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Abstract

We study the facial structure of the set £,x, of correlation matrices (i.e., the
positive semidefinite matrices with diagonal entries equal to 1). In particular,
we determine the possible dimensions for a face, as well as for a polyhedral
face of &, xn. It turns out that the spectrum of face dimensions is lacunary and
that &£,x, has polyhedral faces of dimension up to ~ v/2n. As an application,
we describe in detail the faces of £444. We also discuss results related to
optimization over &, x,.

AMS Subject Classification (1991): 15A57, 52A37, 90C27.
Keywords and Phrases: correlation matrix, convex set, normal cone, face, polytope,

dimension, Laplacian matrix, max-cut.

1 Introduction

A positive semidefinite matrix whose diagonal entries are equal to 1 is called a
correlation matrix. Let £, x, denotes the set of n X n correlation matrices, i.e.,

Enxn ={X RV | X = 0,z;;=1foralli=1,...,n}.

The notation X > 0 means that X is a symmetric positive semidefinite matrix.
The convex set &,x, is called the elliptope. Let us recall two previously known
results that are also crucial for this paper.

1On leave from LIENS, Ecole Normale Supérieure, Paris
®The research was partly done while the author visited CWI, Amsterdam, with a grant from
the Stieltjes Institute, whose support is gratefully acknowledged



THEOREM 1.1 [LT94] Let A € E,xn be a correlation matriz of rank r and let F(A)
be the smallest face of €,x, containing A. Then,

1
(1.2) dim F(A) = (T—; ) - rank(vi'viT |1 <7< n).

where v1,...,v, € R" is a collection of vectors such that A = Gram(vy,...,v,).

Theorem 1.1 generalizes results of [CM79, Loe80, GPW90|, where was mainly
considered the question of determining the possible ranks for extreme elements of
Enxn- The elliptope is a nonpolyhedral convex set and has a nonsmooth boundary.
The points X € &,y,, with full dimensional normal cone are called vertices.

THEOREM 1.3 [LP93] The elliptope E,xn has precisely 2"~ wvertices, each of the
form aa” for a € {-1,1}".

Theorem 1.3 was motivated by the fact that &,y, is a relaxation of a hard
combinatorial optimization problem, namely, the max-cut problem. Indeed, the
rank one matrices of &,y, are of the form aa” for a € {—1,1}"; they are called
cut matrices as they correspond to the cuts of the complete graph. The convex
hull of the cut matrices defines a polytope, called the cut polytope and denoted
by CUT, x»n. Then, the max-cut problem is the problem of optimizing a linear
objective function over the cut polytope. Hence, &,x, can be seen as a (nonpoly-
hedral) relaxation of the cut polytope (see [LP93, La94]). Moreover, a recent result
of [GW94] shows that by optimizing over the elliptope one obtains a very good
approximation for the max-cut problem.

Some other papers [GISW84, BJT93, La94] study the projection £(G) of Enxn
on the edge set of a graph G; this corresponds to the question of determining what
partial matrices can be completed to a positive semidefinite matrix.

The subject of this paper is the facial structure of the elliptope &, x,. Section 2
contains several old and new preliminary results. In Section 3, we describe all
possible values for the dimension of a face of £, x,,. We show that for all ‘admissible’
values k within the range of (1.2), there exists a face of dimension k. Our further
results from Section 4 concern the polyhedral faces of £,x,. A polyhedral face is, in
some sense, the most ‘nonsmooth part’ of the boundary of £, x,,. We determine the
largest possible dimension for a polyhedral face and we show that it can be realized
by a simplex face whose vertices are cut matrices. In Section 5, we group some
results related to optimization over the elliptope. In particular, we present a link
between the faces of the elliptope and the dimension of the optimized eigenspace
in the dual problem. Finally, we treat in detail in Section 6 the elliptope Esx4;
the elliptope £33 having been described in [LP93]. We describe the proper faces
of €444, whose possible dimensions are 0,1,2 and 3; faces of dimension 1 are edges
between two cut matrices and faces of dimension 3 are ismorphic to £343. The
highest dimension for a polyhedral face of €444 is 2.



2 Old and new basic facts
We start with some well known facts, formulated in the following two lemmas.

LeMMA 2.1 Let ¢q,...,2, be n linearly independent vectors in R™. Then, the
system

S = {a:ia:zr|1Sign}u{(azi—azj)(a:i—a:j)T|1§i<j§n}
is linearly independent.

PrOOF. As S consists of n + (3) = (*1') elements, it suffices to show that,
if X is a symmetric » X » matrix orthogonal to all members of S, then X is
the zero matrix. By assumption, (X, a:za:lT> = :I)?Xil)i =0fori=1,...,n, and
(X, (2 — z;)(z; — 2;)T) = (2; — 2;)T X (2; — ;) = 0, implying that =F Xz; +
a:;an:i =0for1<i<j<mn. We check that 2T Xz =0 for all z € R™ Indeed,
let ¢ = Y cic, @i®; for some scalars ;. Then, 27Xz = 3, ., el Xz, +
Yi<i<j<n a;aj(z Xe; + mewz) = 0. This implies that X = 0; indeed, if z is an
eigenvector of X for the eigenvalue A, then 0 = 2T Xz = X || z ||?, yielding A = 0.
a

The Gram matrix Gram(vy, ..., vx) of a collection of vectors vy, . .., v is the
k X k symmetric matrix whose (z, j)-th entry is equal to v!v;. The linear subspace
spanned by vectors v1,. .., vk is denoted (v1,..., k).

