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Abstract—Deep learning has become a powerful tool for Mars
exploration. Mars terrain semantic segmentation is an important
Martian vision task, which is the base of rover autonomous
planning and safe driving. However, there is a lack of sufficient
detailed and high-confidence data annotations, which are exactly
required by most deep learning methods to obtain a good model.
To address this problem, we propose our solution from the per-
spective of joint data and method design. We first present a new
dataset S5Mars for Semi-SuperviSed learning on Mars Semantic
Segmentation, which contains 6K high-resolution images and is
sparsely annotated based on confidence, ensuring the high quality
of labels. Then to learn from this sparse data, we propose a semi-
supervised learning (SSL) framework for Mars image semantic
segmentation, to learn representations from limited labeled data.
Different from the existing SSL methods which are mostly
targeted at the Earth image data, our method takes into account
Mars data characteristics. Specifically, we first investigate the im-
pact of current widely used natural image augmentations on Mars
images. Based on the analysis, we then proposed two novel and
effective augmentations for SSL of Mars segmentation, AugIN
and SAM-Mix, which serve as strong augmentations to boost the
model performance. Meanwhile, to fully leverage the unlabeled
data, we introduce a soft-to-hard consistency learning strategy,
learning from different targets based on prediction confidence.
Experimental results show that our method can outperform state-
of-the-art SSL approaches remarkably. Our proposed dataset is
available at https://jhang2020.github.io/S5Mars.github.io/.

Index Terms—Mars vision tasks, terrain segmentation, image
semantic segmentation, semi-supervised learning.

I. INTRODUCTION

HUMANS have shown great enthusiasm for Mars. The
history of human research on Mars can date back to

the 1960s. So far, more than 30 rovers have been dispatched
to the red planet, and the increasing amount of available data
promotes the application and development of deep learning al-
gorithms. Deep-learning-based methods have already assisted
in prioritizing data selection [1], collecting data, and analyzing
data [2–4]. This paper explores the task of Mars terrain
semantic segmentation, which aims to identify the drivable
areas and the specific terrains from images. It is of great
significance to obstacle avoidance, traversability estimation,
data collection, and path planning [5, 6], ensuring the safety
and productivity of ongoing and future missions to Mars.

Mars semantic segmentation faces problems from both data
and method design. First, the lack of satisfactory and available
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data hinders the development of deep learning methods to
some extent. On the one hand, because of the high cost
of Mars rovers, limited bandwidth, and data transmission
loss from Mars to Earth, collecting Martian data is very
expensive. On the other hand, due to the complexity and sim-
ilarity of the terrain, delicate and dense pixel-level labeling is
highly specialized and time-consuming. Accordingly, previous
datasets [7, 8] are not satisfactory because of the low-quality
annotations or the roughly defined categories. AI4Mars [8],
a newly published Mars terrain segmentation dataset, only
defines four simple categories which are difficult to meet the
actual requirements of complex terrain identification. Besides,
some datasets [7, 8] collected through crowdsourcing often
do not have satisfactory annotation quality due to inconsistent
standards.

From a methodological point of view, the existing methods
heavily rely on large amounts of training data and lack targeted
and effective design. Early works directly applied a certain
machine learning algorithm such as Support Vector Machines
(SVM) [6]. With the rapid development of deep learning, the
terrain segmentation performance is greatly improved by meth-
ods based on deep neural networks [5, 8, 9]. However, they
still rely on fully supervised learning pipelines that require
a lot of high-quality labeled data, which is often difficult
to achieve. To this end, semi-supervised learning (SSL) has
attracted lots of attention, which learns representations from
limited labeled data as well as the amounts of unlabeled data.
However, most existing SSL methods are designed for Earth
image data and cannot be directly transferred to Mars image
segmentation tasks, due to the properties of Mars images.
First, the color of Mars images is less diverse. Traditional
color augmentations, which are crucial and widely used in
SSL works [10–12], can cause over-distortion problem [13]
in the form of color distribution shift for the Mars images,
and fail to improve the performance as shown in Fig. 5.
Note that color distribution shift can arise in different data
domains with some similar properties as the Mars images, e.g.,
less diverse color distributions, when applying the traditional
color augmentations. Nevertheless, it is still less explored
in previous SSL works, especially from the perspective of
data augmentations. Besides, the objects in Mars images are
often with irregular contours and obvious occlusions, e.g.,
between rocks and soil/sand. As a result, the high background
complexity makes the model suffer from greater uncertainty in
the consistency learning of unlabeled data, leading to the sub-
optimal representations. Moreover, some categories are more
confusing between each other, e.g., rocks and bedrocks, soil
and sand, which require more fine-grained representations to
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distinguish.
In summary, there are two main challenges in the Mars

terrain segmentation task: 1) the lack of data with adequate
detailed and high-confidence annotations, 2) insufficient stud-
ies targeted at SSL on Mars image data. We solve the above
problems from the perspective of both data and method design,
which are named Semi-SuperviSed Semantic Segmentation for
Mars (S5Mars). We first create a new dataset to provide a
high-quality and fine-grained labeled data for Mars terrain
segmentation. Our dataset contains 6K high-resolution images
captured on the surface of Mars, each of which is annotated
by a professional team. There are 9 categories defined in our
dataset, including sky, ridge, soil, sand, bedrock, rock, rover,
trace, and hole, respectively. To improve the quality of labels,
the annotation of the dataset adopts a sparse labeling style,
i.e., only the area with high human confidence is annotated.

