to each point x ∈ X and control
u ∈ U a probability measure T(· | x, u) over (X,B(X)). For any set A ∈ B(X),
Px,u(x(t + 1) ∈ A) =

∫

A
T(dy | x(t) = x, u), where Px,u denotes the conditional

probability P(· | x, u). The initial probability distribution is π : B(X) → [0, 1].

At every state the state transition depends non-deterministically on the choice
of u ∈ U. When chosen according to a distribution µu : B(U) → [0, 1], we re-
fer to the stochastic control input as µu. Moreover the transition kernel is de-
noted as T(·|x, µu) =

∫

U
T(·|x, u)µu(du) ∈ P(X,B(X)). Given a string of inputs

u(0), u(1), . . . , u(N), over a finite time horizon {0, 1, . . . , N}, and an initial con-
dition x0 (sampled from distribution π), the state at the (t + 1)-st time instant,
x(t + 1), is obtained as a realisation of the controlled Borel-measurable stochastic
kernel T (· | x(t), u(t)) – these semantics induce paths (or executions) of the MDP.

Definition 2 (General Markov decision process (gMDP)). M= (X,π,T,U,h,Y) is
a discrete-time gMDP consisting of an MDP combined with output space Y and a
measurable output mapping h : X → Y. A metric dY decorates the output space
Y.

iThe index X in FX distinguishes the given σ-algebra on X from that on Y, which is denoted
as FY. Whenever possible this index will be dropped.
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The gMDP semantics are directly inherited from those of the MDP. Further, out-
put traces of gMDP are obtained as mappings of MDP paths, namely {y(t)}0:N :=
y(0), y(1), . . . , y(N), where y(t) = h

(

x(t)
)

. Denote the class of all gMDP with the
metric output space Y as MY. Note that gMDP can be regarded as a super-class
of the known labelled Markov processes (LMP) [15] as elucidated in [2].

Example 1. Consider the stochastic process

M : x(t+ 1) = f(x(t), u(t)) + e(t), y(t) = h(x(t)) ∈ Y,

with variables x(t), u(t), e(t), taking values in Rn, representing the state, control
inputii, and noise terms respectively. The process is initialised as x(0) ∼ π, and
driven by e(t), a white noise sequence with zero-mean normal distributions and
covariance matrix Σe. This stochastic process, defined as a dynamical model, is
a gMDP characterised by a tuple (Rn, π,T,Rn, h,Y), where the conditional tran-
sition kernel is defined as T(· | x, u) = N (f(x(t), u(t)),Σe), a normal probability
distribution with mean f(x(t), u(t)) and covariance matrix Σe. �

A policy is a selection of control inputs based on the past history of states and
controls. We allow controls to be selected via universally measurable maps [7] from
the state to the control space, so that time-bounded properties such as safety can
be maximised [3]. When the selected controls are only dependent on the current
states, and thus conditionally independent of history (or memoryless), the policy is
referred to as Markov.

Definition 3 (Markov policy). For a gMDP M = (X, π,T,U, h,Y), a Markov
policy µ is a sequence µ = (µ1, µ2, µ3, . . .) of universally measurable maps µt =
X → P(U,B(U)) t = 0, 1, 2, . . ., from the state space X to the set of controls.

Recall that a function f : Z1 → Z2 is universally measurable if the inverse image
of every Borel set is measurable with respect to every complete probability measure
on Z1 that measures all Borel subsets of Z1.

The execution {x(t), t ∈ [0, N ]} initialised by x0 ∈ X and controlled with Markov
policy µ is a stochastic process defined on the canonical sample space Ω := XN+1

endowed with its product topology B(Ω). This stochastic process has a probability
measure P uniquely defined by the transition kernel T, policy µ, and initial distri-
bution π [7, Prop. 7.45].
Of interest are time-dependent properties such as those expressed as specifications
in a temporal logic of choice. This leads to problems where one maximises the
probability that a sequence of labelled sets is reached within a time limit and in the
right order. One can intuitively realise that in general the optimal policy leading
to the maximal probability is not a Markov (memoryless) policy, as introduced in
Def. 3. We introduce the notion of a control strategy, and define it as a broader,
memory-dependent version of the Markov policy above. This strategy is formulated
as a Markov process that takes as an input the state of the to-be-controlled gMDP.

Definition 4 (Control strategy). A control strategy C = (XC, xC0,X,T
t
C
, ht

C
)

for a gMDP M with state space X and control space U over the time horizon
t = 0, 1, 2, . . . , N is an inhomogenous Markov process with state space XC; an
initial state xC0; inputs x ∈ X; time-dependent, universally measurable kernels

ii In other domains one also refers to the control variables as actions (Machine Learning,
Stochastic Games) or as external non-determinism (Computer science).
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Tt
C
, t = 0, 1, . . . , N ; and with universally measurable output maps ht

C
: XC →

P(U,B(U)), t = 1, . . . , N , with elements µ ∈ P(U,B(U)). �

Unlike a Markov policy, the control strategy is in general dependent on the
history, as it has an internal state that can be used to remember relevant past
events. As elucidated in Algorithm 1, note that the first control u(0) is selected by
drawing xC(1) according to T0

C
( · |xC(0), x(0)), where xC(0) = xC0, and selecting

u(0) from measure µ0
C

= h0
C
(xC(1)).iii The control strategy applied to M can be

both stochastic (as a realisation of T
0
C
(· |xC(0), x(0)) ), a function of the initial

state x(0), and of time.
The execution {(x(t), xC(t)), t ∈ [0, N ]} of a gMDP M controlled with strategy

C is defined on the canonical sample space Ω := (X × XC)
N+1 endowed with its

product topology B(Ω). This stochastic process is associated to a unique proba-
bility measure PC×M, since the stochastic kernels Tt

C
for t ∈ [0, N ] and T are Borel

measurable and composed via universally measurable policies [7, Prop. 7.45].

Algorithm 1 Execution of the controlled model C×M

set t := 0 and xC(0) := xC0

draw x(0) ∼ π {from M}
while t < N do
draw xC(t+ 1) ∼ Tt

C
( · |xC(t), x(t)) {from C}

set µt := ht
C
(xC(t+ 1)), draw u(t) from µt

draw x(t+ 1) ∼ T( · |x(t), u(t))) {from M}
set t := t+ 1

end while

2.3. gMDP verification and strategy refinement: problem statement. We
qualitatively introduce the main problem that we want to solve in this work: How
can one provide a general framework to synthesise control policies over a formal
abstraction M̃ of a concrete complex model M, with the understanding that M̃
is much simpler to be manipulated (analytically or computationally) than M is?
We approach this problem by defining a simulation relation under which a policy
C̃ for the abstract Markov process M̃ implies the existence of a policy C for M,
so that we can quantify differences in the stochastic transition kernels and in the
output trajectories for the two controlled models. This allows us to derive bounds
on the probability of satisfaction of a specification for M×C from the satisfaction
probability of modified specifications for M̃× C̃. We will show that with this setup
we can deal with finite-horizon temporal properties, including safety verification as
a relevant instance.

The results in this paper are to be used in parallel with optimisation, both
for selecting the control refinement and for synthesising a policy on the abstract
model. It has been shown in [7] that stochastic optimal control even for a system on
a “basic” space can lead to measurability issues: in order to avoid these issues we
follow [7, 16] and the developed theory for Polish spaces and Borel (or universally)
measurable notions. Throughout the paper we will give as clarifying examples

iiiNote that the stochastic transitions for the control strategy and the gMDP are selected in
an alternating fashion. The output map of the strategy is indexed based on the time instant at
which the resulting policy will be applied to the gMDP.
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Markov processes evolving, as in Example 1, over Euclidean spaces which are a
special instances of Polish spaces. This allows us to elucidate the theory.

3. Exact (bi-)simulation relations based on lifting

3.1. Introduction. In this section we define probabilistic simulation and bisimula-
tion relations that are, respectively, a preorder and an equivalence relation on MY.
Before introducing these relations, we first extend Segala’s notion [31, 32] of lifting
to uncountable state spaces, which allows us to equate the transition kernels of two
given gMDPs. Thereafter, we leverage liftings to define (bi-)simulation relations
overMY, which characterise the similarity in the controllable behaviours of the two
gMDPs. Subsequently we show that these similarity relations also imply controller
refinement, i.e., within the similarity relation a control strategy for a given gMDP
can be refined to a controller for another gMDP. In the next section, we show
that this exact notion of similarity allows a more general notion of approximate
probabilistic simulation. The new notions of similarity relations extend the known
exact notions in [27], and the approximate notions of [16, 17]. Additionally, we will
show that these results can be naturally extended to allow for both differences in
probability and deviations in the outputs of the two gMDPs.

We work with pairs of gMDP put in a relationship, denoting them with nu-
merical indices (M1,M2), with the intention to apply the developed notions to an

abstraction M̃ of a concrete model M, respectively.

3.2. Lifting for general Markov decision processes. Consider two gMDP
M1,M2 ∈ MY mapping to a common output space Y with metric dY. For
M1 = (X1, π1,T1,U1, h1,Y) and M2 = (X2, π2,T2,U2, h2,Y) at given state-action
pairs x1 ∈ X1, u1 ∈ U1 and x2 ∈ X2, u2 ∈ U2, respectively, we want to relate the
corresponding transition kernels, namely the probability measures T1(· | x1, u1) ∈
P(X1,B(X1)) and T2(· | x2, u2) ∈ P(X2,B(X2)).

Similar to the coupling of measures in P(X,F) [4, 28], consider the coupling of
two arbitrary probability spaces (X1,F1,P1) and (X2,F2,P2) (cf. [33, 34]). A prob-
ability measure Pc defined on (X1×X2,F) couples the two spaces if the projections
p1, p2, with x1 = p1(x1, x2) and x2 = p2(x1, x2), define respectively an (X1,F1)-
and an (X2,F2)-valued random variables, such that P1 = p1∗Pc and P2 = p2∗Pc.
For finite- or countable-state stochastic processes a related concept has been intro-
duced in [31, 32] and referred to as lifting: the transition probabilities are coupled
using a weight function in a way that respects a given relation over the combined
state spaces. Rather than using weight functions over a countable or finite domain
[31], we introduce lifting as a coupling of measures over Polish space and their
corresponding Borel measurable σ-fields.

Since we assume that the state spaces are Polish and have a corresponding Borel
σ-field for the given probability spaces (X1,B(X1),P1) and (X2,B(X2),P2) with
P1 := T1(· | x1, u1) and P2 := T2(· | x2, u2), the natural choice for the σ-algebra
becomes B(X1×X2) = B(X1)⊗B(X2)

iv and the question of finding a coupling can
be reduced to finding a probability measure in P(X1 × X2,B(X1 × X2)).

Definition 5 (Lifting for general state spaces). Let X1,X2 be two sets with associ-
ated measurable spaces (X1,B(X1)) and (X2,B(X2)) and let the Borel measureable
set R ⊆ X1 × X2 be a relation. We denote by R̄ ⊆ P(X1,B(X1)) × P(X2,B(X2))

iv B(X1)⊗ B(X2) denotes the product σ-algebra of B(X1) and B(X2).
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the corresponding lifted relation, so that ∆R̄Θ holds if there exists a probability
space (X1 × X2,B(X1 × X2),W) (equivalently, a lifting W) satisfying

(1) for all X1 ∈ B(X1): W(X1 × X2) = ∆(X1);
(2) for all X2 ∈ B(X2): W(X1 ×X2) = Θ(X2);
(3) for the probability space (X1×X2,B(X1×X2),W) it holds that x1Rx2 with

probability 1, or equivalently that W (R) = 1.

With reference to the connection with the notion of coupling, an equivalent
definition of lifting is obtained be replacing 1. and 2. by the condition that for (X1×
X2,B(X1×X2),W) the projections p1, p2, with x1 = p1(x1, x2) and x2 = p2(x1, x2),
we can define (X1,B(X1)) and (X2,B(X2))-valued random variables ∆ = p1∗W and
Θ = p2∗W. An example is portrayed in Fig. 1 containing two models M1,M2 and a
relation (denoted by equally labelled/coloured pairs of states), where the transition
kernels for a pair of states is lifted with respect to the relation.

{b}

{a}

{b}

{c}

q3

q4

q2

1

2

1

3

1

6

1

1

1 M1

{a}

{b}

{c}

x1

x4

x2

5

6 1

6

1

M2

q1

1

q1 x1

1

2

1

3

1

6

q2

q3

x2

x2

q4 x4

Figure 1. Finite-state Markov processesM1 and M2 (left & mid-
dle) with S = {q1, q2, q3, q4} and T = {x1, x2, x4} the respective
state spaces. The states are labelled with three different colours.
Lifting probabilities of the transition kernels for (q1, x1) are given
on the edges of the rightmost figure.

