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Grounded Relational Inference: Domain Knowledge
Driven Explainable Autonomous Driving
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Abstract—Explainability is essential for autonomous vehicles
and other robotics systems interacting with humans and other
objects during operation. Humans need to understand and
anticipate the actions taken by machines for trustful and safe
cooperation. In this work, we aim to develop an explainable
model that generates explanations consistent with both human
domain knowledge and the model’s inherent causal relation.
In particular, we focus on an essential building block of au-
tonomous driving—multi-agent interaction modeling. We propose
Grounded Relational Inference (GRI). It models an interactive
system’s underlying dynamics by inferring an interaction graph
representing the agents’ relations. We ensure a semantically
meaningful interaction graph by grounding the relational latent
space into semantic interactive behaviors defined with expert
domain knowledge. We demonstrate that it can model interactive
traffic scenarios under both simulation and real-world settings
and generate semantic graphs explaining the vehicle’s behavior
through their interactions.

Index Terms—autonomous vehicles, explainable AI, deep learn-
ing, driving behavior modeling

I. INTRODUCTION

DEEP learning has been utilized to address various au-
tonomous driving problems [1], [2], [3]. However, deep

neural networks lack the transparency that helps people under-
stand their underlying mechanisms. It is a crucial drawback
for safety-critical applications with humans involved (e.g., au-
tonomous vehicles). Humans need to understand and anticipate
the actions taken by machines for trustful and safe cooperation.
In response to this problem, the concept of explainable AI
(XAI) was introduced. It refers to machine learning techniques
that provide details and reasons that make a model’s mecha-
nism easy to understand [4]. Most of the existing works for
deep learning models focus on post-hoc explanations [4]. They
enhance model explainability by unraveling the underlying
mechanisms of a trained model: Vision-based approaches, such
as visual attention [5] and deconvolution [6], illustrate which
segments of the input image affect the outputs; Interaction-
aware models, such as social LSTM with social attention [7],
[8] and graph neural networks (GNN) with graph attention [9],
[10], [11], [12], identify the agents that are critical to the
decision-making procedure.

Although promising, post-hoc explanations could be am-
biguous and falsely interpreted by humans. For instance, a
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visual attention map only illustrates which regions of the input
image the output of the model depends on. The semantic
meaning behind the causal relation is left for human users to
interpret. Kim et al. [13] attempted to resolve the ambiguity by
aligning textual explanations with visual attention. However,
the underlying mechanism of the model is not necessarily
consistent with the textual explanations. To truly build trust
with humans, we argue that a deep learning model for an
autonomous system should be equipped with explanations con-
sistent with both human domain knowledge and the model’s
inherent causal relation.

In this work, we explore how to approach such an explain-
able model for an essential building block of autonomous
driving—multi-agent interaction modeling. In particular, we
focus on the relational inference problem studied in [12]. Kipf
et al. propose the Neural Relational Inference (NRI) model,
which models an interactive system by explicitly inferring its
inherent interactions. Formally, the NRI model aims to solve
a reconstruction task. Given the observed trajectories of all
the objects, an encoder first infers the interactions between
objects represented by a latent interaction graph, whose edges
are aligned with discrete latent variables corresponding to a
cluster of pairwise interaction behaviors between the objects.
Afterward, a decoder learns the dynamical model conditioned
on the inferred interaction graph and then reconstructs the tra-
jectories given the initial states. If the decoder can accurately
reconstruct the trajectories, it indicates that the latent space
effectively models the interactions.

We find this discrete latent space interesting because the
inferred interaction graph could potentially serve as an ex-
planation directly: it explains the reconstructed trajectories as
a sequence of interaction behaviors among agents. Moreover,
the reconstructed trajectories are governed by the same in-
teraction graph. Therefore, the NRI model seems promising
to fulfill our goal to make the explanation consistent with
the model’s underlying mechanism. However, since the NRI
model learns the latent space in an unsupervised manner, it is
difficult for humans to interpret the semantic meaning behind
those interaction behaviors, which makes the interaction graph
ambiguous as an explanation. To address this issue, we propose
to ground the latent space in a set of interactive behaviors
defined with human domain knowledge.

As a running example, consider the scenario depicted in
Fig. 1, where we ask different models to control the red
vehicle. Attention mechanisms can indicate the critical pixels
or agents, but they cannot recognize different effects—the two
cars are mutually important but affect each other in distinct
ways. The NRI model can distinguish between different inter-
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Fig. 1: A motivating lane-changing scenario where we ask different models to control the red vehicle. All the models generate
deceleration commands but have different intermediate outputs. With the aid of visual attention, we generate a heat map
indicating the critical pixels of the input image. Graph attention network assigns edge weights ωi to specify the importance
of surrounding vehicles to the controlled vehicle. However, the attention mechanisms cannot recognize different effects—the
two cars are mutually important but affect each other in distinct ways. The NRI model can distinguish between different
interactive behaviors by assigning different values to the latent variables zi in the interaction graph. Still, the latent space does
not have explicit semantic meaning. In contrast, our model ensures a semantic interaction graph, which illustrates the model’s
understanding of the scenario and explains the action it takes. It determines the interaction graph with a latent space grounded
in yielding and cutting-in behaviors. It learns the control policies that generate behaviors consistent with their definitions in
domain knowledge (e.g., traffic rules) and executes the corresponding policies according to the inferred edge types.

active behaviors. Still, the latent space does not have explicit
semantic meaning. In contrast, our model should determine
the interaction graph with a latent space grounded in yielding
and cutting-in behaviors. It learns the control policies that
generate behaviors consistent with their definitions in domain
knowledge (e.g., traffic rules) and executes the corresponding
policies according to the inferred edge types. This semantic
interaction graph illustrates the model’s understanding of the
scenario and explains the action it takes.

If we merely want to make the interaction graph consis-
tent with humans’ labeling of the scenes, a straightforward
approach is training the encoder directly via supervised learn-
ing. Interaction labels can be either obtained from human
experts [14] or rule-based labeling functions [15]. However,
labels for the interaction graph are insufficient to induce the
decoder to synthesize the interactive behaviors suggested by
the labels, because the model cannot capture the semantic
meaning behind those interaction labels. Instead, we recast
relational inference into an inverse reinforcement learning
(IRL) problem and introduce structured reward functions to
ground the latent space. Concretely, we model the system
as a multi-agent Markov decision process (MDP), where the
agents share a reward function that depends on the relational
latent space. We design structured reward functions based on
expert domain knowledge to explicitly define the interactive
behaviors corresponding to the latent space. To solve the
formulated IRL problem, we propose Grounded Relational
Inference (GRI). It has a variational-autoencoder-like (VAE)
GNN in NRI [12] as the backbone model. Additionally, we

incorporate the structured reward functions into the model as
an additional reward decoder. A variational extension of the
adversarial inverse reinforcement learning (AIRL) algorithm
is derived to train all the modules simultaneously.

Compared to direct supervision via interaction labels, we
provide implicit supervision to GRI in terms of the structures
of the reward functions. Since each reward function defines a
type of interactive behavior, we confine the latent space to a
cluster of interactive behaviors. It mainly has two advantages
over supervision through labeling: 1) First, since the policy
decoder learns to maximize the cumulative reward given the
inferred interaction graph, the structured reward functions
guide the policy to synthesize the corresponding semantic
behaviors rather than simply mimicking the demonstrated
trajectories; 2) Second, the end-to-end training scheme leaves
the model to identify the underlying interaction graph of the
observed trajectories and learn the characteristics of different
behaviors (i.e., parameters of reward functions) from data.
It avoids the undesired bias introduced during the labeling
procedure. Labels generated by human experts are subjective.
Different people may interpret an interacting scenario in dif-
ferent ways. In contrast, there exist systematic and principled
ways to investigate what reward functions human behavior is
subject to from data [16].

The remaining content is organized as follows. In Section II,
we give a concise review of existing works that are closely
related to ours in terms of methodology or motivation. In
Section III, we briefly summarize NRI and AIRL to prepare
the readers for the core technical content. In Section IV, we
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introduce how we reformulate relational inference into a multi-
agent IRL problem with relational latent space. In Sec V, we
present the GRI model in a general context. In Section VI, we
demonstrate how we apply the proposed framework to model
some simple traffic scenarios in both simulation and real-world
settings. The experimental results show that GRI can model
interactive traffic scenarios, and generate semantic interaction
graphs that are consistent with both human domain knowledge
and the modeled interactive behaviors.

II. RELATED WORK

Our model combines graph neural networks and adversarial
inverse reinforcement learning for interactive system model-
ing. This section gives a concise review of these two topics
and summarizes the existing works closely related to ours.
We also discuss some additional works on explainable driving
models as a complement to the discussion in Sec. I.

Interaction modeling using GNN. GNN refers to the
class of neural networks that operate on graph-structured data,
which consist of local message-passing functions shared across
all nodes to aggregate the information of neighboring nodes.
The inductive biases introduced by the shared message-passing
operations make GNN particularly effective for modeling
multi-agent interactive systems [11], [17], [18]. Multi-agent
systems can be naturally represented as graphs. Furthermore,
sharing the message-passing functions across nodes improves
learning efficiency and enables modeling systems with varying
numbers of agents with a single GNN. One category of models
we find interesting is those with graph attention mechanisms.
One seminal work is Graph Attention Network (GAT) [10],
which performed well on large-scale inductive classification
problems. VAIN [9] applied attention in multi-agent modeling.
The attention map unravels the interior interaction structure to
some extent which improves the explainability of VAIN. An
approach closely related to ours is NRI [12], which modeled
the interaction structure explicitly with discrete relational
latent space compared to the continuous graph attention.
We explain the difference between NRI and our proposed
method in Sec. I and V. One related work in the autonomous
driving domain is [15], which also modeled interactive driving
behavior with semantically meaningful interactions but in a
supervised manner.