To learn from this sparse data, we propose a new semi-
supervised framework for Mars image terrain segmentation.
Our method is based on the recently popular consistency
regularization-based methods, which utilize weak-to-strong
augmentations to generate the perturbation while pursuing
the perturbation consistency. Specifically, we first investigate
the impact of widely used Earth image augmentations on
Mars data and are surprised to find their adverse effects on
the SSL of Mars segmentation. Based on this analysis, we
further propose two novel and effective augmentations, AugIN
and SAM-Mix. AugIN exchange statistics between images to
generate new data views while avoiding drastic color distribu-
tion shift. SAM-Mix utilizes the pretrained Segment-Anything
Model (SAM) [14] to generate high-quality object masks,
reducing the uncertainty of the mixed images. These two data
augmentations lead to better consistency learning and improve
the performance remarkably. Finally, we introduce the soft-
to-hard consistency learning strategy, which utilizes the soft
pseudo-labels in low-confidence regions, while using the hard
pseudo-labels in high-confidence regions, fully taking advan-
tage of the unlabeled data. Extensive experiments and ablation
studies verify the effectiveness of the proposed method.

Our contributions can be summed up as follows:
• We collect a new fine-grained labeled Mars dataset for

terrain semantic segmentation, which contains a large
amount of Martian geomorphological data. Our dataset is
sparsely annotated by a professional team under multiple
rounds of inspection rework. The high-quality dataset can
provide accurate and rich segmentation guidance.

• We systematically study the data augmentations used in
current mainstream SSL methods and find their detrimen-
tal impact on Mars image segmentation, especially the
traditional color augmentations. We analyze this problem
and further propose two new and effective augmentations,
SAM-Mix and AugIN, boosting the performance of SSL
methods for Mars image segmentation.

• To fully take advantage of the unlabeled data, a soft-
to-hard consistency learning strategy is introduced. The
model is constrained to learn consistency by the hard
pseudo-labels in high-confidence regions as well as the
soft pseudo-labels in low-confidence regions, further im-
proving the consistency.

The rest of this article is organized as follows. In Section II,
we provide a detailed survey on Martian datasets and a brief
review of deep learning for Mars. Section III introduces our
proposed Mars segmentation dataset. Then we present our
framework for Mars semantic segmentation in Section IV.
Experimental results and analysis are shown in Section V.
The conclusion is finally given in Section VI.

II. RELATED WORKS

A. Deep Learning for Mars

With the increasing amount of available data and the rapid
development of computing power, deep learning is playing an
increasingly important role in Mars exploration.

For many reasons such as limited computing resources, ex-
isting deep learning methods are usually ex-situ (Earth edge).
For terrain identification, Deep Mars [16] trains an AlexNet to
classify engineering-focused rover images (e.g., those of rover
wheels and drill holes) and orbital images. However, it can
only recognize one object in a single image. The Soil Property
and Object Classification (SPOC) [9] proposes to segment the
Mars terrains in an image by using a fully convolutional neural
network. Swan et al. [8] collect a terrain segmentation dataset
and evaluate the performances using DeepLabv3+ [28]. Con-
sidering the dependence of existing methods on large amounts
of data, [29] utilizes a self-supervised method and trains the
model on less labeled images. Recently, Transformer-based
network is studied [18, 30] for Martian rock segmentation
task. For other tasks, Zhang et al. [31] deal with Mars visual
navigation problem by utilizing a deep neural network, which
can find the optimal path to the target point directly from the
global Martian environment.

Meanwhile, intrigued by the vision of autonomous probes
that rely on deep learning even without human-in-the-loop
requirements, scientists are studying the potential of imple-
menting in-situ (Mars edge) deep learning algorithms using
high-performance chips [32]. For example, the Scientific Cap-
tioning of Terrain Images (SCOTI) [1] model automatically
creates captions for pictures of the Martian surface based on
LSTM, which helps selectively transfer more valuable data
within downlink bandwidth limitations. For energy-optimal
driving, Higa et al. [25] propose to predict energy consumption
from images based on a PNASNet-5 [33].