Remark 1. Notice that the extension of the notion of lifting to general spaces
has required the use of measures, rather than weight functions over a countable
or finite domain, as in [31]. We have required that the σ-algebra B(X1 × X2)
contains not only sets of the form X1 × X2 and X1 × X2, but also specifically
the sets that characterise the relation R. Since the spaces X1 and X2 have been
assumed to be Polish, it holds that every open (closed) set in X1 × X2 belongs
to B(X1) ⊗ B(X2) = B(X1 × X2) [9, Lemma 6.4.2]. As an instance consider the
diagonal relation Rdiag := {(x, x) : x ∈ X} over X×X, of importance for examples
introduced later. This is a Borel measurable set [9, Theorem 6.5.7]. �

3.3. Exact probabilistic (bi-)simulation relations via lifting. Similar to the
alternating notions for probabilistic game structures in [38], we provide a simulation
that relates any input chosen for the first process with one for the second process. As
such, we allow for more elaborate handling of the inputs than in the probabilistic
simulation relations discussed in [16, 17], and further pave the way towards the
inclusion of output maps. We extend the notions in [31, 38] by allowing for more
general Polish spaces. Further, we introduce the notion of interface function in
order to connect the controllable behaviour of two gMDP:

Uv : U1 × X1 × X2 → P(U2,B(U2)),
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where we require that Uv is a Borel measurable function. This means that Uv

induces a Borel measurable stochastic kernel, again denoted by Uv, over U2 given
(u1, x1, x2) ∈ U1×X1×X2. The notion of interface function is known in the context
of correct-by-design controller synthesis and of hierarchical controller refinement
[21, 35]. For the objective of hierarchical controller refinement, an interface function
implements (or refines) any control action synthesised over the abstract model to
an action for the concrete model. In order to establish an exact simulation relation
between abstract and concrete models, we can attempt to refine the control actions
from one model to the other by choosing an interface function that matches their
stochastic behaviours. On the other hand in the next section, the interface function
will be used to establish approximate simulation relations: for this goal, the optimal
selection of the interface function is the one that optimises the accuracy of the
relation. This is topic of ongoing research.

In this work we extend standard interface functions for deterministic systems
by allowing randomised actions µ2 ∈ P(U2,B(U2)). The lifting of the transition
kernels for the chosen interface generates a stochastic kernel WT conditional on the
values of signals in U1 and in X1×X2. Let us trivially extend the interface function
to Uv(µ1, x1, x2) :=

∫

U1

Uv(u1, x1, x2)µ1(du1).

Definition 6 (Probabilistic simulation). Consider two gMDP Mi, i = 1, 2, Mi =
(Xi, πi,Ti,Ui, hi,Y). The gMDP M1 is stochastically simulated by M2 if there
exists an interface function Uv and a relation R ⊆ X1×X2 ∈ B(X1×X2), for which
there exists a Borel measurable stochastic kernel WT( · |u1, x1, x2) on X1×X2 given
U1 × X1 × X2, such that

(1) ∀(x1, x2) ∈ R, h1(x1) = h2(x2);
(2) ∀(x1, x2) ∈ R, ∀u1 ∈ U1, T1(·|x1, u1) R̄ T2(·|x1,Uv(u1, x1, x2)), with lifted

probability measure WT( · |u1, x1, x2);
(3) π1R̄π2.

The relationship between the two models is denoted as M1 � M2.

The Borel measurability for both Uv (see above) and WT (as in this definition),
which is technically needed for the well posedness of the controller refinement, can
be relaxed to universal measurability, as will be discussed in the Appendix.

Definition 7 (Probabilistic bisimulation). Under the same conditions as above,
M1 is a probabilistic bisimulation of M2 if there exists a relation R ⊆ X1×X2 such
that M1 � M2 w.r.t. R and M2 � M1 w.r.t. the inverse relation R−1 ⊆ X2 ×X1.
M1 and M2 are said to be probabilistically bisimilar, which is denoted M1 ≈ M2.

For every gMDP M: M � M and M ≈ M. This can be seen by consid-
ering the diagonal relation Rdiag = {(x1, x2) ∈ X × X | x1 = x2} and select-
ing equal inputs for the associated interfaces. The resulting equal transition ker-
nels T(·|x, u)R̄diagT(·|x, u) are lifted by the measure WT(dx

′
1 × dx′2|u, x1, x2) =

δx′

1
(dx′2)T(dx

′
1|x1, u) where δx′

1
denotes the Dirac distribution located at x′1.

Example 2 (Lifting for diagonal relations).
a. Consider the gMDP (M1) introduced in Ex. 1 and a slight variation of it (M2),
given as stochastic dynamic processes,

M1 : x(t+ 1) = f(x(t), u(t)) + e(t), y(t) = h(x(t)),

M2 : x(t+ 1) = f(x(t), u(t)) + ẽ(t) + ũ(t), y(t) = h(x(t)),
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with variables x(t), x(t + 1), u(t), ũ(t), e(t), ẽ(t) taking values in Rn, and with dy-
namics initialised with the same probability distribution at t = 0 and driven by white
noise sequences e(t), ẽ(t), both with zero mean normal distributions and with vari-
ance Σe,Σẽ, respectively. Notice that if Σe−Σẽ is positive definite then M1 � M2.
To see this, select the control input pair (u2, ũ2) ∈ U2 as u2 = u1, and ũ2 according
to the zero-mean normal distribution with variance Σe − Σẽ, then the associated
interface is Uv( · |u1, x1, x2) = δu1

(du2)N (dũ2|0,Σe − Σẽ). For this interface the
stochastic dynamics of the two processes are equal, and can be lifted with Rdiag.
b. Similar as above, consider two gMDP modelled as Gaussian processes

M1 : x(t+ 1) = (A+BK)x(t) +Bu(t) + e(t), y(t) = h(x(t)),

M2 : x(t+ 1) = Ax(t) +Bu(t) + e(t), y(t) = h(x(t)),

with variables x(t), x(t + 1), e(t) taking values in R
n and u(t) ∈ R

m, matrices
A ∈ Rn×n, B ∈ Rn×m, K ∈ Rm×n. Then M1 � M2, since in Rdiag for every
action u1 chosen for M1, the choice of interface u2 = u1 +Kx2 for M2 results in
the same transition kernel for the second model.

Remark 2. OverMY, the class of gMDP with a shared output space, the relation �
is a preorder, since it is reflexive (see Example 2) and transitive (see later Cor. 6).
Moreover the relation ≈ is an equivalence relation as it is also symmetric (see
Cor. 7).

3.4. Controller refinement via probabilistic simulation relations. The ideas
underlying the controller refinement are first discussed, after which it is shown that
the refined controller induces a strategy as per Def. 4. Finally the equivalence of
properties defined over the controlled gMDPs is shown.

Consider two gMDP Mi = (Xi, πi,Ti,Ui, hi,Y) i = 1, 2 with M1 � M2. Given
the entities Uv and WT associated to M1 � M2, the distribution of the next state
x′2 of M2 is given as T2(· | x2,Uv(u1, x1, x2)), and is equivalently defined via the
lifted measure as the marginal ofWT(·|u1, x1, x2) on X2. Therefore, the distribution
of the combined next state (x′1, x

′
2), defined as WT( · |u1, x1, x2), can be expressed

as

WT(dx
′
1 × dx′2|u1, x1, x2) = WT(dx

′
1|x′2, u1, x1, x2)T2(dx

′
2|x2,Uv(u1, x1, x2)),

where WT(dx
′
1|x′2, u1, x1, x2) is referred to as the conditional probability given x′2

(c.f. [10, Corollary 3.1.2]).v Similarly, the conditional measure for the initialisation
Wπ is denoted as Wπ(dx1(0)× dx2(0)) = Wπ(dx1(0)|x2(0))π2(dx2(0)).

Now suppose that we have a control strategy for M1, referred to as C1, and we
want to construct the refined control strategy C2 for M2, which is such that events
defined over the output space have equal probability. This refinement procedure
follows directly from the interface and the conditional probability distributions, and
is described in Algorithm 2. This execution algorithm is separated into the refined
control strategy C2 and its gMDP M2. C2 is composed of C1, the stochastic kernel
WT, and the interface Uv, and it remembers the previous state of M2 (cf. line 8 in
Algorithm 2).

Theorem 1 (Refined control strategy). Let gMDP M1 and M2 be related as M1 �
M2, and consider the control strategy C1 = (XC1

, xC10,X1,T
t
C1
, ht

C1
) for M1 as

v Beyond Borel measurability, this also holds when the kernels are universally measurable, as
corresponding universally measurable regular conditional probability measures are obtained [18].
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Algorithm 2 Refinement of control strategy C1 as C2

1: set t := 0
2: draw x2(0) from π2,
3: draw x1(0) from Wπ(· | x2(0)).
4: loop
5: given x1(t), select u1(t) according C1,
6: set µ2t := Uv(u1(t), x1(t), x2(t)),
7: draw x2(t+ 1) from T2( · | x2(t), µ2t),
8: draw x1(t+ 1) from WT( · |x2(t+ 1), u1(t), x1(t), x2(t)),
9: set t := t+ 1.

10: end loop

given. Then there exists at least one refined control strategy C2 = (XC2
, xC20,X2,T

t
C2
, ht

C2
),

as defined in Def. 4, with

• state space XC2
:= XC1

× X1 × X2, with elements xC2
= (xC1

, x1, x2);
• initial state xC20 := (xC10, 0, 0);
• input variable x2 ∈ X2, namely the state variable of M2;
• time-dependent stochastic kernels Tt

C2
, defined as

T
0
C2

(dxC2
|xC20, x2(0)) := T

0
C1

(dxC1
|xC10, x1)Wπ(dx1|x2)δx2(0)(dx2) and

T
t
C2

(dx′
C2

|xC2
(t), x2(t)) := T

t
C1

(dx′
C1

|xC1
, x′1)

WT(dx
′
1|x′2, htC1

(xC1
), x2, x1)δx2(t)(dx

′
2) for t ∈ [1, N ];

• measurable output maps ht
C2

(xC1
, x̃1, x2) := Uv(h

t
C1

(xC1
), x1, x2). �

Both the time-dependent stochastic kernels Tt
C2

and the output maps ht
C2

, for
t ∈ [0, N ], are universally measurable, since Borel measurable maps are universally
measurable and the latter are closed under composition [7, Ch.7].

Since, by the above construction of C2, the output spaces of the controlled
systems C1 ×M1 and C2 ×M2 have equal distribution, it follows that measurable
events have equal probability, as stated next and proved in the Appendix.

Theorem 2. If M1 � M2, then for all control strategies C1 there exists a control
strategy C2 such that, for all measurable events A ∈ B

(

YN+1
)

,

PC1×M1
({y1(t)}0:N ∈ A) = PC2×M2

({y2(t)}0:N ∈ A) .

4. New ǫ, δ-approximate (bi-)simulation relations via lifting

4.1. Motivation and δ-lifting. The requirement on an exact simulation relation
between two models is evidently restrictive. Consider the following example, where
two Markov processes have a bounded output deviation.

Example 3 (Models with a shared noise source). Consider an output space Y :=
Rd, with a metric dY(x, y) := ‖x − y‖ (the Euclidean norm), and two gMDP ex-
pressed as noisy dynamic processes:

M1 : x1(t+ 1) = f(x1(t), u1(t)) + e1(t), y1(t) = h(x1(t)),

M2 : x2(t+ 1) = f(x2(t), u2(t)) + e2(t), y2(t) = h(x2(t)),

where f and h are both globally Lipschitz, satisfying ‖f(x1, u)−f(x2, u)‖ ≤ L‖x1−
x2‖ for 0 < L < 1, and in addition ‖h(x1) − h(x2)‖ ≤ H‖x1 − x2‖ for an 0 < H
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valid for all x1, x2 ∈ Rn and for all u. Suppose that the probability distributions of
the random variable e1 and of e2 depend on a shared noise source ω, with ω ∈ Ω and
distribution Pω, and are such that e1(t) = g1(ω(t)) and e2(t) = g2(ω(t)). Assume
now that there exists a value c ∈ R, such that Pω [‖g1(ω)− g2(ω)‖ < c ] = 1. Then
for every pair of states x1(t) and x2(t) of M1 and M2 respectively, the difference
between state transitions is bounded as ‖x1(t+1)−x2(t+1)‖ ≤ L‖x1(t)−x2(t)‖+c
with probability 1. By induction it can be shown that if ‖x1(0) − x2(0)‖ ≤ c

1−L
,

then for all t ≥ 0, ‖x1(t)− x2(t)‖ ≤ c
1−L

, and ‖y1(t)− y2(t)‖ ≤ cH
1−L

.