Another type of model we want to mention is the spatio-
temporal graphs (st-graph). St-graph decomposes a complex
problem into components and their spatio-temporal interac-
tions, which are represented by nodes and edges of a fac-
tor graph. It makes st-graph a ubiquitous representation for
interacting systems, e.g., human motion [19], human-robot
interaction [20], and traffic flow [21]. Jain et al. [19] proposed
a general method to transform any st-graph to a mixture of
RNNs called structural-RNN (S-RNN). When using GRUs,
our GNN policy decoder is similar to S-RNN, as they capture
the same spatio-temporal dependency. In particular, Liu et
al. [20] combined S-RNN with model-free RL to obtain a
structured policy for robot crowd navigation. In terms of
the underlying MDP, our GRI model is developed based on
a multi-agent MDP, whereas theirs has a single robot as

the agent and regards the surrounding humans as parts of
the environment. In addition, we adopt a structured reward
function for each agent based on the graph and introduce a
relational latent space into the MDP.

Adversarial IRL and Imitation Learning. Now we give
a brief review of related works on adversarial IRL. We also
include prior works related to generative adversarial imitation
learning (GAIL) [22], because GAIL is closely connected
to AIRL [23]. Both methods have GANs as the backbone
models, and learn the discriminator through MaxEntIRL. The
difference is that GAIL uses an unstructured discriminator and
does not use the generator’s density.

Our work is mainly related to two categories of methods:
multi-agent and latent AIRL/GAIL algorithms. Yu et al. [24]
proposed a multi-agent AIRL framework for Markov games
under correlated equilibrium. It is capable of modeling general
heterogeneous multi-agent interactions. The PS-GAIL algo-
rithm [25] considered a multi-agent environment in the driving
domain that is similar to ours—cooperative and homogeneous
agents with shared policies—and extended GAIL [22] to
model the interactive behaviors. In [26], they augmented the
reward in PS-GAIL as a principle manner to specify prior
knowledge, which shares the same spirit with the structured
reward functions in GRI.

Latent AIRL models integrate a VAE into either the discrim-
inator or the generator for different purposes. Wang et al. [27]
conditioned the discriminator on the embeddings generated
by a VAE trained separately using behavior cloning. The
VAE encodes trajectories into low-dimensional space, enabling
the generator to produce diverse behaviors from the limited
demonstration. VDB [28] constrained information contained
in the discriminator’s internal representation to balance the
training procedure for adversarial learning algorithms. The
PEMIRL framework [29] achieved meta-IRL by encoding
demonstration into a contextual latent space. Though studied
in a different context, PEMIRL is conceptually similar to our
framework as both its generator and discriminator depend on
the inferred latent variables.

Explainable Autonomous Driving. At the end of this
section, we discuss some additional works related to ex-
plainable autonomous driving as a complement to those we
have mentioned in Sec. I. They addressed some shortcomings
of the discussed approaches, especially those methods based
on attention mechanisms. Kim et al. [13] trained a textual
explanation generator concurrently with a visual-attention-
based controller in a supervised manner. It generates sentences
explaining the control action as a consequence of certain
objects highlighted in the attention map, which can be easily
interpreted compared to visual attention. Another issue of
attention that has been raised in the literature is causal confu-
sion [30]. The model does not necessarily assign high attention
weights to objects/regions that influence the control actions.
In [5], a fine-grained decoder was proposed to refine visual
attention maps and detect critical regions through causality
tests. In [31], Li et al. adopted a similar idea for object-level
reasoning. Causal inference was applied to identify risk objects
in driving scenes. One interesting observation was that the
detection accuracy was improved with intervention during the
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training stage, i.e., augmenting the training data by masking
out non-causal objects. However, intervention requires explicit
prior knowledge of the causal relations to label the casual and
non-causal objects in a scene. Similar to intention labels, such
kinds of labels are generally prohibitive to obtain due to the
intricate nature of human cognition.

III. BACKGROUND

In this section, we would like to briefly summarize two
algorithms that are closely related to our approach, in order
to prepare the readers for the core technical content.

A. Neural Relational Inference (NRI)

Kipf et al. [12] represent an interacting system with N
objects as a complete bi-directed graph Gscene = (V, E) with
vertices V = {vi}Ni=1 and edges E = {ei,j = (vi, vj) | i ̸= j}.
The edge ei,j refers to the one pointing from the vertex vi
to vj . Each vertex corresponds to an object in the system.
The NRI model is formalized as a VAE with a GNN encoder
inferring the underlying interactions and a GNN decoder
synthesizing the system dynamics given the interactions.

Formally, the model aims to reconstruct a given state trajec-
tory, denoted by x =

(
x0, . . . ,xT−1

)
, where T is the number

of timesteps and xt = {xt1, . . . ,xtN}. The vector xti ∈ Rn
denotes the state vector of object vi at time t. Alternatively, the
trajectory can be decomposed into x = (x1, . . . ,xN ), where
xi =

{
x0
i , . . . ,x

T−1
i

}
. The encoder operates over Gscene, with

xi as the node feature of vi. It infers the posterior distribution
of the edge type zi,j for all the edges, collected into a single
vector z. The decoder operates over an interaction graph
Ginteract and reconstructs x. The graph Ginteract is constructed
by assigning sampled z to the edges of Gscene and assigning
the initial state to the nodes of Gscene. If Ginteract represents
the interactions sufficiently, the decoder should be able to
reconstruct the trajectory accurately.

The model is trained by maximizing the evidence lower
bound (ELBO):

L = Eqϕ(z|x) [log pγ(x|z)]−DKL [qϕ(z|x)||p(z)] ,

where qϕ(z|x) is the encoder output which can be factorized
as:

qϕ(z|x) =
N∏
i=1

N∏
j=1,j ̸=i

qϕ(zi,j |x), (1)

where ϕ refers to the parameters of the encoder. The decoder
output pγ(x|z) can be written as:

pγ(x|z) =
T−1∏
t=0

pγ(x
t+1|xt, . . . ,x0, z),

where γ refers to the parameters of the decoder.

B. Adversarial Inverse Reinforcement Learning (AIRL)

The AIRL algorithm follows the principle of maximum
entropy IRL [32]. Consider an MDP defined by (X ,A, T , r),
where X ,A are the state space and action space respec-
tively. In the rest of the paper, we use x and a with any

superscript or subscript to represent a state and action in
X and A. T is the transition operator given by xt+1 =
f(at,xt)

1, and r : X × A → R is the reward function.
The maximum entropy IRL framework assumes a suboptimal
expert policy πE(a|x). The demonstration trajectories gen-
erated with the expert policy, DE =

{
τE
1 , . . . τ

E
M

}
where

τE
i =

(
xE,0
i ,aE,0i , . . . ,xE,T−1

i ,aE,T−1
i

)
, have probabilities

increasing exponentially with the cumulative reward. Con-
cretely, they follow a Boltzmann distribution:

τE
i ∼ πE(τ ) =

1

Z
exp

(
T−1∑
t=0

rλ(xt,at)

)
,

where rλ is the reward function with parameters denoted by
λ. Maximum entropy IRL aims to infer the underlying reward
function parameters of the expert policy. It is formalized as a
maximum likelihood problem:

λ∗ = argmax
λ

EτE∼πE(τ )

[
T−1∑
t=0

rλ(x
E
t ,a

E
t )

]
− logZ.

To derive a feasible algorithm to solve the problem, we need
to estimate the partition function Z. One practical solution is
co-training a policy model with the currently estimated reward
function through reinforcement learning [33]. Finn et al. [23]
found the equivalency between it and a special form of the
generative adversarial network (GAN). The policy model is
the generator, whereas a structured discriminator is defined
with the reward function to distinguish a generated trajectory
τG from a demonstrated one τE. Fu et al. [34] proposed
the AIRL algorithm based on it, using a discriminator that
identifies generated samples based on the pairs of state and
action instead of the entire trajectory to reduce variance:

Dλ,η(x,a) =
exp {rλ(x,a)}

exp {rλ(x,a)}+ πη(a|x)
, (2)

where πη(a|x) is the policy model with parameters denoted
by η. The models Dλ,η and πη are trained adversarially by
solving the following min-max optimization problem:

min
η

max
λ

ExE,aE∼πE(x,a)

[
log
(
Dλ,η(xE,aE)

)]
+ExG,aG∼πη(x,a)

[
log
(
1−Dλ,η(xG,aG)

)]
,

(3)

where πE(x,a) denotes the distribution of state and action
induced by the expert policy, and πη(x,a) is the distribution
induced by the learned policy.

IV. PROBLEM FORMULATION

Our GRI model grounds the relational latent space in a
clustering of semantically meaningful interactions by refor-
mulating the relational inference problem into a multi-agent
IRL problem. Since the framework has the potential to be
generalized to interactive systems in other domains apart from
autonomous driving, we will introduce our approach in a
general tone. However, it should be noted that we limit our

1The transition is assumed deterministic to simplify the notation. A more
general form of the algorithm can be derived for stochastic systems, which is
essentially the same with the deterministic case.
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discussion in this paper to autonomous driving problems,
without claiming that it can be directly applied to other
domains. GRI relies on expert domain knowledge to identify
all possible semantic behaviors and design the corresponding
reward functions. There exists a broad range of literature on
interactive driving behavior modeling [14], [35], which we
can refer to when designing the rewards. We can extend
the proposed framework to other fields if proper domain
knowledge is available, which is left for future investigation.