LEMMA 2.2 Letwvy,...,vp € R™. Then

k
dim ((v1,...,v)) = rank (Gram(v,...,v;)) = rank (Z v;v}).
=1

In the whole paper, when dealing with matrices, we take as ambient space the
set of symmetric matrices equipped with the inner product

(A,B) :=Tr(AB) = Z a;jb;;.
1<z,5<n

2.1 The kernel of a correlation matrix

It is easy to see that



LEMMA 2.3 The relative interior of E,xn consists of the positive definite cor-
relation matrices and its relative boundary of the correlation matrices X with
rank(X) < n. m]

Let X € &E,xn. Clearly, each nonzero vector of ker(X ) has at least two nonzero
coordinates. It is shown in [DP93b] that every vector v € ker(X) is balanced,
i.e., satisfies

lv;| < Z lv;| foralli=1,...,n.
1<j<n, j#i

THEOREM 2.4 [DP93b] Given a vector v € R", there exists a correlation matriz
X € &,xn such that Xv = 0 if and only if v is balanced. a

Note that there exist balanced vectors v € R™ for which there exists no matrix
X € Epxn for which equality ker(X) = (v) holds. This is the case, for instance,
for the vector v = (n,1,...,1); see Theorem 2.6. Call a vector v € R"” strictly
balanced if it satisfies

lv;| < E lv;| foralli=1,...,n.
1<5<m, j#i

LEMMA 2.5 Let X € E,xpn with |2;5| < 1 for alli # j. Then, every nonzero vector
v € ker(X) is strictly balanced.

Proor. Suppose that |vi| = |vz] + ...+ |vn|. From Xv = 0, we obtain that
Y 2<i<n £1i = —v1. Therefore,

] =1 Y zuv] < Y0 Jewllul <Y il = vl

2<i<n 2<2<n 2<2<n

Hence, equality holds throughout, which implies that >, .., (|z1:] — 1)|v:| = 0.
Therefore, v = ... = v, = 0, a contradiction. a

THEOREM 2.6 Let v € R™ such that v; # 0 for all i. Then, the following state-
ments are equivalent.

(i) There exists X € E,x, such that ker(X) = (v).

(i) The vector v is strictly balanced.

Proor. (i) = (i¢) Let X € &,x, such that ker(X) = (v). Then, |z;;| < 1 for all
i # j. (If, say, 12 = 1, then the vector (1,—1,0...,0) belongs to ker(X); hence,



it coincides with v, which contradicts the fact that all entries of v are nonzero.)
Therefore, v is strictly balanced by Lemma 2.5.

(it) = (%) We follow partly the proof of (Theorem 3.2, [DP93b]). We can suppose
without loss of generality that v;,...,v, > 0. For h =1,...,n, set

Dith Vi
Up

1+ e :=( )%

then, €, > 0. Define the vector
zp:=(1,...,1,v/14+€,,1,...,1) € R,
where /1 + ¢, stands at the h-th position. Set also

> - 1—t
t:= Lﬂ?, ap = for h=1,...,n.
1+ z:h;; €h

Finally, let

X = Z ahazhazg.
1<h<n

Clearly, X > 0 as ap > 0 since 0 < £ < 1. One can check that the diagonal entries

of X are equal to 1. Moreover, Xv = 0 since v is orthogonal to z1,...,z, and
ker(X) = (v) as the rank of X is equal to the rank of {z,...,2,},ie,ton—1
(see Lemma 2.2). ]

Note that Thoerem 2.6 does not hold if some entries of v are equal to 0. For
instance, the vector v = (0,1,1) is not strictly balanced but the kernel of the
matrix
1 1/2 -1/2
1/2 1 -1
-1/2 -1 1

is spanned by v.

2.2 Faces

A subset F of a convex set K is called a face (or extreme set) of K if, for all
ze€ Flyze K,0<a<1,z=ay+(l - a)zimplies that y,z € F. We recall
some facts, taken from [LP93], on the faces of &, xx.

THEOREM 2.7 [LP93] For every subspace V of R™, the set

Fy :={X € Erxn | ker(X) DV}



is a face of E,xn. Conversely, every face F of E,xn s of the form Fy, where
V = Nxerker(X). In particular, given Xo € Enxn, let F(Xo) denote the smallest
face of E,xn that contains Xo. Then,

F(Xo) = {X € Epxn | ker(X) D ker(Xo)}.

Faces of &,xn can be “lifted” to faces of ni1)x(nt1) (of the same dimension)
in the following way. Let X be a symmetric n X n» matrix with diagonal entries

Y |[a

where @ € R™! and Y is a symmetric (n — 1) X (n — 1) matrix. Consider the
(n+ 1) X (n+ 1) symmetric matrices X’ and X" defined by

equal to 1, of the form

Y [a|a Y a | —a
X'=]ad|1]|1 |,X"= at |1 | -1
at|1]1 —at|-1] 1

For a subset F of £, set F':= {X'| X € F} and F" := {X"| X € F}. Then,
XeLl,<— X' €Lpy1 <= X"€Lp1,

F is a face of £,, < F'is a face of L,y < F" is a face of L.

Clearly, F, F' and F" all have the same dimension. We say that F', F" are
liftings of the face F. Moreover, if F is a face of £,y and V = Nxpker(X),
then the subspace V' := Ny cp ker(Y) is generated by the vectors (v,0) (v € V)
and (0,...,0,1,—1), while the subspace V" := Ny cpnker(Y) is generated by the
vectors (v,0) (v € V) and (0,...,0,1,1). The following result permits to recognize
if a face arises as a lifting of another face.

LemMMA 2.8 Let F be a face of E(nt1)x(n+1) and V = Nxcpker(X). Then, F is a
Lifting of a face of Enxn if and only if there exists a vector V having ezactly two
nonzero coordinates.

ProOF. Necessity is clear. Conversely, suppose thatv € V withv = (0,...,0, a, §).
As v is balanced, we deduce that |a| = ||, i.e., @ = 3. This implies easily that
F is a lifting of a face of &, xy,. a



2.3 The normal cone

Given a boundary point zo of a convex set K, its normal cone N (K, zg) is

defined by

N(K,zo) = {ceV | {c,z) < {c,zo) for allz € K}.
The normal cone N (&pxn, A) of a matrix A € E,xp, will be denoted as N(A4). It

can be characterized as follows.
THEOREM 2.9 [LP93] We have

N(A)={D — M | D is a diagonal matriz, M > 0,(M, A) = 0}.

In fact, we can compute the exact dimension of the normal cone at a correlation
matrix A, in terms of the rank of A.