However, many existing works still directly transfer the
technology designed for the Earth scene to the Mars task,
which can be sub-optimal due to the properties of Mars
data. Meanwhile, due to the significant bandwidth and com-
putational resource limitations, the model is expected to be
lightweight and efficient, and hence the large models are
unsuitable to employ. Most importantly, most of these methods
require a lot of annotated training data, which is expensive
and hard to obtain. Although some domain adaptation meth-
ods [22, 34] also can learn the target domain knowledge
without many labels, they still suffer from taxonomy incon-
sistencies in segmentation detail as discussed in [29, 35]. To
this end, in this paper we present a powerful semi-supervised
learning framework designed for the Mars images.
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TABLE I
SUMMARY OF MARS TERRAIN-AWARE DATASETS.

Type Source Dataset Scale Classes Description

Real
Curiosity rover

[9]
5k - Wheel slip and slope angles prediction
700 6 Terrain segmentation

[5] 300 3 Terrain classification
[15] 620 4 Terrain classification
[16] 6k 24 Terrain classification
[17] 405 - Rock detection
[18] 8k - Rock detection
[1] 1k - Image description

[19] 310k -
Compressed image quality evaluation
with automatic labeling

Opportunity, Spirit rovers [20] 117 - Rock detection

Curiosity, Opportunity,
Spirit rovers

[21] 46 2 Terrain segmentation
[8] 35k 4 Terrain segmentation
[22] 5k 9 Terrain segmentation
[7] 5k 6 (17 sub) Terrain segmentation

Real + Synthetic Curiosity rover [23] 30k 5 Terrain classification
Synthetic ROAMS rover simulator [20] 55 - Rock detection

Simulation field

Atacama Desert
Zoë rover prototype

[24] 30 - Rock detection

JPL Mars Yard
FIDO rover Platform

[20] 35 - Rock detection

JPL Mars Yard
Athena rover Platform

[25] 91k - Rover energy consumption

Devon Island [26] 400 - Rock detection
Real +

Simulation field
Opportunity, Spirit rovers [27] 36 2 Terrain segmentation

B. Datasets for Mars Vision

Datasets are the basis for intelligent algorithms develop-
ment. At present, there are various datasets of planetary sur-
faces, such as digital simulation Lunar landscape segmentation
dataset ALLD. As for Mars, the commonly used terrain-aware
datasets can be divided into three categories: rover shooting
real data, artificial synthetic data, and earth simulation field
shooting data. The rover shooting data are captured by devices
of rovers that land on Mars. The number of rovers sent
to Mars will gradually increase along with the progress of
space research. However, the amount of data available now is
still relatively limited. Synthesizing Mars datasets by means
of digital modeling simulation or adversarial learning is an
important data supplement, but can differ greatly from the
real Mars data. Earth simulation field shooting way requires
building a simulation platform or finding a similar landscape
on Earth to Mars, which is difficult to implement. The current
Mars terrain-aware datasets are shown in Table I, which are
shot by the Mars rovers. A large proportion of them have an
image quantity of less than 1000, which can not meet the
training needs of the machine learning models. The richness
of Mars terrain-aware datasets still needs to be strengthened.

C. Semi-Supervised Learning

Semi-supervised learning [36] utilizes the manifold struc-
ture of unlabeled data to assist learning with labeled data. The
key issue is how to exploit the information of unlabeled data.

Generally, the cross-entropy loss is optimized by the ground-
truth label on the labeled data, while a regularization term is
applied to the model w.r.t the unlabeled data. For example, the
pseudo-label method [37] assigns pseudo-labels to unlabeled
data through a classifier trained on supervised data, which is
typical in entropy minimization methods.

Regarding the utilization of unlabeled data, many re-
searchers have conducted extensive studies, covering unsu-
pervised contrastive learning [38, 39], uncertainty attention
mechanism [39, 40], and extra correcting networks [41].
However, these methods improve the performance at the cost
of increasing space and computational complexity. Recently,
consistency regularization-based methods have attracted lots of
attention, due to their simplicity and effectiveness. They rely
on various perturbation techniques (augmentations) to gener-
ate different data patterns, which maintain similar semantic
information as the original data. Then, the consistency regu-
larization objective is performed to guide the learning of the
unlabeled data. MixMatch [42] mixes labeled and unlabeled
data using MixUp [43] and performs consistency regulariza-
tion utilizing low-entropy labels. FixMatch [10] further assigns
pseudo-labels, which are the predictions by teacher model
on weakly augmented data, to the corresponding strongly
augmented data. Inheriting from FixMatch, FlexMatch [44]
and FreeMatch [45] propose to learn the threshold for different
classes adaptively to filter the low-confidence pseudo-labels.
Zhao et al. [11] proposed a series of strong data augmentations
to enhance the augmented space. UniMatch [12] utilizes both
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(a) Sky (b) Ridge (c) Soil

(d) Sand (e) Bedrock (f) Rock

(g) Rover (h) Trace (i) Hole

Fig. 1. Examples for each label category (highlighted in red).
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(a) The number of images with n categories
appearing simultaneously.
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(b) The distribution of dif-
ferent label area.