We start with modeling the interactive system as a multi-
agent MDP with graph representation. As in NRI, the system
has an underlying interaction graph Ginteract. The discrete
latent variable zi,j takes a value from 0, 1, . . . ,K − 1, where
K is the number of interactions. It indicates the type of
relation between vi and vj with respect to its effect on
vj . Additionally, we assume the objects of the system are
homogeneous intelligent agents who make decisions based on
their interactions with others.

Concretely, each of them is modeled with identical state
space X , action space A, transition operator T and reward
function r : X ×A → R. At time step t, the reward of agent
vj depends on the states and actions of itself and the pairwise
interactions between itself and all its neighbors:

rξ,ψ(v
t
j , zj) = rnξ (x

t
j ,a

t
j)

+
∑
i∈Nj

K∑
k=1

1(zi,j = k)re,kψk
(xti,a

t
i,x

t
j ,a

t
j),

(4)

where zj is the collection of {zi,j}i∈Nj
, rnξ is the node reward

function parameterized by ξ, Nj is the set of vj’s neighbouring
nodes, 1 is the indicator function, and re,kψk

is the edge reward
function parameterized by ψk for the kth type of interaction.
We utilize expert domain knowledge to design re,kψk

, so that the
corresponding interactive behavior emerges by maximizing the
rewards. Particularly, the edge reward equals zero for k = 0,
indicating that the action taken by vj does not depend on its
interaction with vi.

We assume the agents act cooperatively to maximize the
cumulative reward of the system:

Rξ,ψ(τ , z) =
T−1∑
t=0

rξ,ψ
(
xt,at, z

)
=

T−1∑
t=0

N∑
j=1

rξ,ψ
(
vtj , zj

)
,

with a joint policy denoted by πη (a
t|xt, z). The cooperative

assumption does not generally hold for real-world traffic
scenarios. Each individual driver may value the utilities dif-
ferently. In practice, though, it has been shown that realistic
highway driving behavior can be learned from real-world
data under the cooperative assumption [36], [37]. It implies
that the assumption can approximately apply in practical
circumstances, especially in the highway scenarios tested in
this work. Thus, we adopt the cooperative assumption to
simplify the problem formulation and training procedure. In
future work, we will investigate a non-cooperative extension
of the proposed method to tackle interactive traffic scenarios
where the cooperative assumption has to be removed [24].

Given a demonstration dataset, we aim to infer the underly-
ing reward function and policy. Different from a typical IRL

problem, both rξ,ψ and πη depend on z. Therefore, we need
to infer the distribution p(z|τ ) to solve the IRL problem.

V. GROUNDED RELATIONAL INFERENCE

We now present the Grounded Relational Inference model to
solve the IRL problem specified in Sec. IV. The model consists
of three modules modeled by message-passing GNNs [38]: an
encoder inferring the posterior distribution of edge types, a
policy decoder generating control actions conditioned on the
edge variables sampled from the posterior distribution, and
a reward decoder modeling the rewards conditioned on the
inferred edge types.

A. Architecture

The overall model structure is illustrated in Fig. 2. Given a
demonstration trajectory τE ∈ DE, the encoder operates over
Gscene and approximates the posterior distribution p(z|τE)
with qϕ(z|τE). Following NRI, we parameterize the distri-
bution of each edge latent variable with a softmax function,
e.g., qϕ(zi,j |τE) = softmax(fenc,ϕ(τ

E)i,j), where fenc,ϕ(·)
denotes the encoder GNN. The policy decoder operates over a
Ginteract sampled from the inferred qϕ(z|τE) and models the
policy πη (a

t|xt, z). The policy distribution is parameterized
as a diagonal Gaussian distribution whose mean and variance
are generated by the decoder GNN. Given an initial state, we
can generate a trajectory by sequentially sampling at from
πη (a

t|xt, z) and propagating the state. The state is propagated
with either the transition operator T if given, or a simulating
environment if T is not accessible. We denote a generated
trajectory given the initial state of τE as τG. Since these two
modules are essentially the same in NRI, we omit the detailed
model structures here and include them in Appx. IX-A.

The reward decoder computes the reward of a state-action
pair given the sampled edge variables. We use it to compute
the cumulative rewards of τG and τE conditioned on the
sampled Ginteract. The reward decoder is in the form of Eqn.
(4). Additionally, we augment the functions rnξ and re,kψk

with
MLP shaping terms to mitigate the reward shaping effect [34],
resulting in:

fnξ,ω(x
t
j ,a

t
j ,x

t+1
j ) = rnξ (x

t
j ,a

t
j) + hnω(x

t+1
j )− hnω(xtj), (5)

and

fe,kψk,χk
(xti,a

t
i,x

t+1
i ,xtj ,a

t
j ,x

t+1
j ) = re,kψk

(xti,a
t
i,x

t
j ,a

t
j)

+ he,kχk
(xt+1
i ,xt+1

j )− he,kχk
(xti,x

t
j),

(6)

where hnω and he,kχk
are MLPs with parameters denoted by ω

and χ respectively. We denote the shaped reward function of
agent vj by fξ,ω,ψ,χ

(
xt,at,xt+1, z

)
, which equals to the left

hand side of Eqn. (4) but with rnξ and re,kψk
substituted by the

augmented rewards. The shaped reward function, together with
the policy model, defines the discriminator which distinguishes
τG from τE:

Dξ,ω,ψ,χ,η(xt,at,xt+1, z)

=
exp

{
fξ,ω,ψ,χ

(
xt,at,xt+1, z

)}
exp {fξ,ω,ψ,χ (xt,at,xt+1, z)}+ πη (at|xt, z)

.
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Fig. 2: Architecture of grounded relational inference model. Given a demonstration trajectory τE ∈ DE, the encoder operates
over Gscene and approximates the distribution p(z|τE) with qϕ(z|τE). The policy decoder operates over a Ginteract sampled
from the inferred qϕ(z|τE) and models the policy πη (a

t|xt, z). Given the initial state of τE, we sample a trajectory τG

by sequentially sampling at from πη (a
t|xt, z) and propagating the state. Finally, We use the reward GNN to compute the

cumulative rewards of τG and τE conditioned on the sampled Ginteract.

B. Training

We aim to train the three modules simultaneously. Con-
sequently, we incorporate the encoder model qϕ

(
z|τE

)
into

the objective function of AIRL, resulting in the optimization
problem (8). The encoder is integrated into the minimization
problem because the reward function directly depends on the
latent space. The model is then trained by solving the problem
(8) in an adversarial scheme: we alternate between training
the encoder and reward for the minimization problem and
training the policy for the maximization problem. Specifically,
the objective for the encoder and reward is the following
minimization problem given fixed η:

min
ξ,ω,ψ,χ,ϕ

J (ξ, ω, ψ, χ, ϕ, η)

s.t. E
{
DKL

[
qϕ
(
z|τE

)
)||p(z)

]}
⩽ Ic.

(7)

The objective for the policy is maximizing J (ξ, ω, ψ, χ, ϕ, η)
with fixed ξ, ω, ψ, χ and ϕ.

The objective function in the problem (8) is essentially
the expectation of the objective function in the problem (3)
over the inferred posterior distribution qϕ

(
z|τE

)
and the

demonstration distribution πE (τ ). The constraint enforces an
upper bound Ic on the KL-divergence between qϕ

(
z|τE

)
and the prior distribution p(z). A sparse prior is chosen to
encourage sparsity in Ginteract. It has a similar regularization
effect as the DKL term in ELBO. We borrow its format
from variational discriminator bottleneck (VDB) [28]. VDB
improves adversarial training by constraining the information
flow from the input to the discriminator. The KL-divergence
constraint is derived as a variational approximation to the
information bottleneck [39]. Although having different mo-
tivations, we adopt it for two reasons. First, the proposed
model is not generative because our goal is not synthesizing
trajectories from the prior p(z), but inferring the posterior
p
(
z|τE

)
. Therefore, regularization derived from information

bottleneck is more sensible compared to ELBO. Second, the
constrained problem (7) can be relaxed by introducing a
Lagrange multiplier β. During training, β is updated through

dual gradient descent as follows:

β ← max
(
0, αβ

(
E
{
DKL

[
qϕ
(
z|τE

)
)||p(z)

]}
− Ic

))
(9)

We find the adaptation scheme particularly advantageous. The
model can focus on inferring z for reward learning after
satisfying the sparsity constraint because the magnitude of
β decreases towards zero once the constraint is satisfied.
However, it is worth noting that our framework does not
rely on the bottleneck constraint to induce a semantically
meaningful latent space as in [40]. In contrast, GRI relies
on structured reward functions to ground the latent space
into semantic interactive behaviors. The bottleneck serves as
a regularization to find out the minimal interaction graph to
represent the interactions. In fact, we trained the baseline NRI
models with the same constraints and weight update scheme.
The experimental results show that the constraint itself is not
sufficient to induce a sparse interaction graph.

In general, when the dynamics T is unknown or non-
differentiable, maximum entropy RL algorithms [41] are
adopted to optimize the policy. In this work, we assume known
and differentiable dynamics, which is a reasonable assumption
for the investigated scenarios. It allows us to directly back-
propagate through the trajectory for gradient estimation, which
simplifies the training procedure.