THEOREM 2.10 Let A € E,x, with ¢ := dim ker(A). Then,

dim N (4) = (q—|2—1) i

Proor. Let by,...,b, be linearly independent vectors in ker(A). Then, the matri-
ces —(b; + b;)(b; + b;)t (1 < ¢ < j < q) belong to AN'(A). The elementary diagonal
matrix E; (1 < ¢ < n) is defined as the matrix with all entries 0 but the (¢,¢)-th
entry equal 1. All the n matrices E;; also belong to A/(A). We show that the sys-
tem {(bi—l—bj)(bi—l—bj)T |1 <i<j<q}U{FE;|1<i<n}islinearly independent.
For this, let A;;, p; be scalars such that

Do il +b5)(bi+8)" + D piEi =0,
1<i<i<q 1<i<n

We show that all \;;’s and g;’s are equal to 0. Let u € (ker(A))*. Applying
the above relation to u, we obtain that > ;«;«, tiEyu = 0, i.e., g;u; = 0 for all
1=1,...,n. o

Crav 2.11 Foralli € {1,...,n}, there exists u € (ker(A))* such that u; # 0.

PROOF. Suppose that u; = 0 for all u € (ker(A))*. Then, (ker(4))* C {u € R™ |
u; = 0}. Therefore, ker(A4) D {u € R™ | w; = 0}*. This implies that the i-th unit
vector belongs to ker(A), a contradiction with Theorem 2.4. O



Therefore, u; = 0 for all7 = 1,...,n. Using Lemma 2.1, we obtain that A;; = 0 for

all1 <7 < j < q. Hence, we have found a system of (q-|2-1) + n linearly independent
members of A'(A4). This shows that

dim N(4) > (q;—l) + n.
We now show the converse inequality. Let B be a system of linearly independent
members of N (A) of maximum cardinality. As all diagonal matrices belong to
N(A), we can suppose without loss of generality that B is composed of the elemen-
tary diagonal matrices F11,..., Fpn, together with some matrices — My, ..., — My,
where each M; is positive semidefinite and satisfies (M;, A) = 0. By the latter
condition, all matrices M; belong to the set F := {M = 0 | ker(M) D (ker(A4))*}.
One can check that the set F has dimension (?}") (see also [HW87]). This implies
that k < (*1'). Therefore, dim A(A) < (*}') + n. This concludes the proof. O

Note that Theorem 2.10 implies the characterization of the vertices of &, «, from
Theorem 1.3. Let A € &,x,. Suppose that A has rank r and is the Gram matrix of
the vectors v1,...,v, € R™. Set g := dim (v;v7,...,v,v]). Then, the dimension
of the face F(A) and of the normal cone of A are linked by

(212)  dim F(A) + dim A(A) = (” s 1) tn—r(n—1)—g.

(This follows from Theorems 1.1 and 2.10.) This implies

COROLLARY 2.13

(” . 1) —r(n—7) < dim F(A)+ dim A(A) < (”; 1) _(r=1)(n—r).

Note that equality holds in the upper bound, for instance, if A is a cut matrix
or if A lies in the relative interior of &, y,,.

3 The dimension of the faces of &,,«,

We group in this section several results on the faces of the elliptope &,x,. Using a
result of [LT94] recalled in Theorem 1.1 above, we describe all the possible values
that can take the dimension of a face of £, x,; it turns out that the spectrum of

feasible dimensions is a union of intervals that ranges from 0 to (ngl).



Suppose A € &, xn has rank r. Then, A is the Gram matrix of a set of vectors
v1,...,0, € R” of rank r;i.e.,

Aij:'viij for1<4,7<mn.

A perturbation of A is any symmetric matrix B such that A + tB € &,y for
some small £ > 0. Then, the dimension of the face F(A) (the smallest face of £,x,
containing A) is defined as the dimension of the space of perturbations of A. Let
Z denote the n X 7 matrix whose columns are vy,...,v,; so, A = Z*Z. Li and
Tam [LT94] show that B is a perturbation of A if and only if

(3.1) B=2TRZ,

where R belongs to the orthogonal complement of (v1v],...,v,vl) in the space of
symmetric 7 X r matrices (this latter condition ensures that the diagonal entries
of B are equal to 0). This implies that the dimension of F(A) can be expressed as
in (1.2).

More generally, we have the following result:

THEOREM 3.2 (i) Let A € E,xr, of Tank v and let k denote the dimension of F(A).
Then, ("3') —n <k < (3).
(3)-

) Let v,k > 0 be integers such that 1 < r < n and max(0, )<k <
2
k

Then, there exists a matriz A € Epxy of Tank v and for which dim(F(A)) =

ProOF. (i) follows from the inequalities: 7 < rank(v;v} | 1 < i < n) < n. (The
upper bound is obvious. For the lower bound, observe that the set (vq,...,v,) has
rank 7 and that if, say, v1, . .., v, are linearly independent, then v;v{, ..., v,27 too
are linearly independent, by Lemma 2.1.)

For (%) we use a construction proposed in [LT94] (also in [GPW90]). Let ey, ..., e, €
R" denote the unit vectors in R” and set

= for1<i<j<
w;j 1= E(ez—l—ej) orl<i<j<r.

One can easily check that the following (7;1) matrices: {e;el | 1 < i < r}uU
{wing; | 1 <7< j<r} are linearly independent.

Suppose first that n = ("1') — k where & < (}); hence, r < n < ("3'). define 4
as the Gram matrix of the following n vectors: ey, ..., e, together with n — r of
the vectors w;;. By construction, A has rank r. Using relation (1.2), one obtains
that dim(F(A4)) = ("}') — n = k. This shows () in the case when n = ("}') — k.
Suppose now that n > (7;1) — k. Then, we choose for A a lifting of the matrix
defined above; for instance, we can take for A the Gram matrix of the following n
vectors: e; (repeated n — ("}') + k + 1 times), es, ..., e, together with (}) — k of
the vectors w;;. |



A correlation matrix X is called extreme if F = {X} is a 1-dimensional face
of &,xn. Thus, as a special case of Theorem 3.2 we obtain the result of Li and
Tam.