Even though the difference in the output of the two models is bounded by the quantity
cH
1−L

with probability 1, it is impossible to provide an approximation error using

either the method in [26] (hinging on stochastic stability assumptions), nor using
(approximate) relations as in [16, 17]: with the former approach, for the same input
sequence u(t) the output trajectories of M1 and M2 have bounded difference, but
do not converge to each other; with the latter approach, the relation defined via a
normed difference cannot satisfy the required notion of transitivity.

As mentioned before and highlighted in the previous Ex. 3, we are interested
in introducing a new approximate version of the notion of probabilistic simulation
relation, which allows for both δ-differences in the stochastic transition kernels,
and ǫ-differences in the output trajectories. For the former prerequisite, we relax
the requirements on the lifting in Def. 5; subsequently, we define the resulting
approximate (bi-)simulation relation according to the latter prerequisite on the
outputs.

Definition 8 (δ-lifting for general state spaces). Let X1,X2 be two sets with associ-
ated measurable spaces (X1,B(X1)), (X2,B(X2)), and let R ⊆ X1×X2 be a relation
for which R ∈ B(X1 × X2). We denote by R̄δ ⊆ P(X1,B(X1)) × P(X2,B(X2)) the
corresponding lifted relation (acting on ∆R̄δΘ), if there exists a probability space
(X1 × X2,B(X1 × X2),W) satisfying

(1) for all X1 ∈ B(X1): W(X1 × X2) = ∆(X1);
(2) for all X2 ∈ B(X2): W(X1 ×X2) = Θ(X2);
(3) for the probability space (X1×X2,B(X1×X2),W) it holds that x1Rx2 with

probability at least 1− δ, or equivalently that W (R) ≥ 1− δ.

We leverage Definition 8 to introduce a new approximate similarity relation
that encompasses both approximation requirements, obtaining the following ǫ, δ-
approximate probabilistic simulation.

Definition 9 (ǫ, δ-approximate probabilistic simulation). Consider two gMDP
Mi = (Xi, πi,Ti,Ui, hi,Y), i = 1, 2, over a shared metric output space (Y,dY).
M1 is ǫ, δ-stochastically simulated by M2 if there exists an interface function Uv

and a relation R ⊆ X1 × X2, for which there exists a Borel measurable stochastic
kernel WT( · |u1, x1, x2) on X1 × X2 given U1 × X1 × X2, such that:

(1) ∀(x1, x2) ∈ R, dY (h1(x1), h2(x2)) ≤ ǫ;
(2) ∀(x1, x2) ∈ R, ∀u1 ∈ U1: T1(·|x1, u1) R̄δ T2(·|x2,Uv(u1, x1, x2)), with lifted

probability measure WT( · |u1, x1, x2);
(3) π1R̄δπ2.

The simulation relation is denoted as M1 �δ
ǫ M2.

Definition 10 (ǫ, δ-approximate probabilistic bisimulation). Under the same con-
ditions as before M1 is an ǫ, δ-probabilistic bisimulation of M2 if there exists a
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relation R ⊆ X1 × X2 such that M1 �δ
ǫ M2 w.r.t. R and M2 �δ

ǫ M1 w.r.t.
R−1 ⊂ X2 × X1.
M1 and M2 are said to be ǫ, δ-probabilistically bisimilar, denoted as M1 ≈δ

ǫ M2.

In this section we have provided similarity relations quantifying the difference
between two Markov processes. The end use of the introduced similarity relations
is to quantify the probability of events of a gMDP via its abstraction and to refine
controllers: this is achieved in the next section.

4.2. Controller refinement via approximate simulation relations. Consider
two gMDP M1 and M2, for which M1 is the abstraction of the concrete model M2.
The following result is an approximate version of Theorem 2, and presents the main
result of this paper, namely the approximate equivalence of properties defined over
the gMDP M1 and M2.

Theorem 3. If M1 �δ
ǫ M2, then for all control strategies C1 there exists a control

strategy C2 such that, for all measurable events A ⊂ YN+1

PC1×M1

(

{y1(t)}0:N
∈A−ǫ

)

− γ ≤ PC2×M2
({y2(t)}0:N

∈A) ≤ PC1×M1
({y1(t)}0:N

∈Aǫ) + γ,

with constant 1− γ := (1 − δ)N+1, and with the ǫ-expansion of A defined as

Aǫ :=
{

{yǫ(t)}0:N |∃{y(t)}0:N ∈ A : maxt∈[0,N ] dY(yǫ(t), y(t)) ≤ ǫ
}

and similarly the ǫ-contraction defined as A−ǫ := {{y(t)}0:N |{{y(t)}0:N}ǫ ⊂ A}
where {{y(t)}0:N}ǫ is the point-wise ǫ-expansion of {y(t)}0:N .

While the details of the proof can be found in the Appendix, its key aspect is the
existence of a refined control strategy C2, which we detail next. Given a control
strategy C1 over the time horizon t ∈ {0, . . . , N}, there is a control strategy C2

that refines C1 over M2. The control strategy is conceptually given in Algorithm
3. Whilst the state (x1, x2) of C2 is in R, the control refinement from C1 follows
in the same way (cf. Alg.3 line 4-9) as for the exact case of Sec. 3.4. Hence, similar
to the control refinement for exact probabilistic simulations, the basic ingredients
of C2 are the states x1 and x2, whose stochastic transition to the pair (x′1, x

′
2) is

governed firstly by a point distribution δx2(t)(dx
′
2) based on the measured state x2(t)

ofM2; and, subsequently, by the lifted probability measureWT(dx
′
1 | x′2, u1, x2, x1),

conditioned on x′2. On the other hand, whenever the state (x1, x2) leaves R the
control chosen by strategy C1 cannot be refined to M2: instead, an alternative
control strategy Crec has to be used to control the residual trajectory of M2. The
choice is of no importance to the result in Theorem 3. This stage of the execution
(cf. Alg. 3 line 11-15) referred to as recovery makes the choice of the overall control
strategy C2 non-unique. In practice we will only synthesise the control strategy
over a finite-time.

By splitting the execution in Algorithm 3 into a control strategy and a gMDP
M2, we can again obtain the refined control strategy.

Theorem 4 (Refined control strategy). Let gMDP M1 and M2, with M1 �δ
ǫ M2,

and control strategy C1 = (XC1
, xC10,X1,T

t
C1
, ht

C1
) for M1 be given. Then for

any given recovery control strategy Crec, a refined control strategy, denoted C2 =
(XC2

, xC20,X2,T
t
C2
, ht

C2
), can be obtained as an inhomogenous Markov process

with two discrete modes of operation, {refinement} and {recovery}, based on Algo-
rithm 3.
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Algorithm 3 Refinement of C1 as C2

1: set t := 0 {Start}
2: draw x2(0) from π2
3: draw x1(0) from Wπ(· | x2(0))
4: while (x1(t), x2(t)) ∈ R do {Refine}
5: given x1(t), select u1(t) from C1,
6: set input µ2t := Uv(u1(t), x1(t), x2(t)),
7: draw x2(t+ 1) from T2( · | x2(t), µ2t),
8: draw x1(t+ 1) from WT( · |x2(t+ 1), u1(t), x1(t), x2(t)),
9: set t := t+ 1

10: end while
11: loop {Recover}
12: given x2(t), select µt (from Crec),
13: draw x2(t+ 1) from T2( · | x2(t), µt),
14: set t := t+ 1
15: end loop

The details of the tuple (XC2
, xC20,X2,T

t
C2
, ht

C2
) are given in the Appendix,

together with the proof of the theorem. They follow from Algorithm 3, in a similar
way as Theorem 1 follows from Algorithm 2.

4.3. Examples and properties.

Example 4 (Models with a shared noise source – continued from above).
Based on the relation R := {(x1, x2) : ‖x1 − x2‖ ≤ c

1−L
} it can be shown that

M1 ≈0
ǫ M2 with ǫ = Hc

1−L
, since, firstly, it holds that dY(h(x1) − h(x2)) ≤ ǫ

for all (x1, x2) ∈ R with dY = ‖ · ‖. Additionally, for all (x1, x2) ∈ R and for
any input u1 the selection u2 = u1 is such that T1(·|x1, u1)R̄0T2(·|x2, u1), note
that R̄0 is equal to R̄ (the lifted relation from R). The lifted stochastic kernel is
WT(dx

′
1 × dx′2|u1, x1, x2) :=

∫

ω
δf(x1,u1)+g1(ω)(dx

′
1)δf(x2,u)+g2(ω)(dx

′
2)Pω(dω), this

stochastic kernel is Borel measurable if f(x1, u1) + g1(ω) and f(x2, u) + g2(ω) are
assumed Borel measurable maps. Note that the employed identity interface is also
Borel measurable.

Example 5 (Relationship to model with truncated noise). Consider the stochastic
dynamical process M1 : x(t + 1) = f(x(t), u(t)) + e(t) with output mapping y(t) =
h(x(t)), operating over the Euclidean state space Rn, and driven by a white noise
sequence e(t) ∈ Rn with distribution Pe. The output space y ∈ Y ⊆ Rd is endowed
with the Euclidean norm dY = ‖ · ‖. Select a domain D ⊂ Rn so that, at any
given time instant t, e(t) ∈ D with probability 1− δ. Then define a truncated white
noise sequence ẽ(t), with distribution Pe (· | D). The resulting model M2 driven
by ẽ(t) is M2 : x(t + 1) = f(x(t), u(t)) + ẽ(t), with the same output mapping
y(t) = h(x(t)). We show that M2 is a 0, δ-approximate probabilistic bisimulation of
M1, i.e. M1 ≈δ

0 M2. Select R := {(x1, x2) for x1, x2 ∈ Rn|x1 = x2}, and choose
as interface the identity one, i.e., Uv(u1, x1, x2) = u1. A viable lifting measure is

WT(dx
′
1 × dx′2|u1, x1, x2) :=

∫

e∈D
δx′

1
(dx′2)δt1(e)(dx

′
1)Pe(de)(1)

+
∫

e∈Rn\D δt1(e)(dx
′
1)Pe(de)

∫

ẽ
δt2(ẽ)(dx

′
2)Pe(dẽ|D)
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with t1(e) = f(x1, u1) + e and t2(ẽ) = f(x2, u1) + ẽ.

Example 6 (Relationship between noiseless and truncated-noise models). Con-
sider the model with truncated noise M2 as defined in Ex. 5. In what sense is M2 ap-
proximated by its noiseless version M3, namely M3 : x(t+1) = f(x(t), u(t)), y(t) =
h(x(t))? Under requirements on the Lipschitz continuity ‖f(x1, u) − f(x2, y)‖ ≤
L‖x1 − x2‖ 0 < L < 1, ‖h(x1)− h(x2)‖ ≤ H‖x1 − x2‖, and on the boundedness of
D and of c = maxd∈D ‖d‖, Ex. 3 can be leveraged by concluding that M2 ≈0

ǫ M3,
with ǫ = Hc

1−L
.vi �

In Examples 5 and 6 we have thatM1 is approximated byM2, which is subsequently
approximated by M3. The following theorem and corollary attain a quantitative
answer on the question whether M1 is approximated by M3.

Theorem 5 (Transitivity of �δ
ǫ). Consider three gMDP Mi, i = 1, 2, 3, defined by

tuples (Xi, πi,Ti,Ui, hi,Y). If

• M1 is ǫa, δa-stochastically simulated by M2, and
• M2 is ǫb, δb-stochastically simulated by M3,

then M1 is (ǫa + ǫb), (δa + δb)-stochastically simulated by M3. Equivalently, if

M1 �δa
ǫa

M2 and M2 �δb
ǫb

M3, then M1 �δa+δb
ǫa+ǫb

M3.

Next, as a corollary of this theorem, we derive properties of the notion of approx-
imate bisimulation, and discuss the transitivity of the (exact) notions of simulation
and of bisimulation relation. The latter implies that the simulation relation (cf.
Def.6 ) is a preorder, and that the bisimulation relation (cf. Def.7 ) is an equiva-
lence relation over the category of gMDP MY.

Corollary 6 (Transitivity properties). Following Theorem 5,

• if M1 ≈δa
ǫa

M2 and M2 ≈δb
ǫb

M3, then M1 ≈δa+δb
ǫa+ǫb

M3, and
• if M1 � M2 and M2 � M3, then M1 � M3, and
• if M1 ≈ M2 and M2 ≈ M3, then M1 ≈ M3.

Here notice that for R13 := {(x1, x3)|∃x2 ∈ X2 : (x1, x2) ∈ R12, (x2, x3) ∈ R23}
we show that if ∆1R̄12δa∆2 and ∆2R̄23δb∆3, then ∆1R̄13(δa+δb)∆3, where the used
lifting measure WT is a function of the respective liftings WT12 and WT23, i.e. for
all x1, x3 ∈ R13 ∃x2 ∈ X2 : (x1, x2) ∈ R12, (x2, x3) ∈ R23, WT is given as

WT(dx
′
1 × dx′3|u1, x1, x2) =

∫

X2

W23(dx
′
3|x′2,Uv12(u1, x1, x2), x2, x3)W12(dx

′
1 × dx′2|u1, x1, x2).