VI. EXPERIMENTS

We evaluate the proposed GRI model on a synthetic dataset
as well as a naturalistic traffic dataset. The synthetic data
are generated using policy models trained given the ground-
truth reward function and interaction graph. We intend to
verify if GRI can induce a semantically meaningful relational
latent space and infer the underlying relations precisely. The
naturalistic traffic data are extracted from the NGSIM dataset.
We aim to validate if GRI can model real-world traffic
scenarios effectively with the grounded latent space. Unlike
synthetic agents, we do not have the privilege to access the
ground-truth graphs governing human drivers’ interactions.
Instead, we construct hypothetical graphs after analyzing the
segmented data. The hypotheses reflect humans’ understanding
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max
η

min
ξ,ω,ψ,χ,ϕ

J (ξ, ω, ψ, χ, ϕ, η) = EτE∼πE(τ )

{
Ez∼qϕ(z|τE)

[
−
T−1∑
t=0

logDξ,ω,ψ,χ,η(xE,t,aE,t,xE,t+1, z)

− EτG∼πη(τ |z)

T−1∑
t=0

log
(
1−Dξ,ω,ψ,χ,η(xG,t,aG,t,xG,t+1, z)

) ]}
,

s.t. EτE∼πE(τ )

{
DKL

[
qϕ
(
z|τE

)
)||p(z)

]}
⩽ Ic,

(8)

of traffic scenarios. Moreover, the hypothetical graphs are built
upon a set of interactive behavior whose characteristics are
described by the designed reward functions. We would like
to see if the reward functions can incorporate the semantic
information into the latent space, and let GRI model real-world
interactive systems in the same way as humans. In each setting,
we consider two scenarios, car-following, and lane-changing.

A. Baselines

The main question of interest is whether GRI can induce
semantically meaningful interaction graphs. To answer the
question, the most important baseline model for comparison is
NRI, because GRI shares the same prior distribution of latent
variables with NRI. Comparing the posterior distributions
provides insights into whether the structured reward functions
can ground the latent space into semantic interactive behaviors.
In each experiment, the baseline NRI model has the same
encoder and policy decoder as the GRI model. Besides, as
stated in Sec. V, the same bottleneck constraint and the weight
update scheme in Eqn. (9) were applied as regularization for
minimal representation.

Another model for comparison is a supervised policy de-
coder. We assume that ground-truth graphs or human hypothe-
ses are available. Therefore, we can directly train a policy
decoder in a supervised way. The ground-truth graph is fed
to the policy decoder as a substitute for the interaction graph
sampled from the encoder output qϕ(z|τE). The training of
the decoder becomes a simple regression problem. We used
mean square error as the loss function to train it.

As additional information is granted, it is unfair to directly
compare the performance of GRI with the supervised policy
model. Since the supervised model is trained with the ground-
truth interaction graphs governing the systems, it is expected to
achieve smaller reconstruction errors. However, the supervised
baseline provides some useful insights. In the naturalistic
traffic scenarios, the supervised model gives us some insights
into whether the human hypotheses are reasonable. If the
supervised model can reconstruct the trajectories precisely, it
will justify our practice to adopt graph accuracy as one of the
evaluation metrics.

More importantly, in Sec. VI-E, we demonstrate that GRI’s
latent space still maintains its semantic meaning under some
perturbations to the initial states, whereas the decoders of
baseline models fail to synthesize those behaviors under the
same perturbations, including the supervised policy decoder
which is trained with the ground-truth interaction graphs. It
supports our argument that direct supervision via interaction

labels is not sufficient to guide the policy to synthesize
behaviors with correct semantic meaning.

There exist other alternatives for the purpose of trajectory
reconstruction. However, it is not our goal in this paper to find
an expressive model for accurate reconstruction. Therefore, we
do not consider other baselines from this perspective. For the
task of grounding the latent space into semantic interactive
driving behaviors, we did not find any exact alternatives in
the literature. For the specific scenarios studied in this paper,
we may design some rule-based approaches to directly infer
the interaction graph. However, it is difficult to decide the
parameters that best describe the interactive behaviors, because
there is a spectrum in how people follow the rules [42]. In this
paper, we are interested in a data-driven module that can be
incorporated into an end-to-end learning model and has the
potential to be generalized to complicated driving scenarios
and systems in other domains. Apart from GRI, a potential
alternative solution could be adopting a differentiable logic
module. For instance, Leung et al. [42] proposed a differ-
entiable parametric Signal Temporal Logic formula (pSTL)
which could be learned from data. We will investigate this
direction in our future works.

B. Evaluation Metrics

To evaluate a trained model, we sample a τE from the test
dataset and extract the maximum posterior probability (MAP)
estimate of edge variables, ẑ, from qϕ(z|τE). Afterward, we
obtain a single sample of trajectories τ̂ by executing the
mean value of the policy output. The root mean square errors
(RMSE) of states and the accuracy of Ginteract are selected as
the evaluation metrics, which are computed based on ẑ, τ̂ , τE,
and the ground truth or hypothetical latent variables denoted
by zE:

RMSEϵ =

√√√√ 1

(N − 1)T

N∑
j=1

T−1∑
t=0

(ϵE,tj − ϵ̂tj)2,

Accuracy =

∑N
i=1

∑N
j=1,j ̸=i 1(z

E
i,j = ẑi,j)

N(N − 1)
.

If multiple edge types exist, we test all the possible permuta-
tions of edge types and report the one with the highest graph
accuracy for NRI.

It is worth noting that the graph accuracy on the naturalistic
traffic dataset merely quantifies the divergence between the
inferred graphs and the hypotheses we construct. We anticipate
that GRI can attain a higher accuracy than NRI. It will
imply that we can incorporate human domain knowledge into
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Fig. 3: Test scenarios with the underlying interaction graphs. In the synthetic scenarios, the graphs are the ground-truth ones
governing the synthetic experts. In the naturalistic traffic scenarios, the graphs are human hypotheses reflecting humans’
understanding of the traffic scenarios.

GRI and induce a semantic relational latent space consistent
with the hypotheses built upon the same domain knowledge.
However, a low graph accuracy does not necessarily mean
that humans cannot interpret the inferred graphs well. The
hypothetical graphs represent one perspective to interpret the
interactive scenes. It is possible that NRI may find another
sensible way to categorize and interpret the interactions, which
can also be understood by humans.

To further study the explainability of the learned latent
spaces, we want to look into the inferred graphs and have
a qualitative comparison between the latent spaces learned by
the two models. For each setting, we compute the distribution
of estimated edge variables ẑ over the test dataset. As in [12],
we visualize the results in multiple adjacency matrices cor-
responding to different edge types. In the adjacency matrix
corresponding to the kth type of interaction, the element Ai,j
indicates the relative frequency of ẑj,i = k, where ẑj,i is the
latent variable for the edge from node j to node i. In other
words, Ai,j equals the ratio of test samples where the model
infers ẑj,i = k. By inspecting the edge-type distributions, we
can get some extra insights into the explainability of the two
models beyond the quantitative metrics.

C. Synthetic Scenes

As mentioned above, we designed two synthetic scenarios,
car-following and lane-changing. The two scenes and their
underlying interaction graphs are illustrated in Fig. 3. In both
scenarios, we have a leading vehicle whose behavior does not
depend on the others. Its trajectory is given without the need
for reconstruction. We assume it runs at constant velocity.
The other vehicles interact with each other and the leader
in different ways. In the car-following scene, we model the
system with two types of edges: zi,j = 1 means that Vehicle
j follows Vehicle i; zi,j = 0 means that Vehicle j does
not interact with Vehicle i. In the lane-changing scene, two
additional edge types are introduced: zi,j = 2 means that
Vehicle j yields to Vehicle i; zi,j = 3 means that Vehicle
j cuts in front of Vehicle i.

The MDPs for the tested scenarios are specified as follows.
In the car-following scene, since the vehicles mainly interact in
the longitudinal direction, we only model their longitudinal dy-
namics to simplify the problem. For all j ∈ {1, 2, 3}, the state
vector of Vehicle j consists of three states: xtj =

[
xtj v

t
j a

t
j

]⊺
,

where xtj is the longitudinal coordinate, vtj is the velocity, and
atj is the acceleration. There is only one control input which

is the jerk. We denote it as δatj . The dynamics are governed
by a 1D point-mass model:

xt+1
j = xtj + vtj∆t+

1

2
atj∆t

2,

vt+1
j = vtj + atj∆t,

at+1
j = atj + δatj∆t,

where ∆t is the sampling time. Note that the dynamics of xtj
is discretized with zero-order hold discretization so that the
longitudinal acceleration can directly affect xtj without delay.
In practice, we find GRI benefits from reducing the control
delay as the longitudinal coordinates under different policies
will diverge at earlier time steps. It is then easier for GRI to in-
fer the latent interaction types. In the lane-changing scene, we
consider both longitudinal and lateral motions. The state vector
consists of six states instead: xtj =

[
xtj y

t
j v

t
j θ

t
j a

t
j ω

t
j

]⊺
. The

three additional states are the lateral coordinate ytj , the yaw
angle θtj , and the yaw rate ωtj . There is one additional action
which is the yaw acceleration, denoted by δωtj . We model the
vehicle as a Dubins’ car:

xt+1
j = xtj + vtj cos(θ

t
j)∆t,

yt+1
j = ytj + vtj sin(θ

t
j)∆t,

vt+1
j = vtj + atj∆t,

θt+1
j = θtj + ωtj∆t,

at+1
j = atj + δatj∆t,

ωt+1
j = ωtj + δωtj∆t.