COROLLARY 3.3 [LT94| Let rpax denote the mazimum integer r such that (Hz'l) <
n. Then,

(i) 1 < rank(X) < Pyax for every extreme correlation matric X € Epxn.

(ii) For every v, 1 < r < Ppayx, there is an extreme correlation matrizc X € E,xn

of rank r. a

As shown in [LP93], any two cut matrices of £,x,, form an edge (1-dimensional
face) of ,xn. For n = 3,4, these are the only edges of &,xn (see Section 6).
However, for n > 5, &£,x, has edges whose extremities are not cut matrices. A
construction for such an edge is given in Example 3.4.

ExaMPLE 3.4 We apply the construction from the proof of Proposition 3.2 (4¢) in
the case n = 5,7 = 3,k = 1. Let A € &5x5 be the Gram matrix of the vectors

€ = (17070)7 €2 = (07170)7 €3 = (07071)7 Wiz = (%7 %70) and w13 = (%707%)7
ie.,
1 1
1 0 0 ? 73
0 1 0 7 (1)
A= 0 0 1 0 —==
11 9 1 \?
i ?
1 o 1 1 1
V2 i

Hence, F(A) is an edge of £5x5. In order to describe this edge, we note that ker(A)
is spanned by the vectors

a:=(-1,-1,0,v/2,0), b:= (-1,0,-1,0,2).

Then, X € Es5x5 belongs to F(A) if and only if Xa = 0 and Xb = 0. One can
check that X must be of the form

1 1
1 0 0 ? 73
0 1 04 E ?
X(a) = 0 (81 1 E E s

1 1 o 1 1ta
V2 V22 2

1 o 1 14« 1

vz V2 V22

where —1 < a < 1. Hence the edge F(A) has the matrices X(—1) and X(1) as

extremities, where X(—1) and X (1) are of the above form for a = —1,1. O



As an application of Theorem 3.2, we can describe the range D,, of the values
taken by the dimension of the faces of &,,x,. Namely,

k,, rt+1 r
3.5 D, =0, —n, )
( ) [ ( 2 )] - kn-l—ngrSn[( 2 ) (2)]

where k,, is the largest integer such that (k"2+1) <n-1,ie.,

(3.6) k, = {7”8"_27_1 .

(Given two integers a, b, [a, b] denotes the set of integers z lying between a and b.)
For instance,

ks =1, D3 = [0,1]U {3},
ks =2, Dy = [0,3] U {6},
ks =2, Dy = [0,3]U [5,6]U {10},
ke =2, Dg = [0,6]U [9,10]U {15},
k7 =3, D7 =1[0,6]U [8,10] U [14,15] U {21}.

In particular, the largest dimension of a proper face of &, is (ngl). We give
below a direct simple proof of this fact which permits, moreover, to show that

every face of &, «,, of dimension (ngl) is a lifting of £(n_1)x(n-1)-

ProPoOsITION 3.7 Let F be a proper face of Enxn. Then, dim(F) < (ngl), with
equality if and only +f F is a lifting of En_1)x(n-1)-

ProOF. Let F be a proper face of &,x,. Then, F = Fy for some subspace V of
R”, V # {0}. Let v € V,v # 0. We can suppose that v; # 0. Then, Xv =0
for all X € F. The equation Xv = 0 can be written as the following system of n
equations in the (3) variables z;; (1 < i< j <n):

T2 + X133 + ... + Z1pU, = —-n
T1271 + xa3v3 + = —vg
Z1301 + 223v2 + ... = —us

1,01 + e, = —Up

As v, # 0, the matrix of the system has obviously rank > n — 1. This implies that
dim(F) < (3) — (n— 1) = (*;"). Moreover, the equality dim(F) = (") holds if
and only if the matrix of the system has rank equal to n — 1. It is not difficult
to check that this holds only if v;v; = 0 for all 2 < 7 < j < n. Hence, we may
suppose, for instance, that v3 = v4 = ... = v, = 0. Hence, v has only two nonzero

components. Using Lemma 2.8, we obtain that F is a lifting of a face (of the same

11



dimension (ngl)) of €n—1)x(n—1)- Therefore, F is a lifting of £,_1)x (n—1)- ]

We conclude with an example of a face of the next smaller dimension (ngl) -1

ExAMPLE 3.8 Consider the face

F :={X € &xn | Xe =0},

where e is the all ones vector. Then, dim F = (ngl) —1. (To see it, one can proceed

in the same way as for the proof of Proposition 3.7. Namely, the condition Xe = 0
can be rewritten as the system

Z z;; =—1, foralli=1,...,n.

i=1,...n, j#1

As the matrix of this sytem has rank n, we deduce that dim F = (}) —n =
(ngl) —1.) Let X, denote the matrix with ones on the diagonal and — = on the off-
diagonal positions. Then, X, belongs to the relative interior of F' as ker(Xg) = (e).
Hence, F = F(X,).

Suppose that n is even. Then, F contains the cut matrices ffT, for all vectors
f € {-1,1}" having exactly 3 entries 1 and 7 entries —1. Hence, F' contains
%(7:/12) cut matrices.

Let us look in more detail at the case n = 4. Then, one can easily check that
a matrix X € €444 belongs to the face F' if and only if it is of the form

1 z Y —1—-z—-y
_ z 1 —1-z—-y Y
X = Y -1l-z—y 1 z ’
—1-z—-y Y z 1

with the conditions: —1 < z,y < 1 and z + y < 0. Therefore, F' is a polyhedral
face of £4x4, whose vertices are the three cut matrices ff7, for f = (1,1, -1, 1),
(1,-1,-1,1),and (1,-1,1,-1).

Finally, note that, for any n > 5, the face F' cannot be a polyhedral face, as
its dimension is too large; see Theorem 4.1. a

4 Polyhedral faces of &,

We consider here the polyhedral faces of the elliptope &,x,. In particular, we
describe the range of their feasible dimensions.

n—1
2)
is isomorphic to £, _1)x(n—1). Hence, &,xn has no polyhedral face of dimension

As was mentioned in Proposition 3.7, every face of &,x, of dimension (

12



-1
("

Enxn range from 0 to k,, where k,, is the largest integer such that (k“;'l) <n-1.
We also consider the polyhedral faces of &,,x, having only cut matrices as vertices,
i.e., the faces of &£, 4, that are inherited from the cut polytope. It turns out that
such a face is necessarily a simplex. In fact, a simplex face of dimension k can be
constructed for any k < k..