Furthermore, the interface Uv13 is the composition of Uv12 and Uv23. The proof of
Theorem 5 and Corollary 6 can be found in the Appendix.

Example 7 (Combination of Examples 5 and 6 via Corollary 6).
For the models in Examples 5 and 6 we can conclude that M1 ≈δ

ǫ M3. This means
that a stochastic system as in M1 in Ex. 5 can be approximated via its deterministic
counterpart, and that the approximation error can be expressed via the probability
(i.e. amount of truncation cf. Ex. 5) and the output error (i.e. Ex. 6). This
allows for explicit trading off between output deviation and deviation in probability.

vi Alternatively, if M2 with non-deterministic input ẽ ∈ D is an ǫa- alternating bisimulation
[35] of M3 then M2 ≈0

ǫa
M3.
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5. Case studies

5.1. Introduction: energy management in smart buildings. We are inter-
ested in developing advanced solutions for the energy management of smart build-
ings. In this work we first describe a simple example with a three-dimensional model
of the thermal dynamics in an office building: we consider a simple building that
is divided in two connected zones, each with a radiator affecting the heat exchange
in that zone by controlling the water temperature in a boiler. With this case study
we aim at elucidating the theory of the previous sections. In the third subsection
we work with a more realistic model of an office building: this 5-dimensional model
shows how the given approximate similarity relations can be used for the design of
controllers that verifiably satisfy properties expressed as quantitative specifications.

5.2. First case study. A model of the temperature dynamics in an office building
with two zones to heat [23, 25] assumes that the temperature fluctuations in the
two zones, as well as the ambient temperature dynamics, can be modelled as a
Gaussian process

M : x(t+ 1) = Ax(t) +Bu(t) + Fe(t), y(t) = [ 1 0 0
0 1 0 ]x(t),(2)

with stable dynamics characterised by matrices

A =
[

0.8725 0.0625 0.0375
0.0625 0.8775 0.0250

0 0 0.9900

]

, B =
[

0.0650 0
0 0.60
0 0

]

, F =
[

0.05 −0.02 0
−0.02 0.05 0

0 0 0.1

]

,

where x1,2(t) are the temperatures in zone 1 and 2, respectively; x3(t) is the de-
viation of the ambient temperature from its mean; and u(t) ∈ R2 is the control
input. The disturbance e(t) is a white noise sequence with standard Gaussian dis-
tributions, for all t ∈ R+. The state variables are initiated as x(0) = [16 14 -5]T .
This stochastic process can be written as a gMDP, as detailed in Example 1. As
the model abstraction, we select the controllable and deterministic dynamics of the
mean of the state variables, and consequently omit the ambient temperature and
the additive noise term:

M̃ :

{

x̃(t+ 1) = Ãx̃(t) + B̃ũ(t) ∈ R2, with Ã := [ 0.8725 0.0625
0.0625 0.8775 ],

ỹ(t) = [ 1 0
0 1 ]x̃(t), B̃ := [ 0.0650 0

0 0.60 ].
(3)

We then obtain that, as intuitive, M̃ �δ
ǫ M. In order to compute specific values of ǫ

and δ, we select the relationR := {(x̃, x) ∈ R
2×R

3 |
√

(x̃1 − x1)2 + (x̃2 − x2)2 ≤ ǫ}
and the interface function Uv(ũ, x̃, x) = ũ+B̃−1(Ãx̃−Āx), with Ā = [ 0.8725 0.0625 0.0375

0.0625 0.8775 0.0250 ].
The structure of the interface is arbitrary: in the specific instance the interface is
selected to optimally correct the difference in room temperatures at the next time
step.

A stochastic kernel WT for the lifting is WT(dx̃
′ × dx′ | ũ, x̃, x) =

∫

e
δf̃ (dx̃

′)

δf(e)(dx
′)N (de | 0, I), with f̃ = Ãx̃+ B̃ũ and f(e) = Ax +BUv(ũ, x̃, x) + Fe. The

lower bound on WT(R | ũ, x̃, x) ≤ 1− δ has been computed and traded off against
the output deviation, as in Fig. 2.

We are interested in the goal, expressed for the model M, of increasing the
likelihood of trajectories reaching the target set T = [20.5, 21]2 and staying there
thereafter. For the abstract model we have developed a strategy, as in[23], satisfying
by construction the property expressed in LTL-like notation with the formula ϕ =
♦�T and shrunken to ϕ−ǫ (as per Theorem 3). This strategy is synthesised as
a correct-by-construction controller using PESSOA [29], where the discrete-time
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ǫ

δ

M̃ �δ
ǫ M Figure 2. Trade-off between the output er-

ror ǫ and the probability error δ for the δ,ǫ-
approximate probabilistic simulation M̃ �δ

ǫ

M. We have selected the pair (ǫ, δ) =
(0.16, 0.073) as an ideal trade-off.

dynamics in (3) are further discretised over state and action spaces: we have selected

a state quantisation of 0.05 over the range [15, 25]
2
for the two state variables, and

an input quantisation of 0.05 over the set [10, 30]2. It can be observed that the

controller regulates the abstract model M̃ to eventually remain within the target
region, as shown in Fig. 3. We now want to verify that indeed, when refined to
the concrete stochastic model, this strategy implies the reaching and staying in
the safe set up to some probabilistic error. The refined strategy is obtained from
this control strategy as discussed in Section 4.2, and recovers from exits out of the
relation R by resetting the abstract states in the relation.

In a simulation study reported in Fig. 3, we have executed the refined control
strategy over a time horizon of 200 steps. Observe that for the execution displayed
in the top/left plot the behaviour of the controlled concrete model M remains close

to that of M̃. Only at 4 incidences (circled) does the output error exceed the level
ǫ = 0.16. This reflects our expectations, since at any point in time the probability
that the output error exceeds the level ǫ = 0.16 over the following X time steps
is provably less than 1 − (1 − δ)X ≈ Xδ = 0.073X , as per Theorem 3, which
leads to an upper bound of 15 occurrences. Within this case study, whenever the
state of the abstract and concrete model leave the relation R, then the recovery
strategy consists of resetting the state of the abstract model and continuing with
the refined control strategy. Thanks to the use of the ǫ-contraction ϕ−ǫ of the
concrete specification ϕ, model M will still abide by ϕ with a high confidence.
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‖ỹ
−
y
‖

0 50 100 150 200

−4

−2

0

t

x
3
(t
)

0 50 100 150 200
16

18

20

22

t

x
1
(t
),
x̃
1
(t
)

0 50 100 150 200

16

18

20

22

t

x
2
(t
),
x̃
2
(t
)

r

Figure 3. Refined control for deterministic model applied to M.
The figure (top left) evaluates the accuracy of the approximation,
and gives with red circles the instances in which the relation is
left. The plot (bottom left) shows the ambient temperature. The
plots on the right display the temperature inside the two rooms.
The small blue crosses give the actual temperature in the rooms
(x1, x2) whereas the deterministic simulation of (x̃1, x̃2) is drawn
in black and mostly covered by the crosses.
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5.3. Second case study. We consider a realistic model for an office building, with
the dynamics obtained from [6]. With a time sampling of 5 minutes, the following
model describes stochastic temperature fluctuations around a known mean value:

Moffice :

{

xb(t+ 1) = Ξxb(t) + Γq(t) +Bpwp(t) +BsΦs(t) +BaTa(t)
y(t) = [ 0 1 0 0 ]xb(t),

[Ξ|Γ|Bp|Bs|Ba ] =

[

0.4487 0.216 0.2164 0.1186
0.216 0.1778 0.3719 0.2334

0.09639 0.1657 0.6569 0.08082
0.005234 0.0103 0.008007 0.9708

∣

∣

∣

∣

2.65e-5
7.45e-5
2.06e-4
0.07e-5

∣

∣

∣

∣

1.0939e-4
2.16e-4
7.45e-5
3.92e-6

∣

∣

∣

∣

6.60e-4
1.31e-3
4.49e-4
2.36e-5

∣

∣

∣

∣

2.96e-4
8.79e-4
1.93e-4
5.67e-3

]

.

The output y(t) models the temperature deviation of the internal air. The 4-
dimensional state of the model, obtained from a frequency-based identification pro-
cedure, represents the fluctuation of internal temperatures in the building, including
the building envelope and the interior [6, TiTeThTs model], where the influence
of mean values dynamics have been eliminated from the model. The objective of
this model is to capture the influence of stochastic effects acting upon the system
and control them via the heater with input q(t). The model represents the stochas-
tic disturbances on the building temperature. We foresee three major sources of
stochastic disturbance to the system, as explained next.

The first, wp(t) is the randomness of the heat generated by people in the build-
ing. An average person generates 100 Watt [W] under normal circumstances. We
presume that the occupancy of the office adds a random element to this average
number, which we capture as an independently and identically distributed random
signal with Gaussian distribution and a standard deviation equal to 20 % per per-
son: when there are np := 10 people in the office this standard deviation becomes√
np × 20 [W].
The second source of stochastic disturbance is the ambient temperature, for

which we model the stochastic deviation Ta(t) from accurate weather forecasts.
As this deviation is correlated over time, this is modelled as a first-order coloured
noise, with a time constant of 20 minutes. The choice of the time constant gives
a measure of correlation in time [36], so we use it to choose the time over which
there is a significant correlation between successive values of Ta(t). Additionally,
we choose it such that the stationary variance is equal to 1, i.e., E

[

Ta(t)
2
]

= 1.
The resulting weather model is a first-order (1-dimensional) model Ta(t + 1) =
0.7788Ta + 0.6273ww(t), which is driven by a white noise source with standard
Gaussian distribution, namely ww(t) ∼ N (0, I).

The third and final source of disturbance Φs(t) is the energy flow from solar
radiation. Though measurable, this disturbance cannot exactly be predicted and
has a high impact on the temperature inside the office. The impact depends on the
effective window area of the building, which has been estimated as 6.03 [m2] in [6].
Based on the measured solar radiation in [6], we model this disturbance as a white
noise source with standard deviation of 0.1 [kW/m2].

Including the weather model for Ta, which requires encompassing the noise signal
ww(t), leads to the following 5-dimensional model for the temperature fluctuations
in the office building:

M = (A,B,Bw, C) :

{

x(t+ 1) = Ax(t) +Bww(t) +Bu(t)
y(t) = [ 0 1 0 0 0 ]x(t)

[

A |B |Bw

]

=

[

0.4487 0.216 0.2164 0.1186 2.96e-4
0.216 0.1778 0.3719 0.2334 8.789e-4
0.09639 0.1657 0.6569 0.08082 1.928e-4
0.005234 0.0103 8.007e-3 0.9708 0.005667
0 0 0 0 0.7788

∣

∣

∣

∣

∣

0.1326
0.3725
1.029
4.309e-3
0

∣

∣

∣

∣

∣

0.006918 0.06596 0
0.01372 0.1308 0
0.004712 0.04492 0
2.485e-4 0.002369 0
0 0 0.6273

]

.
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In order to avoid numerical ill-conditioning issues, both the heat input q(t) (ex-
pressed in kW) and the corresponding matrix Γ have been replaced by scaled ver-
sions, namely the input signal u(t) and the input matrix B. At full throttle the
heating input q(t) = 5[kW] corresponds to the scaled input u(t) = 1. Similarly
the three noise sources discussed above have been normalised together with the
respective system matrices, so that w(t) is the new driving noise, as a white-noise
sequence with a standard Gaussian distribution, encompassing the unpredicted heat
caused by people, solar radiation, and weather fluctuations. We are interested in
controlling the obtained stochastic system M to verify a quantitative property over
its output signal, which is the inner air temperature. More precisely, we want
to maximise the probability that the deviation of the inner air temperature stays
within a 0.5 degrees difference from the nominal temperature, over an horizon of
30 minutes. This property can be encoded as a PCTL specification for the discrete
time model as follows: P≥p

(

�6[|y| < 0.5]
)

, where p is a parameter to be optimised
over.

In order to solve this type of probabilistic safety problems we would normally
employ formal abstractions, as implemented in the software tool FAUST2 [20].
However, a straightforward use of the tool on the non-autonomous 5-dimensional
model does not yield tight guarantees. Hence, we first obtain several reduced-
order models; then, over the input range of interest, we quantify the corresponding
ǫ, δ-approximate probabilistic bisimulation relations; finally, we design a controller
over the obtained formal abstractions with FAUST2, and refine it to the original
5-dimensional model of the office building. In the refinement step we tune the trade-
off between the conservativeness with respect to heating inputs and the accuracy
of the approximation.