The structured reward functions were designed based on
expert domain knowledge (e.g. transportation studies [35],
[43]). We mainly referred to [14], [16] in this paper. For
the car-following behavior, its reward function is defined as
follows:

re,1ψ1

(
xti,x

t
j

)
=− (1 + exp(ψ1,0)) gIDM(xti,x

t
j)

− (1 + exp(ψ1,1)) gdist(x
t
i,x

t
j)

− (1 + exp(ψ1,2)) glat(x
t
i,x

t
j),

where the features are defined as:

gIDM(xti,x
t
j) =

(
max

(
xti − xtj , 0

)
−∆xIDM,t

i,j

)2
, (10)

gdist(x
t
i,x

t
j) = exp

(
−
(
max

(
xti − xtj , 0

))2
ζ2

)
, (11)

glat(x
t
i,x

t
j) =

(
ytj − gcenter(yti)

)2
.
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TABLE I: Performance Comparison on Synthetic Dataset

Model Car Following (∆t = 0.2s, T = 20) Lane Changing (∆t = 0.2s, T = 30)
RMSEx(m) RMSEv(m/s) Accuracy(%) RMSEx(m) RMSEy(m) RMSEv(m/s) Accuracy(%)

GRI 0.241± 0.125 0.174± 0.068 100.00± 0.00 0.529± 0.230 0.207± 0.046 0.303± 0.128 99.95± 0.01
NRI 0.047± 0.024 0.056± 0.015 66.70± 0.00 0.109± 0.045 0.155± 0.038 0.061± 0.016 55.9± 7.98

Supervised 0.039± 0.016 0.050± 0.009 - 0.062± 0.027 0.145± 0.035 0.048± 0.011 -
1 The data is presented in form of mean ± std.

The feature gIDM suggests a spatial headway ∆xIDM,t
i,j derived

from the intelligent driver model (IDM) [35]. The feature fdist
ensures a minimum collision-free distance. We penalize the
following vehicle for surpassing the preceding one with the
help of xIDM,t

i,j in Eqn. (10) and Eqn. (11). The last feature
glat exists only in lane-changing. It regulates the following
vehicle to stay in the same lane as the preceding one with
the help of gcenter, which determines the lateral coordinate
of the corresponding centerline based on the position of the
preceding vehicle. Altogether, the features define the following
behavior as staying in the same lane as the preceding vehicle
whereas keeping a safe longitudinal headway.

The reward function for yielding is defined as:

re,2ψ2

(
xti,x

t
j

)
=− (1 + exp(ψ2,0)) gyield(x

t
i,x

t
j)

− (1 + exp(ψ2,1)) gdist(x
t
i,x

t
j).

The feature gdist is defined in Eqn. (11). The other feature
gyield suggests an appropriate spatial headway for yielding:

gyield(x
t
i,x

t
j) =1

(
gcenter(y

t
j) = gcenter(y

t
i)
)
gIDM(xti,x

t
j)

+1
(
gcenter(y

t
j) ̸= gcenter(y

t
i)
)
ggoal(x

t
i,x

t
j),

ggoal(x
t
i,x

t
j) =

(
max

(
xti − xtj −∆xyield, 0

))2
. (12)

The suggested headway is set to be a constant value, ∆xyield,
when the other vehicle is merging, and switches to ∆xIDM,t

i,j

once the merging vehicle enters into the same lane, where
its behavior becomes consistent with car-following. We fol-
low [14] to adopt different reward functions depending on the
lanes where the vehicles are located. Merging occurs during
a short period of time. Therefore, we assume the driver sets a
fixed short-term goal distance as in [14] and then transits to
the following behavior afterward.

The reward function for cutting-in is quite similar:

re,3ψ3

(
xti,x

t
j

)
=− (1 + exp(ψ3,0)) ggoal(x

t
j ,x

t
i)

− (1 + exp(ψ3,1)) gdist(x
t
j ,x

t
i),

where the features are defined as in Eqn. (11) and Eqn. (12),
but with the input arguments switched, because the merging
vehicle should stay in front of the yielding one.

Apart from the edge rewards, all the agents share the same
node reward function. The following one is adopted for lane-
changing:

rnξ (x
t
j ,a

t
j) =− (1 + exp(ξ0)) fv(x

t
j)

− (1 + exp(ξ1:3))
⊺
fstate(x

t
j)

− (1 + exp(ξ4:5))
⊺
faction(a

t
j)

− (1 + exp(ξ6)) flane(x
t
j),

where fstate and faction take the element-wise square of[
atj θ

t
j ω

t
j

]
and

[
δatj δω

t
j

]
respectively. It penalizes large con-

trol inputs as well as drastic longitudinal and angular motions

to induce smooth and comfortable maneuvers. The feature fv
is the squared error between vtj and the speed limit vlim.
It regulates the vehicles to obey the speed limit. The last
term flane penalizes the vehicle for staying close to the lane
boundaries. For car-following, we simply remove those terms
that are irrelevant in 1D motion. In all the reward functions, the
parameters collected in ψ and ξ are unknown during training
and inferred by GRI. We take the exponents of them and add
one to the results. It enforces the model to use the features
when modeling the corresponding interactions.

With the scenarios defined above, we aim to generate one
dataset for each scenario. For each scenario, we randomly
sampled the initial states of the vehicles and trained an
expert policy given the ground-truth reward functions and the
interaction graph. Afterward, we used the trained policy to
generate the dataset. The same sampling scheme was used to
sample the initial states.

Results. On each dataset, we trained a GRI model with
the policy decoder (18)-(20) introduced in Appx. IX-A. The
results are summarized in Table I. The NRI model can
reconstruct the trajectories with errors close to the supervised
policy. However, it learns a relational latent space that is
different from the one governing the demonstration; Therefore,
the edge variables cannot be interpreted as those semantic
interactive behaviors. In contrast, our GRI model interprets the
interactions consistently with the domain knowledge inherited
in the demonstration and recovers the interaction graph with
high accuracy. It has larger reconstruction errors compared to
the baseline approaches. However, it still sufficiently recovers
the interactive behaviors, and the reconstructed trajectories are
sensible (see Appx. IX-B).

We computed the empirical distribution of the estimated
edge variables ẑ over the test dataset. The results are summa-
rized in Fig. 4. The distribution concentrates on a single inter-
action graph for both models in both scenarios—as opposed
to the case on the naturalistic traffic dataset introduced in
the next section—because the synthetic agents have consistent
interaction patterns over all the samples. We observe that NRI
learns symmetric relations: In both scenarios, the NRI model
assigns the same edge types to the edges e0,1 and e1,0. It
is difficult to interpret their semantic meaning because those
pairwise interactions are asymmetric in our synthetic scenes.
In contrast, the reward functions in our GRI model enforce an
asymmetric relational latent space.

D. Naturalistic Traffic Scenes

To evaluate the proposed method in real-world traffic sce-
narios, we investigated the same scenarios as in the synthetic
case, car-following and lane-changing. we segmented data
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Fig. 4: The empirical distribution of estimated edge variables ẑ
over the test dataset in the synthetic scenarios. We summarize
the results in multiple adjacency matrices corresponding to
different edge types. In the adjacency matrix corresponding
to the kth type of interaction, the element Ai,j indicates the
relative frequency of ẑj,i = k, where ẑj,i is the latent variable
for the edge from node j to node i.

from the Highway-101 and I-80 datasets of NGSIM. After-
ward, we further screened the data to select those interactive
samples and ensure that no erratic swerving or multiple lane
changes occurred. Unlike synthetic agents, human agents do
not have a ground-truth interaction graph that governs their
interactions. Instead, we constructed hypothetical Ginteract
after analyzing the segmented data. The hypotheses for the
two scenarios are depicted in Fig. 3. The one for car-following
is identical to the ground-truth interaction graph we designed
for the synthetic agents. However, we proposed a different

hypothesis for lane-changing. We excluded the cutting-in
relation to reduce the number of edge types and therefore
simplify the training procedure. Moreover, we differentiated
distinct interactions according to the vehicle’s lateral position.
We say that a vehicle yields to its preceding vehicle if they
drive in neighboring lanes, whereas it follows the preceding
one if they drive in the same lane.

As in the synthetic scenes, the trajectory of the leading
vehicle is given without the need for reconstruction. We feed
the ground-truth state of the leading vehicle sequentially to the
policy decoder when decoding the trajectories of the other ve-
hicles. This practice enables us to heuristically isolate a small
interacting group out of the numerous number of vehicles on
the highway. While the leading vehicle’s behavior depends on
the other vehicles, it is fairly reasonable to assume that the
behavior of the modeled following vehicles is independent of
other surrounding vehicles on the road after conditioning on
the trajectory of the leading vehicle. Even though there may
still exist other surrounding vehicles interacting with them,
their influence should be subtle. The models should be able to
well capture the interactions among the modeled subset while
marginalizing those subtle effects.

The node dynamics are the same as in the synthetic scene
for car-following. For lane-changing, since we did not have
accurate heading information, we adopted a 2D point-mass
model instead. Since the behavior of human drivers is much
more complicated than the synthetic agents, we designed
reward functions with larger model capacities using neural
networks. In car-following, the reward functions are defined
as follows:

re,1ψ1

(
xti,x

t
j

)
=− (1 + exp(ψ1,0)) g

NN
v (xti,x

t
j)

− (1 + exp(ψ1,1)) g
NN
s (xti,x

t
j),

rnξ
(
xtj ,a

t
j

)
=− (1 + exp(ξ0)) f

NN
v (xtj)

− (1 + exp(ξ1)) facc(x
t
j)

− (1 + exp(ξ2)) fjerk(x
t
j ,a

t
j),

where the features are defined as:

fNN
v (xtj) =

(
vtj − h1(xtj)

)2
,

gNN
v (xti,x

t
j) =

(
vtj − h2(xti,xtj)

)2
,

gNN
s (xti,x

t
j) = ReLU

(
h3
(
xti,x

t
j

)
− xti + xtj

)2
.