). In fact, we can show that the feasible dimensions for polyhedral faces of

THEOREM 4.1 Let F be a polyhedral face of €,x, of dimension k — 1. Then,
(I;) < n — 1. Moreover, if all vertices of F' are cut matrices, then F is a stmplez.

ProoF. Let Fo CF, C...C F; C Fi41 C ... C Fi_y := F be a chain of faces of
F, where F; has dimension 7 for each ¢ = 0,1,...,k — 1. Using Theorem 2.7, each
F; is of the form Fy, = {X € &,xn | Vi C ker(X )}, where the V; are subspaces of
R™ forming a strict chain:

VoOoViD...DV; D Vi1 D ... D V.

Then, dim(Vy—1) < dim(Vy) —k+1<mn—-1-k+1=mn—k. Let X be an interior
point of F' and let 7 denote the rank of X. Then, r = n—dim(V,_1) > k. Using the
dimension formula (1.2), we deduce that k — 1 = dim(F) > ("1!) —n > (kgl) - n.
This implies that n > (I;) + 1.

Suppose now that all the vertices of F' are cut matrices, say, of the form (fhf,? |
h € H) where f, € {-1,1}" for all h € H. Then, Vi1 = Npeg ker(Ffnff) = (fn |
h € H)*. Hence, dim(Vx_1) = n — dim((f» | € H)) < n — k, which implies that
dim((fn | h € H)) > k. Let fo, f1,..., fe—1 be k linearly independent vectors in
the set {fs | » € H}. Then, the vertices f;ff (s = 0,1,...,k — 1) span affinely
the polyhedron F. We show that they are the only vertices of F'. For this, let X
be another vertex of F. Then, X = Ygc;cr_1 fi fF with Yocicr_1 o = 1. We
show that each o; is nonnegative. Indeed, let u € (f; 7= 0,1,...,k—1,j #
it 0 {(fo, fi,-.., fr_1) such that u # 0. Then, v Xu = a;(u? £)? > 0 with
ul f; # 0, yielding a; > 0. Hence, X is a vertex of F which can be written as
a convex combination of other vertices of F. This shows that fofZ,..., fe_1 f,{_l
are the only vertices of F'. Therefore, F' is a simplex. a

We propose below in Proposition 4.7 a construction for polyhedral faces of
dimension k£ — 1 for each integer k£ such that (’;) < n — 1. For this, we state an
intermediate result.

We recall the following notation. Given two vectors z,y € R™, their Hadamard
product is the vector z := z o y € R™ with entries z; := z;y;.

THEOREM 4.2 Let fi,...,fr € {-1,1}" and set e := (1,...,1) € {-1,1}". Sup-
pose that the following assertions hold:
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(i) The vectors {f1,..., fr} are linearly independent.
(i) The vectors {frn o fur |1 < h < h' < k} U {e} are linearly independent.
Then, the set F := Conv(frff |h=1,...,k) is a face of Enxn of dimension k—1.

(Here, “Conv” denotes the operation of taking the convex hull.) Note that the
face F' constructed in the theorem above is a simplex face with cut matrices as
vertices.

PROOF. Set Xo := £(X1<pck Jaf7 ). Then, ker(Xo) = (fi,..., fe)*. Therefore,
by (%), Xo has rank k. Let F(X,) denote the smallest face of £,x, containing Xj.
Clearly, F(Xo) contains F. Our goal is to show that F(Xg) = F.

Consider the k X n matrix M whose rows are the vectors fi,..., fr. Denote by
vl ..., v" € RFits columns. Set w® := Lk'vz for i = 1,...,n. It is easy to see
that X is equal to the Gram matrix of w!, ..., w™. Therefore, by the dimension

formula (1.2),

kE+1

dim F(Xo) = ( )

) — rank{w!(w))T,. .., w™(w™)T}.

Cramv 4.3 rank(w!(w?)T,... w™(w™)T) > (l;) +1.

ProoF. By the assumption (z), the vectors {fno fir | 1 < h < b’ < k} U {e}
are linearly independent in R™. Let I be a subset of {1,...,n} of size (I;) +1
corresponding to the positions of independent coordinates. We show that the set
{wi(w®)T | i € I} is linearly independent. For this suppose that Y";c; A;w'(w®)T =
0. Note that w*(w*)T(h, h') = £ fr(i) fu () which is equal to £(fro fu)(3) if A # R’
and to te(s) if A = h'. This implies that all \;’s are zero. |

As a consequence of the above claim, we deduce that

dim F(Xo) < (kgl)—(;c)—lzk—l.

On the other hand, dim F(X,) > dim(F) = k — 1. Therefore, dim F(X,) =
dim(F) = k — 1. This implies, in particular, that all the possible perturbations of
Xy are spanned by {Bj,..., Bx_1}, where

Bp, := Xo— fuff.

Now, we can show that F(Xo) = F. Let X € F(Xy). Hence, X = Xo+ B where B
is a perturbation of Xo. By the above observation, B = 321 <p<k—1 An(Xo — ii¥id)
for some scalars Ap. Therefore, setting A := > ;<p<—1 An, We obtain that

1

LN fefi

X= 3 (Mt 0+
1<h<k—1
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The sum of coeflicients is equal to 1. This implies that X belongs to the affine hull
of {fiff,..., fkfg} Now, using an argument similar to the one used in the proof
of Theorem 4.1, we can conclude that X € F. (Indeed, if X = Y ;cp<p BnSrfE
with 3, cpck i = 1, then g, > 0 for all k. To see it, take a nonzero vector u
in the intersection of the spaces (fi,..., fr) and (fi,..., fr_1)*. Then, v Xu =
,uk(quk)2 > 0 implying that g > 0. The same argument shows that all p;’s are
nonnegative.) m]

REMARK 4.4 We can suppose without loss of generality in Theorem 4.2 that the
vectors fi,..., fr have a common entry equal to 1, say, fa(n) =1forh=1,...,k.
Set Sp:={i| fu(¢) =1} for h=1,..., k. It is easy to check that the assumption
(37) of Theorem 4.2 can be reformulated as:

(3i2) The (’;) vectors x5#A5w (1 < h < ' < k) are linearly independent. (Here,
x* denotes the 0, 1-incidence vector of the set A.) a

Let us recall that the sets S1,...,5: C V =
general position if each of the intersection sets C(H
is nonempty, for every H C {1,...,k}.