Model abstraction. We use model order reduction via balanced truncations, as im-
plemented in Matlab, to obtain lower-order approximations preserving the dynam-
ics of interest. We seek to obtain either first- or second-order models, from two types
of concrete dynamics: firstly, the native dynamics of model M = (A,B,Bw, C), and
secondly the dynamics of model M′ = (A + BF,B,Bw, C). In the latter case, the
state-feedback gain F is chosenvii so that it reduces the importance of the control-
lable modes of the system: F =

[

0.48456 0.39865 0.85352 0.56387 0.0024252
]

.
As a result, we obtain four reduced-order models Mi = (Ai, Bi, Bwi, Ci)(i =

1, 2, 3, 4) of M via balanced truncationviii :

Mi :

{

xs(t+ 1) = Aixs(t) +Bwiw(t) +Bius(t)
ys(t) = Cixs(t),

(4)

where the resulting matrices are given in the appendix.
Models M1 and M3 are obtained based on M = (A,B,Bw , C), whereas M2

and M4 are based on the dynamics of M′ = (A + BF,B,Bw, C). As expected
the quality of the reduced models depends on the choice of M′ or M: in the
former case, the part of the dynamics that we cannot compensate with a control is
approximated best, whereas for M the most prominent dynamics are approximated
best, notwithstanding how well they can be controlled.

viiThe gain term is obtained with the dare(A,B, CTC, 0.02) command in Matlab.
viiiThis results from the application of the balred function in Matlab.
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Approximate probabilistic simulation relations. The reduced modelsM1,M2,M3,M4

are approximations ofM and it is expected that, even when using an interface func-
tion, the error between these reduced models and M will increase with the input us.
Therefore we quantify the performance of Mi for i = 1, 2, 3, 4 only over a bounded
input set Us := {us ∈ R | u2s ≤ c1}. To choose a relevant c1 suppose we would take
constant c1 of 0.25 = 0.52, then this would be equal to an allowed deviation of 50
percent of the maximal input for the nominal heat input, which is 5[kW] for the
original system. As we only want to correct the heating with respect to stochastic
fluctuations we take the more realistic value for c1 of 0.22 = 0.04.

Let us now compute the parameters pair (ǫ, δ) establishing the relationship
Mi �δ

ǫ M between reduced-order and concrete models. Similarly to the work [21]
on hierarchical control based on model reduction we consider a putative relation
between the two state spaces as

R :=
{

(x, xs) | (x− Pxs)
TM(x− Pxs) ≤ ǫ2

}

,

with properly-sized matrices M and P , satisfying the Sylvester equation PAi =
AP + BQ, for a choice of Q, and Ci = CP , and so that M − CTC is positive
semi-definite, namely M −CTC � 0. Introduce the interface Uv : Us×Xs×X → U

as

u = Rus +Qxs +K(x− Pxs),

and notice that Uv is a function of both P and Q above, alongside the additional
design variables R and K (to be further discussed shortly). The interface function
is chosen to reduce the differences in the observed stochastic behaviours of the two
systems. It refines any choice of us to a control input u, as such it implements
any control strategy for Mi to the original model M. In this case study we have
considered a concrete model that is controllable, linear, time-invariant, and driven
by an additive stochastic noise. The chosen interface Uv, with design variables
Q, K, and R, fully parameterises the set of possible interfaces that refine controls
synthesised over a reduced model that is deterministic, linear, and time-invariant,
as suggested in [21].

Let us next focus on the characterisation of the relation Mi �δ
ǫ M. Condition 1

in Definition 9, namely ∀(x, xs) ∈ R : dY(y(t), ys(t)) ≤ ǫ, holds since ‖y − ys‖2 =
‖Cx−CPxs‖2 and (x− Pxs)

TCTC(x− Pxs) ≤ (x− Pxs)
TM(x− Pxs), and the

latter is bounded by ǫ2 for (x, xs) ∈ R.
For condition 2, i.e., ∀(x, xs) and ∀us ∈ Us: Ts (· | xs, us) R̄δT (· | x,Uv(us, xs, x)) ,
we construct a lifted probability measureWT(· | us, xs, x) based on the shared input
noise w(t). From this lifting measure, the original transition kernels can easily
be recovered by marginalising over Xs and over X, respectively, as T (· | x, u) =
N (·|Ax + BUv(us, xs, x), BwB

T
w), and Ts (· | xs, us) = N (·|Asxs + Bsus, BwiB

T
wi).

The last condition requires that, with probability at least 1−δ, the pair (x′, x′s) ∈ R
is distributed as (x′, x′s) ∼ WT (· | us, xs, x). This condition can be encoded as:
∀wTw ≤ cw, ∀(x, xs) ∈ R, ∀us ∈ Us it holds that: (x′ − x′s) ∈ R. Note that the
latter can be written as (x′ − Px′s)

TM(x′ − Px′s) ≤ ǫ2, where

x′ − Px′s = (A+BK)(x − Pxs) + (Bw − PBwi)w + (BR − PBs)us.(5)

The conditions above can be expressed as a single matrix inequality via the S-
procedure [11]. We know that w ∼ N (0, I), wTw has a Chi-square distribution
with 2 degrees of freedom. Thus for a required level of 1 − δ, we select cw as
cw = χ−1

2 (1 − δ) and solve the resulting constraints with respect to ǫ for given
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values of K,P,Q and R, for each of the reduced models Mi using CVX [22]. Note
that χ−1

2 is the chi-square inverse cumulative distribution function with 2 degrees of
freedom. The gainsK and R are selected together withM by alternately optimising
their choice. The chosen P and Q follow from the Sylvester equation, for which
additional freedom is used to minimise the influence of w and us in (5).

Table 1 provides a number of ǫ, δ values, derived from the approximate proba-
bilistic simulation relation, for each of the models Mi. Notice that for increasing
values of δ, ǫ decreases to a positive lower bound: this lower bound is a function of
the size of the set Us. Based on these outcomes, we have decided to proceed with
M2.

Table 1. ǫ, δ-simulation relation trade-off for the reduced-order
models. The table gives for each model and δ the computed ǫ.

δ 1 10−
1

3 10−
2

3 10−1 10−
4

3 10−
5

3 10−2 10−
7

3 10−
8

3 10−3

M1 0.1233 0.4803 0.6247 0.7347 0.827 0.9082 0.9816 1.049 1.112 1.171

M2 0.01445 0.1037 0.132 0.1534 0.1714 0.1871 0.2014 0.2145 0.2267 0.2381

M3 0.05206 0.7612 0.997 1.175 1.325 1.456 1.575 1.684 1.785 1.881

M4 0.1839 0.3029 0.3358 0.3604 0.3809 0.3988 0.415 0.4298 0.4435 0.4564

Control synthesis over abstract model M2: use of FAUST
2. For a given choice of ǫ, δ

we follow Theorem 3 and modify the given PCTL property ψ := P≥p

(

�6[|y| < 0.5]
)

to obtain ψǫ,δ := P≥p+γ

(

�6[|y| < 0.5− ǫ]
)

. Here γ gives the accumulation of the
error in the probability over the time horizon of interest: for this case we have
1− γ := (1 − δ)6, which is γ ≈ 6δ. We then apply FAUST2 to obtain a grid-based
approximation of the safety probability over the six time steps of the formula (which
adds up to 30 minutes in the model), with an accuracy of 0.1.More precisely, we
first quantise the input space (this on its own generates an exact simulation), then
we apply FAUST2 [20] over the obtained continuous space, finite action model.
For this work we have optimised the algorithms in FAUST2 to use less memory for
models with Gaussian noise: by first decoupling the noise by means of a simple state
transform, the storage of the discretised probability transitions can be done in a
structured and more efficient manner. This leads to perform the computations with
2.6× 107 grid points to attain the desired accuracy of 0.1 (more precisely 0.0983)
with a 2,6 GHz Intel Core i5 with 16 GB memory within less then 20 minutes. We
finally obtain that the modified safety property is satisfied with probability of at
least 0.8412− 0.0983 = 0.7429 for the reduced order model M2 initialised at zero.

Control refinement: simulation results. We refine the policy obtained from FAUST2

for the reduced-order model M2 to the original model M. Recall that we expect
this refined policy to have a quantifiable safety, expressed via the property ψ, which
is a requirement that the inner air temperature remains within the bound ys ∈
[−0.5, 0.5] of the nominal temperature during the next 30 minutes. The safety
probability for the concrete model M initialised at the origin is lower bounded by
the computed probability p = (0.7429 − γ) = (0.7429 − 0.0585) = 0.6844 (this is
according to Theorem 3).

We empirically validate this result as follows. We first initialise the system and
the state of the reduced-order model (in the controller) at the origin. Then we
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perform 105 Monte-Carlo simulations and observe that executions of the reduced-
order model remain in the modified safe set 85.81 percent of the time, whereas
they exit it 14.19 percent of the time. For the same noise sequences, the controlled
5-dimensional model, where the control is refined based on the interface introduced
before, stays in the original safe set 99.9 percent of the time, and exits it in 0.10
percent of the times. The concrete model is further seen to stay within the modified
safe set 86.05 percent of the times, which is much closer to the computed probability
for the reduced-order model. Notice that these empirical outcomes are expected to
be higher than indicated in the error bounds, as these bounds are conservative espe-
cially when considering states starting in the middle of the relation. Similarly, start-
ing at the edge of the modified safe set ys ∈ [0.2986,−0.2986] of the reduced-order
model, we have considered the initialisation as follows xs(0) = [−0.4229 −0.2987]T

and x(0) = Pxs(0), where P has been discussed above. For this initial state
0.7289 is the lower bound on the safety probability for the reduced-order model,
and p = 0.6704 for the full-order model. With 105 empirical Monte-Carlo runs, we
obtain that the reduced-order model stays in the modified safe set 84.30 percent of
the time, whereas the concrete model with the refined control policy stays in the
safe set in 99.87 percent of the runs. Similar results were obtained upon initialising
at other points on the edges of the (modified) safe set, or on the edge of the relation.

6. Conclusions

In this work we have discussed new and general approximate similarity relations
for general control Markov processes, and shown that they can be effectively em-
ployed for abstraction-based verification goals as well as for controller synthesis and
refinement over quantitative specifications. The new relations in particular allow
for a useful trade-off between the deviations in probability distribution on states
and the deviations between model outputs. We have extended results on control
refinement for deterministic LTI systems to construct interface functions effectively.
For this and other model classes within the set of gMDPs the algorithmic construc-
tion of appropriate interface functions together with the optimal quantification of
the ǫ, δ-approximate similarity relation is topic of further research. Alongside prac-
tical applications of the developed notions, current research efforts focus on further
generalisation of Theorem 3 to specific quantitative properties expressed via tem-
poral logics. We are moreover interested in further expanding our understanding
of the properties of similarity relations.
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Appendix A. Nomenclature

R Relation over R ⊆ X1 × X2.
R̄ Relation over R̄ ⊆ P(X1,B(X1))×P(X2,B(X2) obtained via lifting

from R, as per Def. 5.
R̄δ Relation over R̄ ⊆ P(X1,B(X1)) × P(X2,B(X2) obtained via the

approximate lifting with a deviation in probability bounded with
δ obtained from R, as per Def. 8.

≡Req
Relation between two probability spaces (X1,B(X1)) and
(X2,B(X2)) based on the equivalence relation Req ⊆ (X1 ⊔ X2) ×
(X1 ⊔ X2), à la [14], as reviewed in Section C.

≡δ
Req

Approximate relation between two probability spaces (X1,B(X1))
and (X2,B(X2)) based on the equivalence relation Req ⊆ (X1 ⊔
X2)× (X1 ⊔ X2), à la [1], as reviewed in Section C.

� Probabilistic simulation relation, see Def. 6 .
≈ Probabilistic bisimulation relation, see Def. 7.
�δ

ǫ ǫ, δ-approximate probabilistic simulation relation, see Def. 9.

Appendix B. Details on Case study and use of FAUST2

The model reduction procedure via balanced truncationix yields four reduced-
order models Mi = (Ai, Bi, Bwi, Ci) i = 1, 2, 3, 4:

Mi :

{

xs(t+ 1) = Aixs(t) +Bwiw(t) +Bius(t)
ys(t) = Cixs(t),

which are characterised by the following constant matrices

M1 : A1 =
[

0 −0.8572
1 1.857

]

, B1 =
[−0.5343

0.5523

]

, Bw1 =
[−5.916e-3 −0.0564 8.62e-3

6.138e-3 0.05852 −6.739e-3
]

, C1 = [ 0 1 ];

M2 : A2 =
[

0 −0.05267
0.125 −0.1081

]

, B2 = [ 0.89170.3725 ], Bw2 = [ 0.01925 0.1835 0.002356
0.01372 0.1308 3.229e-5 ], C2 = [ 0 1 ];

M3 : A3 = [ 0.9951 ], B3 = [ 0.1194 ], Bw3 = [ 0.001497 0.01427 0.01467 ], C3 = [ 1 ];

M4 : A4 = [ 0.1203 ], B4 = [ 0.3829 ], Bw4 = [ 0.01257 0.1198 0.0002907 ], C4 = [ 1 ].