The features facc and fjerk penalize the squared magnitude
of acceleration and jerk to induce smooth and comfortable
maneuver. The functions h1, h2, and h3 are neural networks
with ReLU output activation. The feature gNN

s is the critical
component that shapes the car-following behavior. It learns a
non-negative reference headway and penalizes the following
vehicle for violating it. The feature gNN

v and fNN
v suggest

reference velocities considering interaction and merely itself
respectively. The edge reward function has a large modeling
capacity because we let it learn adaptive reference headway
and velocity from data. Nevertheless, it still defines the fun-
damental characteristic of the following behavior, which is
always staying behind the preceding vehicle.

In lane-changing, the node reward function and the edge
reward function for the following behavior are similar to those



11

1

0

(𝑥!"# , 𝑦!"#)

(𝑥$, 𝑦$)

(𝑥%, 𝑦%)

Fig. 5: Collision point diagram. At every timestep, the heading
vector of the agents’ can be calculated approximating the
motion as linear. The intersection between these vectors is
taken to be the collision point where the agents would collide
if a yield action is not taken.

in the car-following scenario. The node reward function has
an additional term for the lateral position, which encourages
the vehicles to drive on the target lane, i.e., the lane where
the leading vehicle is driving. It also has additional terms to
penalize the magnitude of lateral velocity and acceleration to
induce comfortable maneuvers. To design the yielding reward,
we define a collision point of two vehicles based on their
states. We approximate the vehicles’ trajectories as piecewise-
linear between sequential timesteps and compute the collision
point as the intersection between their trajectories (Fig. 5).
We threshold the point if it exceeds a hard-coded range of
interest (e.g. if it is behind the vehicles or greater than a certain
distance). Afterward, we define the distance-to-collision (dpoc)
as the longitudinal distance from the vehicle to the collision
point, and the time-to-collision (Tcol) as the time to reach the
collision point calculated by dividing dpoc with the velocity
of the vehicle. Then the yielding reward function is defined as
follows:

re,2ψ2

(
xti,x

t
j

)
=− (1 + exp(ψ2,0)) g

NN
spatial(x

t
i,x

t
j)

− (1 + exp(ψ2,1)) g
NN
time(x

t
i,x

t
j),

where

gNN
spatial(x

t
i,x

t
j) = ReLU

(
(xj − xpoc)− hdpoc

(xti,x
t
j)
)2
,

gNN
time(x

t
i,x

t
j) = ReLU

(
hTcol

(xti,x
t
j)− (Tcoli − Tcolj )

)2
.

The functions hdpoc
and hTcol

are neural networks with ReLU
output activation. The gspatial term learns a spatial aspect of
the yield behavior and compares the agent’s distance from the
estimated collision point with the NN-learned safe reference
within which the lane-changing maneuver can be done. The
second term gtime adds a temporal aspect, by enforcing the
vehicle to ensure a minimum safe time headway. We adopt
gtime because time-to-collision is an important measure in
traffic safety assessment [44]. The intuition behind this is to
ensure that the vehicles do not occupy the same position at
the same time.

Results. For each scenario, we trained a GRI model with
the recurrent policy decoder (21)-(24) in Appx. IX-A. The
results are summarized in Table II. In car-following, the NRI
model still performs better on trajectory reconstruction, but the
GRI model achieves comparable RMSE on NGSIM dataset. In
lane-changing, their comparison is consistent: The NRI model
slightly outperforms our model in trajectory reconstruction;
Our model dominates the NRI model in graph accuracy.

We visualize the interaction graphs in Fig. 6. One interesting
observation is that the graphs inferred by NRI have more
edges in general. We want to emphasize that both models
are trained under the same sparsity constraint. The results
imply that we could guide the model to explore a clean and
sparse representation of interactions by incorporating relevant
domain knowledge, whereas the sparsity regularization itself is
not sufficient to serve the purpose. Moreover, the NRI model
assigns the same edge type to both edges between a pair
of agents. It makes the graphs less interpretable because the
vehicles ought to affect each other in different ways. On the
other hand, even if different from the hypotheses, our GRI
model tends to infer sparse graphs with directional edges.

For the supervised policy, it has the lowest reconstruction
error in lane-changing. It implies that the human hypothesis
is reasonable because it is capable to model the interactions
among human drivers. For the car-following case, its recon-
struction error is slightly higher than NRI. Since we cannot
assure that our hypothesis is the ground-truth interaction graph
underlying the interacting system—In fact, as we mentioned
before, we never meant to treat it as the ground-truth—it is
possible that the NRI model can find a latent space that can
effectively model the interactions in an unsupervised manner.
However, as shown in Fig. 6, it is difficult to interpret the
graphs inferred by NRI. Considering the sparse and semantic
nature of the hypothesis as well as the fact that the supervised
policy’s reconstruction error is on par with the NRI model, we
think the chosen hypothesis is a valid one.

E. Semantic Meaning of Latent Space

The above experimental results show that our GRI model
can recover the ground-truth interaction graphs in the synthetic
scenarios with high accuracy, and infer interaction graphs
that are consistent with human hypothesis on the NGSIM
dataset. However, as we argue in Sec. I, accurate interaction
inference alone is not sufficient to show that the model
learns a semantically meaningful latent space that is consistent
with human domain knowledge. Given an edge, the policy
decoder should also synthesize the corresponding semantic
interactive behavior indicated by its edge type. It is difficult
to verify whether the policy decoder is able to synthesize
semantically meaningful interaction simply by monitoring
the reconstruction error. Small reconstruction error on in-
distribution data could be achieved by imitating demonstration
without modeling the correct interaction [30], [45]. To study
the semantic meaning of latent space, we design a set of out-
of-distribution tests 2 by adding increasing perturbation to the
initial states. We then enforce the same edge types as in the
in-distribution case and run those different policy decoders
to generate the trajectories. We are curious about whether
the policy decoders can consistently synthesize the correct
semantic interactive behavior under distribution shift. If so, we
claim the latent space indeed possesses the semantic meaning
that is consistent with human domain knowledge.

2For clarification, the models used in this section are the same as those
introduced in Sec. VI-C. We merely designed additional out-of-distribution
cases for testing.
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TABLE II: Performance Comparison on Naturalistic Traffic Dataset

Model Car Following (∆t = 0.2s, T = 30) Lane Changing (∆t = 0.2s, T = 40)
RMSEx(m) RMSEv(m/s) Accuracy(%) RMSEx(m) RMSEy(m) RMSEv(m/s) Accuracy(%)

GRI 1.700± 1.005 0.721± 0.363 100.00± 0.00 7.118± 3.647 0.764± 0.336 4.320± 2.392 98.55± 0.06
NRI 1.436± 0.880 0.650± 0.328 64.09± 0.08 6.532± 3.822 0.330± 0.181 4.291± 2.544 28.98± 0.08

Supervised 1.482± 0.938 0.665± 0.344 - 5.897± 3.651 0.323± 0.223 4.307± 2.435 -
1 The data is presented in form of mean ± std.
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Fig. 6: The empirical distribution of estimated edge variables
ẑ over the test dataset in the naturalistic traffic scenarios.
We summarize the results in multiple adjacency matrices
corresponding to different edge types. In the adjacency matrix
corresponding to the kth type of interaction, the element Ai,j
indicates the relative frequency of zj,i = k, where zj,i is the
latent variable for the edge from node j to node i.

In the synthetic scenarios, we focus on the following re-
lation. For both car-following and lane-changing scenes, we
keep the two vehicles with the following relation, resulting
in interaction graphs merely consisting of the following edges
(Fig. 7). We introduce perturbation by decreasing the initial
longitudinal headway to values unseen during the training
stage. The initial longitudinal headway is defined as ∆x =
x01 − x00, namely the longitudinal distance from Vehicle 1 to
Vehicle 0 at the first time step. During the training stage,
we sampled ∆x from uniform distributions: In car-following,
∆x ∼ unif(4, 8); In lane-changing, ∆x ∼ unif(8, 12). In

the out-of-distribution experiments, we gradually decreased
∆x from the lower bound to some negative value, which
means Vehicle 0 is placed in front of Vehicle 1. We are
curious about if the models can generate trajectories meeting
the characteristics of the car-following behavior in these un-
seen scenarios—scenarios with a different number of vehicles
and distorted state distribution. To quantitatively evaluate if
the synthesized behavior satisfies the requirement of car-
following, we consider three metrics for evaluation:

• Success Rate:

SuccessRate =
1

N

N∑
i=1

1(∆xfi ⩾ δf ), (13)

where ∆xfi = xT1,i − xT0,i,

• Collision Rate:

CollisionRate =
1

N

N∑
i=1

1(dmin,i ⩽ δc), (14)

where dmin,i = min
t

√∣∣xt1,i − xt0,i∣∣2 + ∣∣yt1,i − yt0,i∣∣2,
• Lateral distance:

∆y =
∣∣yT1 − yT0 ∣∣− ∣∣y01 − y00∣∣ . (15)

We intend to quantify three typical characteristics of the
following behavior with the metrics defined above: 1) staying
behind the leading vehicle; 2) maintaining a substantial safe
distance from the leading vehicle; 3) keeping in the same lane
as the leading vehicle. We consider the following vehicle’s ma-
neuver successful if the vehicle manages to keep a substantial
positive final headway. And we consider two vehicles colliding
if the minimum distance between them is smaller than a safety
threshold. Lastly, we expect the following behavior to attain a
negative ∆y, which means the following vehicle attempts to
approach the leading vehicle’s lane.