Fig. 2. Numerical statistics on our S5Mars dataset. The figures show the
richness of the categories from two aspects: distribution of the number of
different labels in each image and distribution of label area. Note no image
contains 9 labels simultaneously in its annotation, so it is omitted in (a).

the data-level and feature-level augmentations to constrain the
consistency learning.

In these consistency regularization methods, the augmen-
tations, i.e., the perturbation techniques, are crucial for the
semantic segmentation. Many techniques, e.g., geometric-
based, color-based, mixing-based, and feature perturbation-
based methods have been studied. Furthermore, some random
auto-augment modules are developed [46] to further expose
data patterns. However, these methods are less suitable and
effective for the Mars semantic segmentation, due to the
special properties of Mars images as we discussed in Sec-
tion I. Therefore, it is significant and critical for the study of
augmentations for Mars image data. In this paper, we analyze
the characteristics of Mars images, and study the performance
of existing common augmentations on Mars data. Meanwhile,
we propose two effective new augmentations to boost SSL for
Mars image segmentation.

III. PROPOSED MARS IMAGERY SEGMENTATION DATASET

To solve the problem of scarce available training data
for deep learning, we create a fine-grained labeled Mars
dataset for the exploration on Mars surface, namely, S5Mars.
Our dataset includes 6,000 high-resolution images taken on
the surface of Mars, by color mast camera (Mastcam) from
Curiosity (MSL), with the spatial resolution of 1200 × 1200.
The dataset is divided in a roughly stratified sampling manner
to make the label distribution similar among different splits,
yielding a training set of 5000 images, a validation set of 200
images and a test set of 800 images.

A. Labeling Process

There are 9 label categories, sky, ridge, soil, sand, bedrock,
rock, rover, trace, and hole, respectively. Examples of each
category are shown in Fig. 1. The labeling criteria are as
follows:

• Sky. The Martian sky, often at the top of a distant image,
bounded by the upper edge of a mountain or horizon.

• Ridge. The distant peaks bounded by the sky above and
the horizon below.

• Soil. Unconsolidated or poorly consolidated weathered
material on the surface of Mars, with larger and coarse-
grained grains containing small stones.

• Sand. Granular material, more fluid, less viscous, some
with windward and leeward sides, most of the time with
sand ridges.

• Bedrock. Partially covered by the soil and buried at
varying depths.

• Rock. A stone that is completely exposed to the ground
and is roughly lumpy or oval in shape, usually with
distinct shadows.

• Rover. The rover itself.
• Trace. The trace left by the rover when it passed over

the ground.



ZHANG et al.: S5MARS: SEMI-SUPERVISED LEARNING FOR MARS SEMANTIC SEGMENTATION 5

BedrockSoil GravelRocksBedrockSoil Shadows Sky Ridge Rock Bedrock Sand Soil

(a) AI4Mars (b) Mars-Seg (c) S5Mars

Fig. 3. Some image-label examples in different datasets: (a) AI4Mars [8]. Due to the few defined categories, the annotation diversity and adequacy are
insufficient. Meanwhile, there are some cases of mislabeling (red box). (b) Mars-Seg [22], which gives a complete pixel-level labeling. However, the label
can be misleading when different categories mix up with each other (red box). (c) Our dataset S5Mars, which provides accurate labeling for regions with
high confidence.

• Hole. The hole left by the rover during its sampling
operation on Mars, contains the surrounding soil of
different colors.

Martian surface condition is complicated due to the harsh
and volatile Martian environment. The terrain types can mix
and overlap with each other and it becomes hard for humans
to distinguish the correct categories clearly. Considering the
situation, we apply sparse labeling, i.e., only the pixels with
enough human confidence are labeled. The overall annotation
priority is in a coarse-to-fine manner, which means we label
each image in order of object size, and the total pixel an-
notation ratio is 48.9%. As for the annotating process, the
annotation rules are discussed more than ten times to keep
consistency and preciseness. Each annotation result passes
more than two turns of quality inspections. Annotation work
is carried out by a professional team, where 90% of the
annotators have been engaged in such annotation work more
than six times. The annotation time of each terrain image is
about 30 minutes.

B. Comparison and Analysis

We make a statistical analysis on the semantic labels in the
dataset, as shown in Fig. 2. We show the distribution of the
number of different labeled categories contained in each image
in Fig. 2(a). Most images are relatively complex with three or
four annotations in one scene. This distribution on training,
validation and test sets keeps in good consistency.