Models M1 and M3 are obtained from M = (A,B,Bw, C), whereas M2 and
M4 are based on the dynamics of M′ = (A +BF,B,Bw, C). We have synthesised
F to be [ 0.4846 0.3986 0.8535 0.5639 0.002425 ]. As expected the reduced models depend
on the choice of M′ or M: in the former case, the part of the dynamics that we
cannot compensate with a control is approximated best, whereas for M the most
prominent dynamics are approximated best.

Approximate probabilistic simulation relation. We quantify the performance of Mi

for i = 1, 2, 3, 4 only over a bounded input set Us := {us ∈ R | u2s ≤ c1}.
Subsequently solving the Sylvester equations for Q,P and R, tuning a stabilising

interface gain K, and then using the S-procedure as described in [11] to compute
ǫ, δ and M , we finally obtain the following matrices for the reduced-order models.

ixThis is obtained from the application of the balred function in Matlab.
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For M1 we take R := 1.403, and we obtain

Q := [−0.08954 −0.07712 ], K := [−0.5717 −0.4705 −0.9859 −0.6213 −0.002364 ],

P :=

[−1.061 0.09045
0 1

−2.295 −0.9696
9.064 8.775

0 0

]

, M :=

[ 0.4797 0.1476 0.3298 0.1397 −0.001306
0.1476 1.104 0.1592 0.06704 −0.00359
0.3298 0.1592 0.2862 0.1207 −0.001327
0.1397 0.06704 0.1207 0.1744 0.003174

−0.001306 −0.00359 −0.001327 0.003174 0.003676

]

.

Note that the latter is optimised for δ = 10−2.
For M2 we take R := 1.004, and obtain

Q := [−1.857 1.406 ], K := [−0.3553 −0.2931 −0.65 −0.4739 −0.002547 ],

P :=

[ −0.6186 0.2348
0 1

2.562 −2.314
−0.009378 0.001329

0 0

]

, M :=

[

0.2416 0.06342 0.3159 0.1299 0.00106
0.06342 1.772 0.07267 0.02663 0.0007664
0.3159 0.07267 0.4191 0.1728 0.001395
0.1299 0.02663 0.1728 0.08168 0.000351
0.00106 0.0007664 0.001395 0.000351 0.0001456

]

.

Again M is chosen based on the S procedure to optimise ǫ for δ = 10−2. For M3,
take R := 0.3074 and obtain

Q := −0.0008755, K := [−0.5796 −0.477 −0.9978 −0.6265 −0.00236 ],

P :=

[

1.004
1

1.006
0.9713

0

]

, M :=

[ 8.584 −4.974 4.929 2.078 0.1158
−4.974 3.944 −3.106 −1.31 −0.05919
4.929 −3.106 3.917 1.653 0.06135
2.078 −1.31 1.653 0.7024 0.02595
0.1158 −0.05919 0.06135 0.02595 0.01179

]

.

Note that M is chosen based on the S-procedure to optimise ǫ for δ = 10−2.
For M4, we take R := 0.8996 and

Q := −0.6961, K := [−0.5307 −0.4366 −0.9241 −0.5946 −0.002391 ],

P :=

[ −1.191
1

1.242
−0.01296

0

]

, M :=

[ 0.03949 −0.01465 0.06076 0.02542 1.999e−05
−0.01465 1.788 0.1162 0.05143 −0.0005164
0.06076 0.1162 0.128 0.05469 −2.765e−05
0.02542 0.05143 0.05469 0.04108 −0.0004062

1.999e−05 −0.0005164 −2.765e−05 −0.0004062 0.0003725

]

.

δ 1 10−
1

3 10−
2

3 10−1 10−
4

3 10−
5

3 10−2 10−
7

3 10−
8

3 10−3

M1 0.1233 0.4803 0.6247 0.7347 0.827 0.9082 0.9816 1.049 1.112 1.171

M2 0.01445 0.1037 0.132 0.1534 0.1714 0.1871 0.2014 0.2145 0.2267 0.2381

M3 0.05206 0.7612 0.997 1.175 1.325 1.456 1.575 1.684 1.785 1.881

M4 0.1839 0.3029 0.3358 0.3604 0.3809 0.3988 0.415 0.4298 0.4435 0.4564

Table 3. Trade-off for parameters ǫ, δ in the simulation relation.

B.1. FAUST2 computations on a 2-dimensional model. For a given x, u pair
the probability distribution of the next state is distributed with the following sto-
chastic density kernel tx(x̄ | x, u) ∼ N (·;Aix+Biu,Σ), where Σ := Bw2

BT
w2

.
We resort to the algorithms implemented in [20] to maximise the probability of

a stochastic event. We set up a stochastic dynamic programming scheme, leading
to a final value function providing the probability of the property as

V0(x) = P
[

�6(|y(t)| ≤ 0.5− ε)
]

.

Define the safe set A := R× [−0.5 + ε, 0.5− ε] ⊂ X = R2, then the property to be
maximised can be written as V0(x) = P

[

�6A
]

.
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B.1.1. The error computation. Assume there are constants H1, H2, such that
∫

R2

|tx(x̄ | x, u)− tx(x̄ | x′, u)|dx̄ ≤ H1|x′1 − x1|+H2|x′2 − x2|.(6)

This gives a linearly increasing error N(H1∆1+H2∆2), where ∆i is the grid size in
the i-th coordinate direction of the state space. Let us compute the two constants
next. Starting from

tx(x̄ | x, u) = 1
√

(2π)2 det(σ)
exp

[

−1

2
(x̄−Aix−Biu)

T Σ−1 (x̄−Aix−Biu)

]

,

define m =

[

m1

m2

]

= Aix+Biu and Σ−1 =

[

d11 d12
d21 d22

]

= LTL. Then

tx(x̄ | x, u) = 1
√

(2π)2 det(σ)
exp

[

−‖Lx̄− Lm‖2
]

.

Define a change of variables with v = Lx̄ → dv = | det(L)|dx̄. Then the error
computation follows from the maximal difference between the probability density
distributions [20] as given in (6) and can be rewritten as follows:

∫

R2

∣

∣

∣

∣

∣

1
√

(2π)2 det(Σ)

(

exp

[

−1

2
‖v − Lm‖2

]

− exp

[

−1

2
‖v − Lm′‖2

])

∣

∣

∣

∣

∣

dv

det(L)
.

Note that Σ−1 = LTL, hence | det(L)| = 1√
det(Σ)

and consequently

=

∫

R2

1

2π

∣

∣

∣

∣

(

exp

[

−1

2
‖v − Lm‖2

]

− exp

[

−1

2
‖v − Lm′‖2

])∣

∣

∣

∣

dv.

Now we can transform a two-dimensional integral into two one-dimensional inte-
grals:

≤
∫

R

1√
2π

∣

∣

∣

∣

(

exp

[

−1

2
‖v1 − L1m1‖2

]

− exp

[

−1

2
‖v1 − L1m

′
1‖2

])∣

∣

∣

∣

dv1

+

∫

R

1√
2π

∣

∣

∣

∣

(

exp

[

−1

2
‖v2 − L2m2‖2

]

− exp

[

−1

2
‖v2 − L2m

′
2‖2

])
∣

∣

∣

∣

dv2

≤ 2|L1m− L1m
′|√

2π
+

2|L2m− L2m
′|√

2π
≤ 2√

2π
(|L1Ai(x− x′)|+ |L2Ai(x − x′)|) .

Define

[

ā11 ā12
ā21 ā22

]

= LAi. Then for (6) we have H1 = 2√
2π

(|ā11| + |ā21|), H2 =

2√
2π

(|ā12|+ |ā22|)

Appendix C. Connections to literature and measurability issues

In this section we establish quantitative connections between the notion of ap-
proximate similarity that we have introduced for gMDPs and known and established
concepts that have been discussed in the literature for processes that are special
cases of gMDPs.

As measurability issues are key in this discussion we would like to first point
out that the results in this paper can be extended to analytical spaces with uni-
versally measurable kernels. When we allow the gMDPs to have universally mea-
surable kernels, we need to show the existence of a conditional probability measure
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WT(dx
′
1|x′2, u1, x1, x2): for this we refer to [18] which discusses the existence of

universally measurable regular conditional probabilities.

C.1. Early results for Markov chains with finite state spaces. From the
perspective of testing, the concept of probabilistic bisimulation has been first in-
troduced in [27], based on a relational notion, and later used to define equivalence
between Labelled Markov processes (LMPs) [13]. LMPs are different from gMDPs
in that transition are not governed by actions but by observable labels, and the
acceptance of a label (and the consequent transition) defines the behaviour of such
a process. LMPs are defined over a finite state space S, a set of labels L, and
stochastic transition kernels Tl : S × S → [0, 1] that are finitely indexed by l ∈ L.
There is a strong relationship between LMPs and standard MDPs with labels [2],
despite their different semantics.

Definition 11 (Probabilistic bisimulation (relational notion)).
Let T = (S,Pl∈L, L) be a labelled Markov chain, with L the finite set of labels.
Then a probabilistic bisimulation ≡p is an equivalence on S such that, whenever
s ≡p t, the following holds:

∀l ∈ L : ∀A ∈ S/ ≡p,
∑

s′∈A Tl(s|s′) =
∑

s′∈A Tl(t|s′).
Two states s and t are said to be probabilistically bisimilar (s ∼SL t) if the pair
(s, t) is contained in a probabilistic bisimulation relation.

An extension of this definition is used to compare two separate processes by
combining their state spaces (as a disjoint union) and defining the probabilistic
bisimulation on the obtained extended state space [13]. (More details on this oper-
ation is given in the following subsection for continuous state-space models.)

For countable-state probabilistic processes combining probability and non-determinism,
[31, 32] has discussed probabilistic simulations based on a lifting notion – this has
inspired the extension (over more general models) that is elaborated in this work.
Over finite- or countable-state sets, [31, Lemma 8.2.2] has shown that lifting coin-
cides with Req-equivalence of the corresponding probability distributions.

C.2. Exact bisimulation relations for models with continuous state spaces.
The early notion of bisimulation between labelled Markov chains [27] has been ex-
tended to processes (again denoted as LMPs) defined over analytical state spaces
in [13], by employing zigzag morphisms. This work combines and extends earlier
results on zigzag-based bisimulations [8, 12, 18], provides the fundamental measure
theoretical results to support bisimulations over continuous spaces, and shows their
logical characterisation and their transitivity property. Alternative but equivalent
to the zigzag definition, the follow-up work in [14] discusses an extension of the
relational notion in [27], based on the concept of measurable Req-closed sets.

Suppose that we have a LMP S = (X,B(X),Tl, L), with a finite label set l ∈ L
and with X being a Polish space. Note that, unlike in the discrete-space case,
this process is defined together with a Borel σ-algebra B(X). Then based on [14]
an equivalence relation, denoted Req , defines a bisimulation if for any x1Reqx2
and for any measurable Req-closed set B (or equivalently for every measurable set
B ⊂ X/Req) it holds that

Tl(B|x1) = Tl(B|x2), ∀l ∈ L.
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As an extension, a bisimulation between two different LMPs Si = (Xi,B(Xi),Tl,i, L),
i = 1, 2 can be constructed by working on the disjoint union of their state spaces.
More precisely, an equivalence relation Req over X1 ⊔ X2 defines a bisimulation if
for every x1Reqx2 (where x1 ∈ X1 and x2 ∈ X2) and for every Req-closed set B, it
holds that

Tl,1(B ∩X1|x1) = Tl,2(B ∩ X2|x2), ∀l ∈ L.

An example of an equivalence relation over the disjoint union between two hetero-
geneous spaces, along with the induced quotient space, is given in Fig. 4a. The
discussed notion of equivalence between LMPs crucially depends on the equivalence
of the probability spaces (Xi,B(Xi),Pi) with probability measures Pi := Tl,i(· | xi),
given for a fixed l and state xi. For an equivalence relation Req over X1 ⊔ X2, the
probability spaces are equivalent if for every measurable Req-closed set B it holds
that

P1(B ∩ X1) = P2(B ∩X2),

which is denoted as P1 ≡Req
P2.

This type of equivalence between probability spaces has also been used for bisim-
ulation relations between control Markov processes [1], a simpler instance of the
gMDP framework discussed in this work. As such, it is a natural extension of the
notion in [13, 14] from LMPs to control Markov processes.