All metrics were applied in the lane-changing scenario, but
we only adopted SuccessRate in the car-following scenario.
Since we only model the longitudinal dynamics, ∆y is not
applicable. For the same reason, if their initial positions are too
close or the following vehicle is located ahead of the leading
one initially, the following vehicle will inevitably crush into
the leading vehicle, which results in dmin = 0. Therefore, we
only care about the first characteristic.

The results are summarized in Fig. 8 and Fig. 9, where we
plot the mean values of the evaluated metrics versus ∆x. In
the car-following scenario, the NRI policy fails to slow down
Vehicle 0 to follow Vehicle 1 when ∆x becomes negative.
In contrast, the supervised policy and GRI policy maintain
high success rates with negative ∆x. However, the number
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Fig. 7: Out-of-distribution scenarios. We removed one vehicle
from the nominal scenes and shifted the initial longitudinal
headway ∆x to unseen values.

Fig. 8: Results in out-of-distribution synthetic car-following
scenario. We plot SuccessRate versus ∆x with the error band
denoting 95% confidence interval of the indicator, 1(∆xfi ⩾
δf ). We set δf = 2m.

of failure cases starts to increase for the supervised policy
when ∆x becomes substantially negative, whereas the GRI
policy maintains a perfect success rate over the tested range
of perturbation. We visualize a marginal example in Fig.12,
where both the NRI policy and the supervised one fail to
maintain a positive final headway.

In the lane-changing scenario, the GRI policy maintains
a consistent perfect success rate over all tested values of
∆x. For the other two models, the success rates drastically
decrease with decreasing ∆x. In terms of ∆y, all models
tend to reduce the lateral distance between the vehicles which
is consistent with the second characteristic of the following
behavior. However, we found that the GRI policy attains an
average ∆y with a smaller magnitude and the magnitude
decreases with decreasing ∆x. It implies that the GRI policy

Fig. 9: Results in out-of-distribution synthetic lane-changing
scenario. We plot SuccessRate, CollisionRate, and the mean
value of ∆y versus ∆x. The error bands denote 95% confi-
dence interval. For SuccessRate and CollisionRate, the error
bands are of the indicator functions. We set δf = δc = 2m.

changes its strategy when the initial position of Vehicle 0 is
ahead of Vehicle 1. In order to keep a proper safe distance,
Vehicle 0 does not change its lane until Vehicle 1 surpasses
itself. On the other hand, the lateral behavior is unchanged for
the other two models. However, the vehicle cannot maintain
a substantial safe distance if it changes its lane too early,
which is verified by the plot of collision rate versus ∆x.
The difference in their strategies is further illustrated by the
example visualized in Fig. 12.

We repeat the experiment on the NGSIM datasets. Similar
to the case with the synthetic dataset, we remove one vehicle
from each scene, resulting in an interaction graph consisting
of a single edge (Fig. 7). It is worth noting that removing
a vehicle from a scene alters the dynamic of the interacting
system. It is not fair to expect the models to synthesize the
same trajectories in the dataset. Therefore, we do not aim
to compare the generated trajectories with the ones in the
dataset in this out-of-distribution test. We just check whether
the generated trajectories satisfy the desired characteristics of
the corresponding interactive behaviors.



14

Fig. 10: Results in out-of-distribution naturalistic traffic car-
following scenario. We plot SuccessRate versus ∆x with the
error bands denoting 95% confidence interval of the indicator,
1(∆xfi ⩾ δf ). We set δf = 2m.

Fig. 11: Results in out-of-distribution naturalistic traffic lane-
changing scenario. We plot SuccessRate, CollisionRate, and
the mean value of ∆y versus ∆x. The error bands denote 95%
confidence interval. For SuccessRate and CollisionRate, the
error bands are of the indicator functions. We set δf = δc =
2m.

In the lane-changing case, the remaining edge has the
type of yielding. According to our definition of the yielding
relation, we consider the same characteristics and adopt the
same metrics defined in Eqn. (13)-(15) for evaluation. Since
we do not have control over the data generation procedure,
we generate out-of-distribution test samples with different
levels of discrepancy by controlling the ratio of longitudinal
headway change. Given a sample from the original test dataset,
we generate its corresponding out-of-distribution sample by
shifting its initial longitudinal headway ∆x by a certain ratio,

denoted by δ, resulting in a new longitudinal headway ∆x′:

∆x′ = (1− δ)∆x.

We evaluate the models on datasets generated with different
values of δ. We are particularly interested in the cases when
δ ⩾ 1, which leads to a negative initial headway. We
present the results in Fig. 10 and 11. The comparison is
quite consistent with the synthetic scenarios. Compared to the
other baselines, our GRI policy can synthesize trajectories that
satisfy the desired semantic properties in a larger range of
distribution shifts.

The results suggest that even though the NRI model can
accurately reconstruct the trajectories, the unsupervised latent
space, and the corresponding policies do not capture the
semantic meanings behind the interactions. In contrast, the
GRI model learns a semantically meaningful latent space that
is consistent with human domain knowledge. Another useful
insight we draw from the experiment is that interaction labels
are not sufficient to induce an explainable model with seman-
tic latent space. Even though the supervised policy utilizes
additional information on the ground-truth interaction graph,
it fails to synthesize the following behavior in novel scenarios.
Although the GRI model still has a considerable gap in recon-
struction performance compared to the supervised baseline, it
provides a promising and principled manner to incorporate
domain knowledge into a learning-based autonomous driving
system and induce an explainable model.

VII. DISCUSSION AND LIMITATION

A. Application of the Semantic Latent Space

Enabling an explainable model is a crucial step toward
trustworthy human interaction. However, it is still unclear how
humans may benefit from improved explainability. We would
like to have a brief discussion on the potential application
of the semantic latent space introduced in GRI. When the
autonomous vehicle encounters an unfamiliar situation (e.g.,
the out-of-distribution scenarios studied in Sec. VI-E), a se-
mantic latent space gives the safety drivers or passengers the
privilege to review and override the inferred interaction graph
if the model misunderstands the scenario. In contrast, humans
can neither understand an interaction graph nor identify the
correct edge types, if the learned interactive behaviors do not
have explicit semantic meaning. Such kind of safety assurance
could help build up safe and trustworthy cooperation between
humans and autonomous vehicles.

However, it is impractical to keep the users monitoring
the model output in real time. Instead, we can introduce an
additional module to detect out-of-distribution scenes [46],
[47] and use the estimated epistemic uncertainty to decide
when to query the end users. In [46], the authors proposed an
adaptive variant of their robust imitative planning algorithm,
which incorporates such a unit. It is also a common practice
for current autonomous driving companies to have human
assistants for vehicles to query under abnormal situations.
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Fig. 12: Examples where the leading car is placed behind the following one at the initial timestep. The trajectories are visualized
as sequences of rectangles. Each rectangle represents a vehicle at a specific time step. The vehicles are driving along the positive
direction of the x-axis. The GRI policy still prompts the car-following behavior: It slows down the vehicle until the leading
one surpasses it. Meanwhile, the NRI policy and the supervised one do not behave as Ginteract suggests.

B. Limitation of the Learning Algorithm

In our experiments, GRI always has higher reconstruction
errors than NRI, especially on the synthetic dataset. One of the
reasons is that reconstruction error is not directly optimized
under the AIRL formulation. The objective function of NRI
consists of a reconstruction loss, which essentially minimizes
the Euclidean distance between the reconstructed trajectory
and the ground-truth one. In other words, it directly minimizes
the RMSE metrics used in our evaluation. In contrast, GRI
adopts the objective function of AIRL, which also minimizes
the distance between the trajectory pair. However, the distance
is defined by the learned discriminator and is not necessarily
equivalent to the Euclidean distance. In Appx. IX-C, we study
two AIRL baseline models on the synthetic dataset. The results
suggest that none of these AIRL-based approaches achieve the
same reconstruction performance as NRI.

Another reason is that the current learning algorithm is
not quite stable, because of the adversarial training scheme
we introduce when incorporating AIRL into the original NRI
model. In typical AIRL settings, we may mitigate this problem
by warm-starting the training with a policy network pre-
trained through imitation learning or behavior cloning [33],
[29]. However, since we aim to learn a semantic latent space,
warm-starting the training with a model with unsupervised

latent space is not helpful. Alternatively, we may initialize the
policy decoder with the supervised one. One issue is that it
will change our current setting where human labels are not
required. We will investigate this new setting in our future
work, and develop a more stable training scheme to further
optimize the performance of GRI.

The structured reward functions also interfere with the
stability of the learning procedure. Compared to the variant
of GRI studied in Appx. IX-C with semantic reward functions
removed, we found GRI is more sensitive to hyperparameters
and prone to diverging if not carefully tuned. It is because
although the structured reward functions are differentiable,
it is not guaranteed that the reward functions can be stably
optimized through gradient descent. In our future work, we
will explore a more stable and robust learning scheme with
those structured reward functions.