We make statistics of the distribution of label area of each
category, as shown in Fig. 2(b). The total pixel-wise label ratio
is 49%. For the labeled regions, bedrock is the label of the
largest annotation area, ridge the second. Rocks appear in most
of the images in the dataset, but the total area is small. The
artificial impact, e.g., rover, trace, and hole, accounts for few
portions of the labeled area, but they have a greater variety of
shapes and are crucial to the observation and judgment system
for intelligence research on Mars.

AI4Mars contains 4 categories with gray-scale images avail-
able solely, which can only provide limited task knowledge.
Moreover, since AI4Mars is a crowdsourcing project, though
the number of submissions is large, the annotators may have

inconsistent understandings of labeling standards, which can
lead mislabeling in the annotations as shown in Fig. 3(a). In
contrast, our dataset is equipped with high-resolution RGB
images including 9 semantic categories. Meanwhile, we es-
tablish clear labeling criteria and provide professional training
to annotators, making the proposed dataset more reliable.

Mars-Seg [22] is also a public Mars terrain segmentation
dataset. The dataset has 1,064 high-resolution grayscale im-
ages and 4,184 RGB images with a spatial resolution of
560 × 500, while S5Mars is composed of high-resolution
RGB images, which offers more accurate and more abundant
semantic information for detection and segmentation tasks.
Meanwhile, categories in Mars-Seg like gravel, sand, and rocks
mix up with each other, making it hard to determine the terrain
scene into any one category, as shown in Fig. 3(b). Instead,
S5Mars applies confidence-based sparse-labeled manner. This
way we guarantee the labels are strongly representative in each
category and reduce the label noise introduced in the labeling
work, as shown in Fig. 3(c).

IV. THE PROPOSED METHOD

In this section, we introduce the proposed method for Mars
image semantic segmentation. The overview and motivations
are first provided in Section IV-A. Then, we systematically in-
vestigate the augmentations for Mars images in Section IV-B,
and propose two effective augmentation techniques based on
the analysis. Finally, in Section IV-C, we introduce the soft-to-
hard consistency learning strategy and present the full model.

A. Preliminaries and Motivation

1) Overview: As introduced in the previous sections, our
proposed dataset is annotated in a sparse style, i.e., some areas
of an image are annotated and some are not. For clarity, we
no longer distinguish between unlabeled images and unlabeled
areas in an image, which can be aligned with a few minor
changes. Following the dominant consistency regularization
semi-supervised methods [10, 36], the model is trained on both
labeled and unlabeled images simultaneously. Given a batch
of labeled images Bl = {(xi, yi)}

|Bl|
i=1 and a batch of unlabeled

images Bu = {(ui)}|Bu|
i=1 , the goal of SSL is to train a model
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Fig. 4. The overview of the proposed framework for semi-supervised Mars semantic segmentation. We adopt a two-branch teacher-student architecture. Two
novel augmentations are proposed as strong augmentations, AugIN and SAM-Mix. AugIN exchanges the statistics of the two samples, i.e., mean and standard
deviation. SAM-Mix utilizes an off-the-shelf SAM to obtain the object binary masks to perform copy-paste operation, reducing the uncertainty of the augmented
images. Finally, the model is optimized according to a soft-to-hard consistency learning strategy, utlizing both the soft labels pt

i and the hard labels yti based
on the confidence.

f(·; θ) with good representations by optimizing the following
objective L:

L = Lsup + λuLunsup, (1)

where Lsup is the supervised loss on the labeled images, i.e.,
the cross-entropy loss, and the Lunsup is the unsupervised loss
for unlabeled images. λu controls the weight of unsupervised
term.

Our method is based on the recent popular consistency
regularization-based SSL method, FixMatch [10]. Specifically,
a two-branch network is adopted, consisting of a teacher
model f(·; θt) and a student model f(·; θs). The teacher model
f(·; θt) can be identical to the student model sharing the same
weights. Alternatively, it can be updated gradually via the
exponential moving averaging (EMA) of the student model
weights:

θt ← mθt + (1−m)θs, (2)

where m ∈ [0, 1) is the momentum coefficient. We follow
the EMA setting to update the teacher model, which is also
recommended in Mean-Teacher [47]. The student model is
optimized via the backward gradients.

The core implementation in FixMatch is the weak-to-strong
augmentation strategy, which serves as the perturbations and
generate different augmented data views. Specifically, given
the weak augmentations Tw and strong augmentations Ts, the
augmented views uw

i = Tw(ui), us
i = Ts(ui) are constructed

and fed into the teacher and student model to encode, respec-
tively. The teacher model assigns the pseudo-labels for weakly
augmented images, which are then utilized in the learning of
student model for strongly augmented images. Concretely, the
unsupervised consistency loss can be formulated as follows:

Lce
unsup =

1

|Bu|

|Bu|∑
i=1

1

H ×W

H×W∑
j=1

Lce(ps
i (j), yt

i(j)), (3)

yti(j) = 1(argmax(pt
i(j))), (4)

where ps
i (j)/pt

i(j) is the predicted scores output by the stu-
dent/teacher model after softmax layer corresponding to the

jth pixel of the ith unlabeled image ui. yti(j) is one-hot
encoding of the pseudo-label generated from the teacher model
and 1 is the one-hot indicator function. H and W are the
height and width of the image. Lce is the cross-entropy loss
function.