An equivalence relation defined over the disjoint union of X1, and X2, i.e., Req ⊂
(X1⊔X2)×(X1⊔X2), can also be expressed as a relation over their Cartesian product,
namely R := {(x1, x2) ∈ X1 × X2 : (x1, x2) ∈ Req}. As an example, we provide in
Fig. 4b the relation over the Cartesian product of two spaces, corresponding to the
equivalence relation defined in Fig. 4a over their disjoint union. This connection
raises the question of whether probability spaces related via Req are also in a lifted
relation. When working with finite or countable sets, we know that this connection
holds [31]. On the other hand, for continuous or uncountable spaces this depends
on the absence of measure-theoretical issues, and will be studied in depth to answer
when the following claim holds.

Claim 1. Consider two measure spaces (X1,B(X1)) and (X2,B(X2)) and an equiva-
lence relation Req that induces a relation over X1×X2 as R := {(x1, x2) ∈ X1×X2 :
(x1, x2) ∈ Req}. Then,

• for any two probability measures ∆ ∈ P(X1,B(X1)) and Θ ∈ P(X2,B(X2)),
we have

∆R̄Θ if and only if ∆ ≡Req
Θ.

• for any two universally measurable transition kernels T1 and T2, there exists
a universally measurable kernel WT that lifts the transition kernels for R
as required in Def. 6.

In order to prove this claim and to construct the lifted measure based on an
equivalence relation, we exploit the notion of zigzag morphism [13, 18] and its
properties.

More precisely, consider a tuple (X,B(X),T), with X a Polish space and T :
X× B(X) → [0, 1] a transition probability function.

Definition 12 (Morphism). A function f : (X,B(X),T) → (X′,B(X′),T′) is a
morphism if it is a continuous surjective map f : X → X′, such that for all s ∈ X

and for all B ∈ B(X),
T(f−1(B)|s) = T

′(B|f(s)),
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×{1} ×{2}

X2

∪

q1

q3
q2

X1

(a) An equivalence relation Req over the

disjoint union X1 ⊔X2, where two elements

from each set are in the relation if they

share the same colour.

X1 × q1

X1 × q2

X1 × q3

(b) Relation R over the Cartesian product

of X1 ⊂ R
2 and X2 = {q1, q2, q3}, induced

by the equivalence relation Req . Elements

of the relation are coloured.
Figure 4. Example of an equivalence relation over the disjoint
union of two heterogeneous spaces, and the corresponding relation
over their Cartesian product.

i.e., it is preserving transition probabilities.

Consider two labelled Markov processes Si = (Xi,B(Xi), {kl,i|l ∈ L}) with a
shared finite set of labels L, then a morphism f is a zigzag morphism if it preserves
the two transition probability functions for all l ∈ L. Two LMPs S1 and S2 are
probabilistically bisimilar if there is a generalised span of zigzag morphisms between
them [13]; namely, if there exists a labelled Markov process T (with universally
measurable transition kernels) and zigzag morphisms f and g from T to S1 and
S2, respectively (see Figure 5a). In order to prove that this notion of probabilistic

S1

T

S2

f g

(a) Generalised

span of zigzag

morphisms

S1

T12

S2

T23

T∗

S3

f1 f2 f3 f4

g1 g2

(b) ConstructT∗ as a semi-pullback

of co-span T12 → S2 ← T22.

S1

T∗

S3

f1◦g1 f4◦g3

(c) Transitive bisimu-

lation based on semi-

pullback

Figure 5. Probabilistic bisimulation between S1 and S2 estab-
lished by zigzag morphism. Transitivity of probabilistic bisimula-
tions S1 and S2 and S2 and S3 follows as a semi-pullback.

bisimulation is transitive, [18] has shown that

• the category of Markov processes with universally measurable transition
probability functions T on Polish spaces and with surjective and continuous
transition probability preserving maps has semi-pullbacks [18, Corollary
5.3];

• the category of probability measures P on Polish spaces and measure-
preserving surjective maps has semi-pullbacks [18, Corollary 5.4].

By adding a labelling to the transition probability function T, one can trivially
show the existence of semi-pullbacks on an LMP. Moreover, the transitivity of
probabilistic bisimulations follows based on semi-pullbacks: if S1 is probabilistically
bisimilar to S2, which is also bisimilar to S3, then S1 and S3 are bisimilar, as in
Figure 5b.
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Let us go back to the Claim 1. Firstly recall that, as depicted in Fig. 4a,
an equivalence relation Req over X1 ⊔ X2 induces a quotient space, denoted by
Q := (X1 ⊔ X2)/Req , and partitions the unionised state space by disjoint sets,
namely

⋃

q∈Q q = X1 ⊔ X2, and q1 ∩ q2 = ∅ for q1 6= q2, q1, q2 ∈ Q. Thus starting

from the Markov processes S1 = (X1,B(X1),T1) and S2 = (X2,B(X2),T2), we show
that the claim holds under either of the following two conditions.

Condition 1 (Polish quotient space). The equivalence relation of interest Req

induces a quotient space (Q,F) that is Polish and the maps from X1 and X2 to the
quotient space f1 : X1 → Q and f2 : X2 → Q are measurable and surjective.

Condition 2 (Analytic Borel quotient space). The equivalence relation of interest
Req induces a quotient space that is analytical as in [13, 18] and the maps from X1

and X2 to the quotient space f1 : X1 → Q and f2 : X2 → Q are measurable and
surjective.

Notice that condition 1 implies condition 2, and further note that f1 and f2 are
constructed based on the injection ι1 and ι2, i.e., ιi : Xi → X1 ⊔ X2 for i = 1, 2,
composed with q : X1 ⊔X2 → Q.

Then we can construct the quotient Markov process as the tuple S := (Q,F ,T)
such that (Q,F) is a Borel measurable space with Q = (S1 ⊔ S2)/Req, and F is
defined as F := {E ⊂ Q : q−1(E) ∈ B(S1 ⊔ S2)}. The stochastic transition kernel
T is constructed as in [13, Proof of Proposition 9.4]. For any B ∈ F it holds that

T(B|t) = T1(f
−1
1 (B)|s) with s ∈ f−1

1 (t)(7)

and T(B|·) is Borel measurable.
Then f1 and f2 are zigzag morphisms from, respectively, S1 and S2 to S, and

they form a co-span. Based on [18] we now know that there exists a Markov process
W := ((X1 × X2),B(X1 × X2),W), which is a semi-pullback, and where W lifts the
relation over X1 ×X2 and defines a universally measurable stochastic kernel. If S1,
S2 and S have analytical Borel spaces (this includes Polish spaces) and universally
measurable transition kernels, then W : R× B(×) is defined as

W (dx′1 × dx′2 | (x1, x2)) =
∫

q′∈Q

T1(dx
′
1 | x1, q′)T2(dx

′
2 | x2, q′)T(dq′ | f1(x1)),

(8)

where Ti(dx
′
i | xi, q′) for i = 1, 2 are universally measurable regular conditional

probability distributions, such that for measurable subsets Xi ⊂ Xi and Q ⊂ Q it
holds that

Ti(Xi ∩ f−1
1 (Q) | xi) =

∫

Q

Ti(dx
′
i | xi, q′)T(dq′ | f1(x1)).

The details of this reasoning follow from [18] together with the existence proof for
the regular conditional probability distributions.

Remark 3 (Measurability assumptions). The measurability assumption above is
a nontrivial but natural assumption, since, as proven for LMPs, any equivalence
relation on X1 ⊔X2 based on logics induces a quotient LMP that has an analytical
Borel space and measurable canonical maps [13, Proposition 9.4].
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C.3. Approximate probabilistic bisimulation relations. A relaxation of ex-
act equivalence relations in a probabilistic context has been first introduced for
(finite-state) labelled Markov chains in [15], and later employed in [17].

Definition 13. A relation R ⊆ S×S is an (probabilistic) ǫ-simulation if whenever
sRt, then for all labels l ∈ L, and sets in the event space X ∈ Σ, it holds that

Tl(R(X)|t) ≥ Tl(X |s)− ǫ.

Note that the relation is not required to be an equivalence relation, hence it
does not induce a partitioning of the state space. For continuous-space systems, [1]
has discussed an approximate (bi-)simulation notion derived from the finite-state
definition. This definition relates to an approximate equivalence of the probability
spaces (Xi,B(Xi),Pi) i = 1, 2 as follows. For an equivalence relation Req over
X1⊔X2 the probability spaces are approximately equivalent if for every measurable
Req-closed set B it holds that

|P1(B ∩ X1)− P2(B ∩ X2)| ≤ δ,

which is denoted as P1 ≡δ
Req

P2.

Theorem 7. Consider two measure spaces (X1,B(X1)) an (X2,B(X2)) and an
equivalence relation Req satisfying condition 1. Then for any two probability mea-
sures ∆ ∈ P(X1,B(X1)) and Θ ∈ P(X2,B(X2)) we have that

∆ ≡δ
Req

Θ if and only if ∆R̄δΘ,

with as standard R := {(x1, x2) ∈ X1 × X2 : (x1, x2) ∈ Req}.

Proof. 1. ∆R̄δΘ =⇒ ∆ ≡δ
Req

Θ

If ∆R̄δΘ then for each C ⊂ (X1 ⊔ X2)/Req with subsets S̃ = X1 ∩ C ∈ B(X1) and

T̃ = X2 ∩ C ∈ B(X2), then |∆(S̃) − Θ(T̃ )| ≤ δ because W(S̃ × (X2 \ T̃ )) ≤ δ and

W((X1 \ S̃)× T̃ ) ≤ δ. This can be shown as follows

∆(S̃) ≤ ∆(S̃) +W((X1 \ S̃)× T̃ ) = Θ(T̃ ) +W(S̃ × (X2 \ T̃ )) ≤ Θ(T̃ ) + δ

and repeating the reasoning starting from Θ(T̃ ) we get Θ(T̃ ) ≤ ∆(S̃)+δ, and hence

|∆(S̃)−Θ(T̃ )| ≤ δ.
2. ∆ ≡δ

Req
Θ =⇒ ∆R̄δΘ

Under Condition 1 we have that the quotient space has the Borel measure space
(Q,F) where Q is Polish. Additionally we have measurable mappings fi : X1 → Q.
We denote the induced probability measures f1∗∆ ∈ P(Q,F) and f2∗Θ ∈ P(Q,F).
Denote a measure that lifts these over the diagonal relation as WQ ∈ P(Q2,F2).
This is equivalent to maximal coupling of f1∗∆ and f2∗Θ. Specifically for Polish
spaces we take the γ-coupling given as WQ := γ(f1∗∆, f2∗Θ) ∈ P(Q2,F2) [4] based
on [28, Section 1.5] and given as follows

Definition 14. Let Z be a Borel space and let ν, ν̃ ∈ (Z) be two probability
measures on it. The γ-coupling of (ν, ν̃) is a measure γ ∈ (Z2) given by

γ(ν, ν̃) := ΨZ(ν ∧ ν̃) + 1[0,1)(‖ν ∧ ν̃‖).
(ν − ν̃)+ ⊗ (ν − ν̃)−

1− ‖ν − ν̃‖
where ΨZ : Z → Z2 is the diagonal map on Z given by ΨZ : z 7→ (z, z).
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The lifted measure over W ∈ P(X1 × X2,B(X1 × X2)) is given as

W :=

∫

Q×Q

∆(dx1 | q1)Θ(dx2 | q2)WQ(dq1 × dq2).

�

Appendix D. Proofs of Theorems and Corollaries

D.1. Control refinement proofs, Theorem 1- 4. Let us consider the controller
refinement for exact simulation relations first. The execution {(x2(t), xC2

(t))|t ∈
[0, N ]}, is defined on the canonical space Ω = (X2 × XC2

)N+1, and has a unique
probability measure PC2×M2

. Therefore in Alg. 1, in order to write the execution
of the refined control C2 and of the gMDP M2, we have included the state of M2

for one transition in the state of the refined control strategy. Therefore, while the
execution of Alg. 1 ranges over XC1

× X1 × X2, the execution of the controlled
system with C2 ranges over XC2

× X2 = (XC1
× X1 × X2) × X2. The marginal of

PC2×M2
on XC1

× X1 × X2 defines the measure for the execution in Alg.1.
Since, by the above construction of C2, the output spaces of the closed loop

systems C1 ×M1 and C2 ×M2 have equal distribution, it follows that measurable
events have equal probability, as stated next.

of Theorem 2. If {h1(x1(t))|t ∈ [0, N ]} ∈ A and (x1(t), x2(t)) ∈ R ∀t ∈ [0, N ] then
{h2(x2(t))|t ∈ [0, N ]} ∈ A.

Let us rewrite the stochastic kernel of the combined transition of C2 and M2 for
t = 0 asx

T
0
C2×M2

(dxC2
× dx2) = T

0
C1

(dxC1
|xC10, x1)Wπ(dx1|x2)δx2(0)(dx2)π(dx2(0)).