We say that the vectors fi,..., fr € {—1,1}" are in general position if the

{1,...,n} are said to be in

)= Nher Shﬂﬂth(V\Sh)

sets Sy := {¢ | fu(¢) = 1} are in general position.

COROLLARY 4.5 Let f1,...,fr € {—1,1}" be in general position. Then, the set
Conv(fifL, ..., fuff) is a face of Enxn-

ProoF. By Theorem 4.2 and Remark 4.4, it suffices to verify that the conditions
(¢) and (#47) hold, which can be easily done. |

ExaMPLE 4.6 Letn =4, f; = (1,-1,-1,-1), f =(1,-1,1,1), f3 =(1,1,-1,1).
The sets S7 := {1}, S» := {1,3,4}, S5 := {1,2,4} are not in general position
but satisfy nevertheless the assumption (z¢7). Also (¢) holds. Hence, the set
Conv(fi fL, fofF, faff) is a polyhedral face of £4x4 of dimension 2. Note that
this face falls into the category of the so-called elliptic faces of 444 (see Sec-
tion 6). Also, F = Fy where V = (fi, fa, fa)1 = ((1,1,1, -1)). O

ProPoOSITION 4.7 For each integer k such that (I;) + 1 < n, the elliptope E,xn
has a polyhedral face of dimension k — 1 (which is a simplex with cut matrices as
vertices).
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Proor. It is enough to show it for n = (’;) + 1 (for larger values of n, apply
lifting). Let G denote the graph with node set {1,...,k,k 4 1}, obtained from
the complete graph K on {1,...,k} by adding an edge e, say e = (1,k+ 1). We
consider the edge set of G as our groundset of n elements. For h = 1,... k, let Sy
denote the set of edges in the star of the node h plus the edge e, i.e., S, consists
of the edges (h,%) (¢ € {1,...,k}\ {h}) together with the edge e. Let f; denote
the t1-incidence vector of Sy. Then, Conv(fifT,..., ffL) is a face of Enxn (as
the assumptions (¢), (¢42) can be easily checked to hold). O

As an application of Theorem 4.1 and Proposition 4.7, we obtain that the
largest dimension of a polyhedral face of &,y is equal to k,, where k, is defined
by (3.6), i.e., ky,, is the largest integer such that (k"2+1) <n-1.

COROLLARY 4.8 The mazimum dimension of a polyhedral face of the elliptope

Enxn 18
{\/Sn - 1J
|

REMARK 4.9 It was shown in [DLP92] that, if the vectors fi, ..., fi are in general
position, then the set F' := Conv(f; fr,.. .,fkf,g') is a face of the metric polytope
and, thus, of the cut polytope CUT, x,. We recall that the the metric polytope
is defined by the set of linear inequalities

MET, xn :={X € SYM,,xn | Xiui=1 fori=1,...,n
Xij—Xipg —Xjp > -1 forl1<<i,5,k<n
Xij+ X+ X5 > -1 for1<4,5,k<n}

(Thus, the metric polytope is a linear relaxation of the cut polytope; see [LPR94]
for more details.) Corollary 4.5 shows that the set F is also a face of the elliptope
gnxn- D

5 Optimization aspects

Let us consider the optimization problem

min (C, X)

5.1
( ) X e 5n><n
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where C' is a symmetric n X n matrix. Recall that

(C,X)=Tr(CX) = Z Cijij.

2,7=1,...,n

This problem is of interest, because it is related to the max-cut problem. To be
more precise, the problem

max 5 Y 1cicn Gii(1 — @) = 3(C,J)— jmin (C, X)
X € gn)(n X € gn)(n
provides a good approximation of the max-cut problem:

(5.2)

1
3MaX Y1 cicjcn (1 — aiaj)

ac{-1,1}"
(For various results concerning the approximation of (5.3) by (5.2) we refer to

(5.3)

the following papers: worst case bound of the approximation [GW94], asymptotic
optimality of the approximation [DP93a], complexity and further aspects [DP93b,
LP93].)

Let F¢ denote the set of optimum solutions to the problem (5.2), i.e.,
Fo={A€&xn|(C,A) <(C,X) forall X € E,xn}-

The set F¢ is exposed. Let us recall that a set F is called an exposed set of a
convex set K if F = K N H for some supporting hyperplane H for K. Clearly,
each exposed set is a face of K. For a general convex set K, the converse is not
true. However, for the elliptope &, x, both notions coincide.

LeEMMA 5.4 [LP93] Every face of Enxn s exposed. O

If F¢ contains a rank one matrix, then (5.2) provides an exact solution of the
max cut problem. Hence we are interested in finding low-rank matrices in Fg,
since they (intuitively) provide a tighter approximation of the max-cut.

QUESTION 5.5 Gwen a face F of E,xn, what is the minimum rank of a matriz
XeF?

Since there exist extreme correlation matrices of any rank » up to the bound 7,,4;
given in Corollary 3.3, we cannot ensure, in general, the existence of matrices with
rank smaller that 7,4, ~ v/2n. However, we are able to establish the existence of
a low rank matrix under some additional constraints.