2) Motivation: For SSL in Mars image semantic seg-
mentation, there are two main challenges to be solved: (a)
Previous augmentations for the natural images on Earth can be
ineffective due to the different properties of Mars images. (b)
The unlabeled regions of the Mars images tend to be with high
uncertainty, making the pseudo-labels less reliable for training.
These problems affect the performance of the existing SSL
frameworks for Mars image segmentation. To overcome these
challenges, we propose a simple yet effective SSL framework,
as shown in Fig. 4, which adopts effective augmentations
and learns semantic representations by exploring soft-to-hard
consistency, which will be introduced in the following parts.

B. Augmentations for Mars Images

As pointed in previous works [10–12], the augmentation
module plays an important role in SSL, encouraging the model
to learn the consistency in the perturbations. Generally, the
common augmentations adopted for SSL methods can be
divided into the following categories:

• Geometrical Augmentation. It utilizes some geometrical
transformations, e.g.Flip and Translate, to generate new
data views. These augmentations often serve as the basic
augmentations, i.e., the weak augmentations, due to their
efficiency and stability.

• Noise-Based Augmentation. Different augmented views
can be obtained by simply injecting random noise into the
original image, e.g., Gaussian Noise, and Random Mask.

• Color-Based Augmentation. A series of color transfor-
mations are introduced to further enlarge the data dis-
tributions, e.g., Gaussian Blur, Equalize, and Sharpness.
More details can be found in [46]. These transformations
facilitate the model to learn the intrinsic semantic con-
sistency by perturbing the color distribution of images.
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Fig. 5. Comparison of different augmentations on SSL for Mars segmentation.
(a): Identity, (b): Gaussian Noise, (c): CutOut, (d): Gaussian Blur, (e): Hue,
(f): Contrast, (g): Equalize, (h): Brightness, (i): CutMix, (j): Dropout. (k) and
(l) are the proposed AugIN and SAM-Mix.

TABLE II
COMPARISON OF THE STATISTICAL INFORMATION BETWEEN THE MARS

IMAGES AND EARTH IMAGES. LOWER VALUES OF THE METRICS INDICATE
LESS DISPERSION OF THE DATA DISTRIBUTION.

Dataset
(R, G, B)

Standard Deviation Variable Coefficient

S5Mars (0.134, 0.121, 0.099) (0.214, 0.233, 0.273)

ImageNet [52] (0.229, 0.224, 0.225) (0.472, 0.491, 0.554)

• Mixing-Based Augmentation. Mixing methods have
been proven effective for SSL scenarios. They mix the
two samples via the interpolation (Mixup [43]) or cut-
paste (CutMix [48]) operations. Some advanced mix-
ing methods are further developed for SSL such as
CowMix [49] and ClassMix [50].

• Feature-Level Augmentation. The most common aug-
mentation in feature-level is Dropout [51] operation,
which can also be regarded as a kind of model per-
turbation. It is often utilized as strong augmentations in
conjunction with other augmentations.

We focus on the latter four, which serve as strong augmenta-
tions and have a significant impact on model performance. Fol-
lowing the recent work [11], we adopt Resize, Crop, and Flip
as the weak augmentations. In addition, we choose different
augmentations, which are commonly used and found beneficial
for the learning of Earth images, as strong augmentations to
demonstrate their impact separately. The results are shown in
Fig. 5. As we can see, unlike natural images on Earth, the
noise-, color-based and feature augmentations cannot bring
a boost compared with the “identity” baseline. To further
understand this phenomenon, we analyze the data from a
statistical perspective and present the comparison of standard
deviation and coefficient of variation between Mars and Earth
images. As shown in Table II, the dispersion of RGB values in
the Mars image is much less than that of Earth natural image,
which indicates that the color distribution of the Mars image is
more concentrated. It is in line with our observation that there
is a high similarity within and between Mars images. Based on
this conclusion, we argue that the traditional color-based per-

Original Image Brightness Equalize Contrast Hue Solarize

Fig. 6. Examples of color-based augmented images. More details of the
augmentations can be found in [46].

turbations lead to the color distribution shift of Mars images,
causing the over-distortion problem [13] as shown in Fig. 6,
which is not conducive to the model segmentation learning.
Note that this is not trivial in the context of SSL because most
previous SSL works adopt the color augmentations as a strong
technique by default and lack specific consideration on the
Mars images. Meanwhile, we empirically find that the feature
perturbation Dropout also fails to improve the performance,
because it does not generate new input samples and cannot
help the model learn richer semantic information. Besides, due
to the irregular objects with occlusions and unclear contours,
the model can face more serious uncertainty and consistency
learning difficulty under the noise-based and random mixing-
based augmentations, which will be discussed in the following.