Marginalised on XC1
× X1 × X2, this becomes (by definition of Wπ)

T
0
C2×M2

(dxC1
× dx1 × dx2) = T

0
C1

(dxC1
|xC10, x1)Wπ(dx1|x2)π(dx2)

= T
0
C1

(dxC1
|xC10, x1)Wπ(dx2|x1)π(dx1).

Further marginalised on XC1
× X1, this becomes

T
0
C2×M2

(dxC1
× dx1) = T

0
C1

(dxC1
|xC10, x1)π(dx1) = T

0
C1×M1

(dxC1
× dx1).

For t ∈ [1, N ], the stochastic kernel marginalised on XC1
× X1 × X2 is

T
t
C2×M2

(dx′
C1

× dx′1 × dx′2) = T
t
C2

(dx′
C1

|xC1
, x′1)

WT(dx
′
1|x′2, htC1

(xC1
), x2, x1)T2(dx

′
2|x2, htC2

(xC2
))

= T
t
C1

(dx′C1
|xC1

, x′1)WT(dx
′
1 × dx′2|htC1

(xC1
), x2, x1)

and can be further marginalised on XC1
× X1 to obtain Tt

C1×M1
. Note that since

WT(R|ht
C1

(xC1
), x2, x1) = 1 for (x1, x2) ∈ R it holds with probability 1 that

(x1(t), x2(t)) ∈ R for t ∈ [0, N ]. Therefore we can deduce that

PC1×M1
({y1(t)}0:N ∈ A) = PC2×M2

({y2(t)}0:N ∈ A) .

� �

xFor brevity a part of the argument of the stochastic kernel has been omitted.
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To prove Theorem 4 and 3 we leverage their exact versions (Theorem 1 and 2).
We first show the existence of a refined control strategy in case of approximate sim-
ulation relation, c.f. Theorem 4. Then we leverage these results to prove Theorem
3.

Theorem 4 states the following. Let gMDP M1 and M2, with M1 �δ
ǫ M2,

and control strategy C1 = (XC1
, xC10,X1,T

t
C1
, ht

C1
) for M1 be given. Then

for every given recovery control strategy Crec, a refined control strategy C2 =
(XC2

, xC20,X2,T
t
C2
, ht

C2
) can be obtained as an inhomogenous Markov process with

two discrete modes of operation, {refinement} and {recovery}, based on Algorithm
2. More specifically a possible choice of a refined control strategy is build up as
follows

• state space XC2
:= {XC1

× X1 × X2 × {refine}} ∪ XCrec
× {recover} with

elements xC2
= (xC1

, x1, x2, refine) and xC2
= (xCrec

, recover);
• initial state xC20 := (xC10, 0, 0, refinement);
• accepting as control inputs x2 ∈ X2;
• time dependent stochastic kernel Tt

C2
, defined for t = 0 as

T
0
C2

(dxrefine
C2

|xC20, x2(0)) :=T
0
C1

(dxC1
|xC10, x1)1R (x1, x2)

×Wπ(dx1|x2)δx2(0)(dx2)

T
0
C2

(dxrecover
C2

|xC20, x2(0)) :=T
0
init,rec(dxCrec

|x2)1(X1×X2)\R (x1, x2)

×Wπ(dx1|x2)δx2(0)(dx2)

and for t ∈ [1, N ] over the {refine} operating mode

T
t
C2

(dxrefine
′

C2
|xrefine

C2
(t), x2(t)) := T

t
C1

(dx′
C1

|xC1
, x′1)1R(x′1, x

′
2)

×WT(dx
′
1|x′2, htC1

(xC1
), x2, x1)δx2(t)(dx

′
2);

T
t
C2

(dxrecover
′

C2
|xrefine

C2
(t), x2(t)) := T

t
init,rec(dx

′
Crec

|x′2)1(X1×X2)\R(x′1, x
′
2)

×WT(dx
′
1|x′2, htC1

(xC1
), x2, x1)δx2(t)(dx

′
2);

defined based on a stochastic kernel Tt
init,rec t ∈ [0, N ] initiates the recovery

strategy on the fly and is contained in the choice of recovery strategy. And
for t ∈ [1, N ] for the recover operating mode

T
t
C2

(dxrecover
′

C2
|xrecoverC2

(t), x2(t)) := T
t
Crec

(dx′Crec
|xCrec

(t), x2(t));

• universally measurable output map

ht
C2

(xC2
) :=

{

Uv(h
t
C1

(xC1
), x1, x2) for refine ,

ht
Crec

(xCrec
) for recover .

The refined control strategy is composed of the control strategy C1, the recovery
strategy Crec, the stochastic kernel WT, and the interface Uv. Both the time-
dependent stochastic kernels Tt

C2
and the output maps ht

C2
, for t ∈ [0, N ], can be

shown to be universally measurable, since Borel measurable maps (and kernels) are
universally measurable and the latter are closed under composition [7, Ch.7].

Now we need to use this control strategy to prove Theorem 3.
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of Theorem 3. Given Crec consider an auxiliary recover strategy C∗
rec such that it

has stochastic kernels over XCrec
× X1 × XC1

:

T
t
C∗

rec
(dx′C∗

rec
|xC∗

rec
(t), x2(t)) = T

t
Crec

(dx′Crec
|xCrec

(t), x2(t))

T
t
C1×M1

(dx′
C1×M1

|xC1×M1
(t))

where Tt
C1×M1

(dx′
C1×M1

|xC1×M1
(t) is the stochastic kernel over XC1×M1

:= X1 ×
XC1

. Due to the independence of this kernel the probability distribution PC∗

2
×M2

of
M2 controlled by C∗

2 is, when marginalised on the canonical sample space (XC2
×

XM2
)N+1, equal to PC2×M2

.
Now using the same arguments as in the proof of Theorem 2 we know that for

all measurable sets L ⊂ YN+1

PC1×M1
({h1(x1(t))}0:N ∈ L) = PC∗

2
×M2

({h1(x1(t))}0:N ∈ L).

The probability

PC∗

2
×M2

((x1(t), x2(t)) ∈ R for t ∈ [0, N ]) ≥ (1− δ)N+1.

This can be shown by induction starting from t = 0, and by showing that at every
time step and for every pair of states the probability of staying in R is at least
1− δ. Now note that if {h1(x1(t))} ∈ A−ǫ and (x1(t), x2(t)) ∈ R for t ∈ [0, N ] then
{y(t)}0:N ∈ A. As a consequence

PC∗

2
×M2

({h1(x1(t))}0:N ∈ A−ǫ ∧ (x1(t), x(t)) ∈ R for t ∈ [0, N ])

≤ PC∗

2
×M2

({h2(x2(t))}0:N ∈ A) = PC2×M2
({h2(x2(t))}0:N ∈ A).

Now using the union bounding argument we also have that

PC∗

2
×M2

({h1(x1(t))}0:N ∈ A−ǫ)− (1− δ)N+1

≤ PC∗

2
×M2

({h1(x1(t))}0:N ∈ A−ǫ ∧ (x1(t), x(t)) ∈ R for t ∈ [0, N ])

1− PC∗

2
×M2

({h1(x1(t))}0:N ∈ A−ǫ ∧ (x1(t), x(t)) ∈ R for t ∈ [0, N ])

≤ (1− PC∗

2
×M2

({h1(x1(t))}0:N ∈ A−ǫ))

+ (1− PC∗

2
×M2

(((x1(t), x(t)) ∈ R for t ∈ [0, N ]))

≤ (1− PC∗

2
×M2

({h1(x1(t))}0:N ∈ A−ǫ)) + (1 − (1− δ)N+1).

We have deduced that

PC1×M1
({h1(x1(t))}0:N ∈ A−ǫ)− (1− (1 − δ)N+1) ≤ PC2×M2

({h2(x2(t))}0:N ∈ A).

If {h2(x2(t))}0:N ∈ A and (x̃(t), x(t)) ∈ R then {h1(x1(t))}0:N ∈ Aǫ. Thus via
similar arguments it can be deduced that

PC2×M2
({h2(x2(t))}0:N ∈ A) ≤ PC1×M1

({h1(x1(t))}0:N ∈ Aǫ) + (1− (1− δ)N+1).

� �

D.2. Proof of transitivity statements.

of Theorem 5 and Corollary 6. Since M1 �δa
ǫa

M2 and M2 �δb
ǫb

M3 there exist

• relations R12 ⊂ X1 × X2 and R23 ⊂ X2 × X3 that satisfies the required
conditions in Def. 9.

• Interface Uv12 : U1 ×X1 ×X2 → P(U2,B(U2)), and Uv23 : U2 ×X2 ×X3 →
P(U3,B(U3)),
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• and corresponding stochastic kernels WT12 and WT23.

Define the relation R13 ⊂ X1 × X3 as R13 := {(x1, x3) ∈ X1 × X3 | ∃x2 ∈
X2 : (x1, x2) ∈ R12, (x2, x3) ∈ R23}. Then ∀(x1, x3) ∈ R13 there exists a x2 ∈ X2 :
(x1, x2) ∈ R12, (x2, x3) ∈ R23. More specifically define a Borel-measurable function
F : X1 × X3 → X2 such that ∀(x1, x3) ∈ R13 for the mapping x2 = F (x1, x3) it
holds that (x1, x2) ∈ R12, (x2, x3) ∈ R23.

We have ∀(x1, x3) ∈ R13 and x2 = F (x1, x3) :

(1) d (h1(x1(t)), h3(x3)) ≤ d (h1(x1(t)), h2(x2(t))) + d (h2(x2(t)), h3(x3)) ≤ ǫa + ǫb;
(2) ∀u1 ∈ U1 : T1(·|x1, u1) R̄12,δa T2(·|x2,Uv12(u1, x1, x2)) and for all u2 ∈ U2 :

T2(·|x2, u2) R̄23,δb T3(·|x3,Uv23(u2, x2, x3)) and WT23 ∈ P(X2×X3,B(X2×
X3)) lifted with WT12(·|u1, x1, x2) and WT23(·|u2, x2, x3).

Let us derive the stochastic kernel WT13 by combining WT12 and WT23 and
marginalising over X2

WT13(dx
′
1 × dx′3|u1, x1, x2, x3) =

∫

X2

WT23(dx
′
3 | x′2,Uv(u1, x1, x2), x2, x3)

×WT12(dx
′
1 × dx′2|u1, x1, x2).

Composed with the mapping F we get a Borel-measurable stochastic kernelWT13(dx
′
1×

dx′3|u1, x1, x3) := WT13(dx
′
1 × dx′3|x1, F (x1, x3), x3). In the sequel we drop the ar-

gument of the stochastic kernel. Note that T2(dx2|x2, µu,2) = WT12(X1 × dx2) =
WT23(dx2 × X3). For lifting we have to proof that WT13(R13) ≥ 1 − δa − δb or
equivalently that WT13(X1 × X3 \ R13) ≤ δa + δb, namely

WT13(X1 × X3 \ R13) =

∫

X1

∫

X2

∫

X3\R13(x1)

WT23(dx3 | x2)WT12(dx1 × dx2)

=

∫

R12

∫

X3\R13(x1)

WT23(dx3 | x2)WT12(dx1 × dx2)

+

∫

X1

∫

X2\R12(x1)

∫

X3\R13(x1)

WT23(dx3 | x2)WT12(dx1 × dx2)

for all (x1, x2) ∈ R12 : R23(x2) ⊆ R13(x1)

≤
∫

X2

∫

X3\R23(x2)

∫

R−1

12
(x2)

WT12(dx1 | x2)WT23(dx2 × dx3)

+

∫

X1

∫

X2\R12(x1)

∫

X3\R13(x1)

WT23(dx3 | x2)WT12(dx1 × dx2)

≤
∫

X2

∫

X3\R23(x2)

∫

X1

WT12(dx1 | x2)WT23(dx2 × dx3)

+

∫

X1

∫

X2\R12(x1)

∫

X3

WT23(dx3 | x2)WT12(dx1 × dx2)

=

∫

X2

∫

X3\R23(x2)

WT23(dx2 × dx3) +

∫

X1

∫

X2\R12(x1)

WT12(dx1 × dx2)

≤ δa + δb.
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In addition it has to hold that WT13(X1 × X3) = T1(·|x1, µu,1), namely

WT13(X1 × X3) =

∫

X1

∫

X3

∫

X2

WT23(dx3 | x2)WT12(dx1 × dx2)

=

∫

X1

∫

X2

∫

X3

WT23(dx3 | x2)WT12(dx1 × dx2)

= WT12(X1 × X2) = T1(·|x1, µu,1).

The condition WT13(X1×X3) = T3(·|x3, µu,3) can be proven via similar arguments.
In conclusion T1(·|x1, µu,1)R̄13,δa+δbT3(·|x3, µu,3). To complete the proof we can
show, using the same arguments as before, that if π1R̄12,δaπ2 and if π2R̄23,δbπ3
then π1R̄13,δa+δbπ3. � �
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