LEMMA 5.6 For every balanced vector ¢ € R™, there is a matric X € &E,xn such
that ¢ € ker(X) and rank (X) < 2.
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Proor. Without loss of generality, we may assume that ¢; > ¢y > ...¢, > 0. Let
ig be such that

ZqﬁZCj and ZCJ'ZZCJ'

3<i0 J2%0 3<40 >0

Set ¢; := Ej<i0 cj,C2 = ¢;, and ¢z = Ej>io c;. Then, it easily follows that
¢ = (€1, €a, C3) is balanced, since ¢; + 2 > €3, €1 < €3 + ¢3 by the choice of 49, and
Ty = ¢;, < ¢1 < ¢1 + ¢3 by the nonnegativity of ¢. Since ¢ € R?2 is balanced, there
exists a matrix X € E3x3 with ¢ € ker(X) (by Theorem 2.4). Set

a
J bJ
1 a b
X=|al ¢ and X =] a...a|l|c...c |,
b ¢ 1 c
bJ || J
c

where we have specified the ig-th row and i¢-th column in X and J denotes the all
ones matrix (of appropriate sizes). Then, rank(X ) = rank(X) < 2 and ¢ € ker(X).
O

THEOREM 5.7 If a face F of E,xn contains a matriz of rank n — 1, then it also
contains a matriz of rank at most two.

ProoF. The statement holds trivially if F' = &,x,. Suppose now that FF = F(A)
where A has rank n — 1. By Lemma 5.6, there exists B € &, «, of rank < 2 such
that ker(A) C ker(B), i.e., B€ F. ]

Note that, under the assumption of Theorem 5.7, dim(F) = (ngl) -1, (";1), or
(3)-

ExAMPLE 5.8 The construction from the proof of Proposition 3.2 (which was al-
ready applied in Example 3.4) for the parameters: n = 9,7 = 4,k = 1 provides a
matrix A of rank 4 whose face is an edge. One can determine the extremities of

this edge (as was done in Example 3.4) and check that their ranks are equal to 3.
So this gives a face containing only matrices of ranks 3 and 4. ad
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Also the dual problem of (5.2) is of interest. The dual problem reads:

Tmin  Apax(Lo + diag(u))
u +...+u, =0

We recall that L¢ denotes the Laplacian matrix; it is the nx n symmetric matrix
with (4,7)-th diagonal entry >-;_; . ,; ¢i;j and with (4,j)-entry —c;; for i # j.
(Note that L¢ does not depend on the diagonal entries of C.) Let u denote the
optimum vector for the program (5.9), set A := Apax(Lc + diag(u)) and let Vg,
denote the eigenspace corresponding to this eigenvalue for the matrix Lo +diag(u).
It has been shown that strong duality holds, i.e., that both programs (5.2) and (5.9)
have the same optimum solutions. Since the maximum eigenvalue in the optimum
is typically multiple (unless the corresponding eigenvector is a +1 vector, in which
case (5.1) provides an exact solution of the max-cut), the following question was
asked in [DP93b], and in a more general setting also in [Ov88].

(5.9)

QUESTION 5.10 What is the possible dimension of the space Vg ?

The next result establishes a link between the eigenspace V,;, and the face F and
implies a lower bound for the dimension of V.

ProprosITION 5.11 We have
Fo ={X € Enxn | ker(X) D (Vaig)'}

ProOF. Set M := Al — L¢ —diag(u). By construction, M is a positive semidefinite
matrix and its kernel is ker(M) = V4. For X € £,xp, we have

(Le, X ELC (4,7)zs5 =2 E cij(1 — z55),
1<2<3<n

which implies

(M, X) ={M,X)—(Lc, X) — (diag(u), X)
= An (El<z<]<n 2 (1 zl])) > 0.

Therefore, we see that (M, X) = 0 if and only if X is an optimum solution to
the program (5.2), i.e., if X € Fo. Suppose M = Y, c;cp wsul, where uy, ..., u
span the space (ker(M))L. Then, (M, X) = 0 holds if and only if Xu; = 0 for all
i=1,...,k, ie.,if (ker(M))* C ker(X). This shows the result. |

COROLLARY 5.12 For every matriz X € F¢, rank(X) < dim(Ve;q). O
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An alternative proof of Corollary 5.12 can be given as follows. Since X » 0,
we have X = ZT Z for a matrix Z of the same rank as X. It can be checked that
the rows of Z are eigenvectors from the space V,;;. Hence rank(X) = rank(Z) <

dim(Veig).

ExAMPLE 5.13 Consider the cost matrix C := J. Then, the Laplacian matrix
is Le = nI — J. Then, min,r,_q Amax(Lc + diag(u)) is attained for v = 0 (by
symmetry, see [DP93a]) and is equal to Amax(Lc) = n. The optimized eigenspace
is Veig = {® € R™ | Y1 <;<, i = 0}, with dimension n — 1. Hence, by Proposition
5.11, the face Fp is {X € E,xn | Xe = 0}. Note that it coincides with the face
considered in Example 3.8. In particular, (V.ig)t = ker(X) for every matrix X
lying in the relative interior of Fe . a

By Corollary 5.12, rank(X) < dim(Ve;g) for each matrix X lying in the relative
interior of F¢. In the above example, we have equality: rank(X) = dim(Vey).
However, as shown in the following example, strict inequality may hold and, in
fact, the gap can be made as large as possible.

ExAMPLE 5.14 Consider the cost matrix C defined by ¢;; =1forallj=2,...,n
and ¢;; = anl for all 2 <7 < j < n. Then, the Laplacian matrix has the form

n—1 -1 -1

Le=| ER

Then, the optimizing vector u for min,r,_q Amax(Lc + diag(u)) satisfies ug = ... =
u, (by symmetry, see [DP93b]). Using this fact, it is not difficult to check that
the optimum vector u is (—(n — 1)a,a,...,a) for a = @ Then, the optimum
value of Apax(Lc + diag(u)) = @. Moreover, the optimized eigenspace is
Veig = {z € R™ | (n—1)z1+ Y 5<;<, @i = 0}, with dimension n — 1. Hence, (Veig)*
is spanned by the vector v = (n — 1,1,...,1). Therefore, by Proposition 5.11, the
face F¢ is given by
Feo = {X € Enxn | Xv = 0}.