To this end, we propose two effective augmentations de-
signed for Mars images, AugIN and SAM-Mix, and employ
them in our method to boost the SSL performance.

1) AugIN. To avoid drastic changes in image color distribu-
tion caused by direct perturbation, we propose AugIN (Aug-
ment Instance Normalization), which generates augmented
data views by exchanging statistics of different images, i.e., the
mean and standard deviation. This is inspired by the successful
practice of style transfer [53]. Specifically, given a image ui

and a randomly sampled image uj , we exchange the mean and
standard deviation as follows:

AugIN(ui,uj) = σ (uj)

(
ui − µ(ui)

σ(ui)

)
+ µ(uj), (5)

where the µ(·) and σ(·) are the mean and standard deviation
functions. Meanwhile, we can spontaneously obtain the two
variants, AugIN-µ and AugIN-σ, which only exchange the
mean or standard deviation between two samples. In the
implementation, we exchange the image statistics within the
same batch following a randomly generated permutation. Note
that the operation in our method that exchanges the statistics
of images within the same batch does not change the statistics
of the entire batch, which can be theoretically verified easily.
This stabilizes the color distribution after augmentation and
generates more reasonable augmented data. In contrast, tradi-
tional color augmentations change the statics directly without
considering the whole color distribution, making the model
suffer from the potential color distribution shift problem.

2) SAM-Mix. As shown in Fig. 5, CutMix achieves a
modest performance gain over the baseline, failing to meet
the expected level of improvement. This is because there are
many fragmentary objects with unclear edges in Mars images,
and random cut-pasting manner may lead to high uncertainty,
limiting the model performance. To this end, we propose SAM-
Mix, which is formulated as a generalization of CutMix using
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Fig. 7. Examples of image-mask pairs. We show the filtered masks of each
image with high predicted confidence. Note these masks are output by SAM
in an instance-wise manner, and we illustrate them in different colors.

binary masks output by an off-the-shelf Segment-Anything
Model (SAM) [14].

SAM attracts lots of attention recently, which can produce
binary masks for the objects in an image from input or ran-
domly generated prompts. We utilize an off-the-shelf SAM to
produce a mask of the target object and paste it into the source
image. Compared with random rectangular mask generation,
SAM can generate high-quality masks to segment specific
objects as shown in Fig. 7. Specifically, given an image, a
list of binary masks with the corresponding confidence score
is output by SAM. These masks are first filtered so that 1)
the size of the mask is limited to a certain range and 2) the
confidence of the mask is above a certain threshold. If there is
no qualified mask, a random rectangular mask will be directly
generated. Then a Gaussian filter is applied to the masks to
eliminate possible noise. Subsequently, we randomly select a
qualified mask and further transform the masked object, i.e.,
Rotation, Flip, and Rescaling. The pasting position will not
be adjusted, that is, it will generally pasted corresponding to
the position of the original image, to avoid some unreasonable
cases, e.g., the sky appearing in the bottom half of the image.
The corresponding segmentation labels are also generated in
the same way, which are used to train the model as previous
work [54].

We note that SAM-Mix shares similarities with other
segmentation-based mixing augmentation strategies [50, 55–
58], which develop the binary mask generation in an instance-
wise or class-wise manner. However, in contrast to the above
mixing methods, SAM-Mix gets rid of the reliance on ground-
truth labels, making it possible for the augmentation on
unlabeled images. Furthermore, SAM’s strong generalization
ability enables us to produce high-quality masks for individual
objects efficiently, which is compatible with images of Mars
that contain multiple objects simultaneously. SAM-Mix reduces
the uncertainty caused by random mixing and further improves
the performance of the model.

C. Soft-to-Hard Consistency Learning

As mentioned in the previous section, the Mars images are
with more confusing categories, such as sand and soil, rock
and bedrock, which require a more fine-grained representation
learning target, especially for the unlabeled regions with high
uncertainty in our dataset. Meanwhile, for the data collection
and annotation, it is more difficult to obtain large-scale and
high-quality annotated Mars images than natural Earth images,
due to the complexity of the Mars terrain, the required
expert knowledge, and the limited transmission bandwidth.
Therefore, previous works using only unlabeled regions with

high confidence for training can be sub-optimal in the Mars
SSL context.