C. Scaling to Large-Scale Traffic Scenarios

In our experiments, we tested GRI in three-car interactive
scenarios extracted from the NGSIM dataset. Here we discuss
how we may extend GRI to model more sophisticated interac-
tive traffic scenarios consisting of a large number of agents. In
our current implementation, we assume a complete bi-directed
scene graph. The dense graph makes the message-passing
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operations computationally expensive when the number of
agents N is large. The number of edges grows quadratically
with the number of agents. Thus, the message-passing opera-
tions involve matrix multiplications over matrices with O(N3)
non-zero elements. To alleviate the computation burden, one
practical solution is to construct sparse scene graphs instead.
We may leverage heuristics [48] or data-driven methods [49],
[50] to coarsely rule out non-interactive agent pairs from the
scene graph. Note that we only need a coarse and conservative
pre-processing of the scene graphs, and leave it for GRI to
infer the remaining non-interaction edges. Thus, we can still
avoid the expense and bias introduced by querying human
labor to obtain finely-labeled traffic data. It is reasonable to
expect that we can obtain a sufficiently sparse scene graph in
most cases, since highly interactive scenes are rare in real-
world traffic [49]. To further enhance the modeling capacity,
we may consider removing some inherent assumptions of
GRI on the interactive systems. For instance, the current GRI
framework assumes a static interaction graph over the time
horizon. We will investigate how to incorporate dynamic graph
modeling [51] into GRI in future work. Also, as discussed in
Sec. IV, we plan to further generalize GRI to non-cooperative
scenarios by removing the cooperative assumption.

VIII. CONCLUSION AND FUTURE WORK

In this work, we propose Grounded Relational Inference
(GRI), which models an interactive system’s underlying dy-
namics by inferring the agents’ semantic relations. By incor-
porating structured reward functions, we ground the relational
latent space into semantically meaningful behaviors defined
with expert domain knowledge. We demonstrate that GRI
can model interactive traffic scenarios under both simulation
and real-world settings, and generate semantic interaction
graphs explaining the vehicle’s behavior by their interactions.
Although we limit our experiments to the autonomous driving
domain, the model itself is formulated without specifying the
context. As long as proper domain knowledge is available,
the proposed method can be extended naturally to other fields
(e.g., human-robot interaction). As discussed in Sec. VII, there
are several technical gaps we need to bridge before extending
the current framework to more complicated traffic scenarios
and interactive systems in other fields. In future work, we will
investigate these directions to improve the performance and
scalability of GRI while maintaining the advantages of GRI
as an explainable model.

IX. APPENDIX

A. Graph Neural Network Model Details

In terms of model structure, both the encoder and the policy
decoder are built based on node-to-node message-passing [38],
consisting of a node-to-edge message-passing and an edge-to-
node message-passing:

v → e : hli,j = f le(h
l
i,h

l
j ,xi,j), (16)

e→ v : hl+1
j = f lv(

∑
i∈Nj

hli,j ,xj), (17)

where hli is the embedded hidden state of node vi in the lth

layer and hli,j is the embedded hidden state of the edge ei,j .
The features xi and xi,j are assigned to the node vi and the
edge ei,j respectively as inputs. Nj denotes the set of the
indices of vi’s neighbouring nodes connected by an incoming
edge. The functions f le and f lv are neural networks for edges
and nodes respectively, shared across the graph within the lth

layer of node-to-node massage-passing.
GNN Encoder. The GNN encoder is essentially the same

as in NRI. It models the posterior distribution as qϕ(z|τ ) with
the following operations:

h1
j = femb(xj),

v → e : h1
i,j = f1e (h

1
i ,h

1
j ),

e→ v : h2
j = f1v

(∑
i ̸=j

h1
i,j

)
,

v → e : h2
i,j = f2e (h

2
i ,h

2
j ),

qϕ(zi,j |τ ) = softmax
(
h2
i,j

)
,

where f1e , f
1
v and f2e are fully-connected networks (MLP) and

femb is a 1D convolutional networks (CNN) with attentive
pooling.

GNN Policy Decoder. The policy operates over Ginteract
and models the distribution πη (a

t|xt, z), which can be fac-
torized with πη

(
atj |xt, z

)
as in Eqn. (1). We model πη as a

Gaussian distribution with the mean value parameterized by
the following GNN:

v → e : h̃ti,j =

K∑
k=0

1(zi,j = k)f̃ke (x
t
i,x

t
j), (18)

e→ v : µtj = f̃v

(∑
i ̸=j

h̃ti,j

)
, (19)

πη
(
atj |xt, z

)
= N (µtj , σ

2I). (20)

Alternatively, the model capacity is improved by using a
recurrent policy πη

(
atj |xt, . . . ,x1, z

)
; Namely, the agents take

actions according to the historical trajectories of the system.
We follow the practice in [12] and add a GRU unit to obtain
the following recurrent model:

v → e : h̃ti,j =

K∑
k=0

1(zi,j = k)f̃ke

(
h̃ti, h̃

t
j

)
, (21)

e→ v : h̃t+1
j = GRU

(∑
i̸=j

h̃ti,j ,x
t
j , h̃

t
j

)
, (22)

µtj = fout

(
h̃t+1
j

)
, (23)

πη
(
atj |xt, . . . ,x1, z

)
= N (µtj , σ

2I), (24)

where h̃ti is the recurrent hidden state encoding the historical
information up to the time step t− 1.

B. Reconstruction Visualization on Synthetic Dataset

In our experiments, we found that GRI has a significantly
larger reconstruction error on the synthetic dataset than the
NRI baseline. To better understand this performance gap in
reconstruction, we looked into the reconstructed trajectories
of both models. Instead of executing the mean value of
the policy output as we did in our main experiments, we
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Fig. 13: Average standard deviation of states along the time horizon. (a) and (b) show the standard deviation of x and v in the
synthetic car-following scenario. (c)-(e) show the standard deviation of x, y, and v in the synthetic lane-changing scenario.

Fig. 14: Visualization of the reconstructed trajectories in a
lane-changing scene. (a) and (b) correspond to the trajectories
of Car 1 and Car 0 respectively. We visualize the distributions
of the reconstructed trajectories estimated using kernel density
estimate. The ground-truth trajectories are in blue.

sampled the actions from the policy distribution to estimate
the variance of reconstructed trajectories. In Fig. 13, we plot
the average standard deviation of reconstructed states along
the time horizon. We observed that the policy decoder of
GRI tends to have a larger variance. It partially explains the
large RMSE values reported in Table I: the metrics were
computed with a single reconstructed trajectory. The policy
distribution of GRI still has a larger bias than the one of NRI.
We visualize the reconstructed trajectories of a lane-changing
case in Fig. 14. While the GRI policy induces larger variance,
the distribution of the reconstructed trajectories is sensible.

C. AIRL Ablation Study

With the motivation of incorporating semantic meaning into
the relational latent space, we developed GRI by introducing
AIRL into relational inference and studied how the semantic
reward functions may guide relational latent space learning.
Meanwhile, it would be interesting to take a different perspec-
tive and study the effects of introducing relational inference
and semantic reward functions into AIRL. In this section,

0

1
𝑧 = 1

2

𝑧 = 1𝑧 = 1

Lane-changing Graph Inferred by GRI-VAIRL

Fig. 15: The interaction graph inferred by the GRI-VAIRL
model in the synthetic lane-changing scenario.

we take the synthetic scenarios as examples and conduct an
ablation study, where we compare GRI against two variants.

The first one is an AIRL variant, denoted by GRI-AIRL,
which is obtained by removing relational inference and seman-
tic reward functions from GRI. Concretely, both the policy and
reward decoders operate on a fully-connected interaction graph
with homogeneous edge types. And we simply use MLPs
to model the reward functions in Eqn. (5) and (6), instead
of those semantic reward functions. The objective function
then becomes Eqn. (8), but without neither the expectation
over z nor the information bottleneck constraint. The second
one is a variational AIRL variant, denoted by GRI-VAIRL,
in which we introduce relational inference but do not use the
semantic reward functions. In this case, the objective function
is identical to the one in GRI, i.e., Eqn. (8).

The results are summarized in Table III. For the car-
following scenario, the reconstruction performance is im-
proved after introducing relational inference into AIRL. It
is interesting that the GRI-VAIRL variant is able to recover
the ground-truth interaction graph, even without the semantic
reward functions. It makes sense because the car-following
scenario only consists of a single non-trivial edge type. It is
plausible for the model to distinguish non-interaction edges
from others because a null reward is enforced for non-
interaction edges. In some senses, we may still consider
the reward function semantic—it incorporates the semantic
meaning of non-interaction into the latent space. However,
we cannot guarantee that GRI-VAIRL can distinguish between
different non-trivial interactive behaviors, which is verified by
the lane-changing case. Fig. 15 shows the inferred interaction
graph. The model only adopts a single non-trivial edge type to
describe all the interactive behaviors. Compared to the ground-
truth graph, the inferred graph has an additional edge z2,1
but ignores the edge z1,0. Ignoring the edge z1,0 limits the
modeling capacity of the policy decoder, which could possibly
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explain why GRI-VAIRL has larger RMSEx and RMSEv than
GRI-AIRL in the lane-changing case.

In summary, we could improve reconstruction performance
by introducing relational inference into AIRL. Even if GRI-
VAIRL has larger reconstruction errors in the lane-changing
case due to the biased inferred graph, we still observe that
GRI-VAIRL converges faster. The learning process becomes
more stable and less sensitive to different hyperparameters. We
think it is because the model may identify those agents that are
not interacting with each other, preventing the reward decoder
from fitting a reward function unifying both interactive and
non-interactive behaviors. Meanwhile, it is still necessary to
incorporate semantic reward functions to differentiate different
interactive behaviors and induce a semantically meaningful
interaction graph. However, semantic latent space comes at
a cost of reconstruction performance. The structured reward
functions limit the modeling capacity of the reward decoder.
Also, although the structured reward functions are differen-
tiable, it is not guaranteed that they can be well optimized
through gradient descent. As a result, they may interfere with
the stability of the learning procedure.
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