As v is not strictly balanced, we know from Theorem 2.6 that there cannot exist
a matrix in Fo whose kernel is spanned by v. In fact, one can check that the only
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matrix of &, y, satisfying Xv = 0 is the cut matrix

Hence, the rank of Xg is 1 while the dimension of (Veig)J- is n — 1, which is the
largest possible gap. a

From the characterization of the normal cone (of Theorem 2.9) can be derived
the following alternative description of the face F. Indeed,

AeFe <= -CeN(4)
<= dD diagonal matrix such that
C+ D =0, ker(C + D) D (ker A)*.

Therefore,
Fo = {X € Enxn | ker X D (ker(C + D))* for some diagonal matrix D}.

An interesting question is whether it is possible, given a cost matrix C, to find
an element of F¢ (of smallest possible rank) not using some classical optimization
algorithm, but using rather some algebraic techniques based, for instance, on the
above description of Fg.

6 The elliptope E4.4

In this section, we give a description of the faces of the set €454 of 4 X 4 correlation
matrices. This question was raised by W. Barrett (private communication, 1994).
Note that €444 is a convex set of dimension 6.

THEOREM 6.1 Let F be a proper face of E4x4. Then, one of the following holds.
(i) dim(F) = 0, i.e., F consists of a unique matriz (which is an extreme element
of 54><4) .

(i) F is an edge joining two cut matrices, so dim(F) = 1. There are () = 28
such faces.

(ii) F is an elliptic face, dim(F') = 2.

(iv) F is isomorphic to E3x3 (more precisely, F is a lifting of E3x3), so dim(F) = 3.
There are 8 such faces.
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Hence, we find again that the range of feasible dimensions for the faces of €444
is [0,3] U {6}; recall (3.5). According to Corollary 4.5, the highest dimension of a
polyhedral face of €444 is 2; recall the construction of such a face from Example 4.6.
The elliptope £4x4 has also nonpolyhedral faces of dimension 2; see Examples 6.5
and 6.6 below.

We call a face of dimension 2 of £4x4 an elliptic face because, as will be
seen in the proof, it is described by a set of inequalities f(z,y) > 0, where fis a
polynomial of degree less than or equal to 2 in the variables z, y.

ProOOF OF THEOREM 6.1. Let F' be a face of £444. Suppose first that F' arises as
a lifting of a face G of £3x3. We use the description of the faces of €543 given in
Proposition 2.10 from [LP93]. Either G = €343 in which case F is one of the faces
from Theorem 6.1 (iv). Either G is an edge between two cut matrices in which
case F is one of the faces from case (¢2). It may be also that G is reduced to a
single element in which case F' is also reduced to a single element; hence we are
in the situation (¢). From now on we suppose that F is not a lifting of a face of
E3xs. Set V = Nxcpker(X). By Lemma 2.8, every vector of V' has at least three
nonzero components. We distinguish several cases depending on the dimension of

V.

Case 1: dim(V) = 1. Let v € V,v # 0. We can suppose that v = (1,a,b,¢),
where at least two of a, b, c are nonzero. We can suppose that a,b # 0. Let

1 =z y =z
z 1 2 o
62) x=|2 LY
z y 21

be a matrix of F. The condition: Xv = 0 can be rewritten as the system

az + by + cz = -1
z + b2’ + cy = —a
y + az' 4+ ¢z =-b

4+ =z + ay + b2 = —c

in the variables z,y, z,2',y', 2'. As a,b # 0, the variables z,y, z, 2’ can be uniquely
expressed in terms of a, b, c,y’, z/. Namely,

z= L(-1-a?+0b2+c?+ 2bc2!)
(6.3) y= &(—1+a’—8%+c+ 2acy’)
: z= —ay —-bz —c
2= gls(l—a — B~ ¢~ 2acy — 2he)

The condition: X > 0 can be expressed by asking that all 2 X 2 and 3 X 3 principal
subdeterminants of X be nonnegative, i.e.,
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1<z y,z 'y, 2 <1

—(2')? 4+ 2zyz’ > 0
(6.4) 1—:1: —z —(¥')?+2zzy' > 0

— ()2 +2yzz' > 0
Ll o s 0
Hence, F is a face of dimension 2, which is determined by the systems (6.3) and
(6.4). So, the boundary of F is described by polynomial equations in the variables
y', 2" of degree less than or equal to 2. Therefore, F is an elliptic face as in Theorem
6.1 (231).
Case 2: dim(V) = 2. Let X € F that is not a cut matrix. Then, ker(X) =V
(else, ker(X ') has dimension 3 which implies that X is a cut matrix). This shows
that, if F' is not reduced to a single element, then its relative boundary consists
only of cut matrices and, thus, F is an edge between two cut matrices. However,
we have already ruled out this possibility (as we assume that F' is not a lifting of
a face of £343). Therefore, F' is reduced to a single element, i.e., we are in the
situation of Theorem 6.1 ().

Case 3: dim(V') = 3. Then, F is reduced to one element which is a cut matrix.
So we are in the situation of Theorem 6.1 (). o

We recall Example 4.6, where was described a polyhedral elliptic face of £444,
namely, the face {X € E4x4 | Xv = 0} where v = (1,1,1,-1)T. Also in Ex-
ample 3.8 was described the polyhedral face of €444 corresponding to the vector
v=(1,1,1,1)T.

We now present two examples of nonpolyhedral elliptic faces of £4x4. They are
of the form F = {X € ;x4 | Xv = 0} where v € R*is a balanced vector.

ExXAMPLE 6.5 Take v = (1,1,1,0)F. Then, F consists of the matrices

1 1
1 1
-3 1 -3 y
1 1
—3 3 I —z-y
z Yy —zT-—y 1

where z,y satisfy the condition: 22 + zy + y? < %. Hence, F' has really the shape
of an ellipse. a

EXAMPLE 6.6 Let v = (1,1,2,1)T. Then, F consists of the matrices (6.2) satisfy-
ing (6.3) and (6.4), where (6.3) reads

1 1 1
= 5(3 +42"), y = Z(—3 +2y'),z = Z(—5 -2y —47), 2’ = -1 -y - 27
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