To this end, we propose a soft-to-hard consistency learn-
ing strategy, which utilizes both the soft and hard pseudo-
labels according to a confidence thresholding policy. The hard
pseudo-label is the one-hot label representation yti(j) in Eq. 3,
which is obtained by the argmax(·) operation. The soft label
is represented as the model prediction scores ps

i (j), which
denotes the probability distribution over different semantic
categories. Specifically, the optimization objective for the soft
pseudo-label can be formulated as:

Lsoft
unsup = − 1

|Bu|

|Bu|∑
i=1

1

H ×W

H×W∑
j=1

pt
i(j) log(p

s
i (j)). (6)

Intuitively, Eq. 6 optimizes the similarity of the two distri-
butions, i.e., pti and pui , which indicate the predicted class
probability of the teacher and student model. Based on this
objective, we can further find that:
• When max(pt

i(j)) ≈ 1, the teacher model assigns the
pseudo-labels with high confidence, and the Eq. 6 degenerates
to be almost equivalent to Eq. 3.
• When max(pt

i(j)) < 1 − t where t is a positive constant,
the predictions of the teacher model is less confident. This
objective encourages the student model to learn the consis-
tency measured by the relevance of current features to different
prototype anchors. This can be seen as a more fine-grained
smooth label of the unknown regions in Mars images, which
can belong to a new class or the old class with high uncertainty.

Therefore, the hard label provides a confident target to force
the model to predict a distribution with low entropy, learning
the explicit semantic mapping in images. In contrast, the soft
label objective encourages the model to learn the consistency
in a more gentle way, which can be viewed as performing
the self-distillation [59] of relational knowledge, modeled as
the feature similarity to the prototype features stored in the
weights of the classification head. This allows the model to
make better use of unlabeled data to improve the representation
consistency learning in an unsupervised manner, achieving a
better representation space.

Based on the above analysis, we propose a confidence-based
thresholding policy to integrate the two objective functions or-
ganically. We utilize the hard pseudo-labels in high-confidence
regions while using soft pseudo-labels in low confidence
regions, fully taking advantage of the training signals from
unlabeled data. Specifically, we first obtain the confidence
score of teacher model predictions as max(pt

i(j)). Then, the
student model is optimized as follows (thard and tsoft are the
threshold hyper-parameters):

1) If max(pt
i(j)) > thard, Eq. 3 is applied to optimize the

model with the highly confident one-hot pseudo-label;
2) If max(pt

i(j)) < tsoft, the soft label objective is optimized,
to avoid noisy signals from other prototype features in the high
confidence region.

Finally, the model is optimized in an end-to-end manner
using the objective in Eq. 1. The supervised term Lsup is
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TABLE III
SEGMENTATION PERFORMANCE ON THE S5MARS USING THE RESNET-50 AS THE BACKBONE.

Method 20% data 50% data 100% data

mAcc (%) mIoU (%) mAcc (%) mIoU (%) mAcc (%) mIoU (%)

Supervised 76.71 66.26 80.17 72.65 82.12 75.04

MT [47] 76.89 70.92 81.95 75.93 82.32 77.87
MT [47] + ClassMix [50] 77.38 71.54 82.34 76.42 83.21 78.04

FixMatch [10] 77.80 71.08 79.47 72.98 80.75 73.69
RanPaste [61] 76.36 66.66 80.51 74.08 82.28 75.78

U2PL [38] 78.03 72.32 82.29 77.56 83.41 78.60
AugSeg [11] 78.28 72.38 81.52 75.40 81.82 76.90

UniMatch [12] 76.92 69.83 78.53 71.56 79.82 72.60

Ours 82.85 76.49 83.56 78.66 84.73 80.15

the cross-entropy loss on the labeled images. The whole
consistency regularization term Lunsup is:

Lunsup = Lhard
unsup + λsLsoft

unsup, (7)

where Lhard
unsup is exactly the Lce

unsup in Eq. 3 and λs is the
weight coefficient.

V. EXPERIMENTS AND RESULTS

A. Dataset

We use the proposed S5Mars dataset and AI4Mars dataset,
which are introduced in the Section III. For semi-supervised
learning evaluation, we adopt a stratified sampling strategy
to extract different proportions of data from the dataset as
labeled data and the rest as unlabeled data, to jointly train our
model. Note that all methods are evaluated under the same
data partition lists.

B. Implementation Details and Metrics

Our model is based on DeepLabV3+ [28], adopting a
ResNet-50 [60] pre-trained on Image-Net [52] as the seg-
mentation backbone. We use an output stride of 16 by
default. The batch size is set to 8. An SGD optimizer
with a momentum of 0.9. A polynomial learning-rate de-
cay with an initial value of 0.01 are adopted to train the
student model. Specifically, the learning rate is scaled by
(1− iter/max iter)0.9. The EMA momentum coefficient m
is set as min(1− 1/(iter + 1), 0.996) following the [11]. λr

and λunsup are set to 1.0 and 2.0 by default. The model is
trained for 240 epochs by default and the teacher model is
used for the evaluation. The images for training are cropped
to the size of 512×512. The test images are center-cropped
to 1024×1024 size. We train our model on a single NVIDIA
RTX 3090 GPU.

We evaluate performance using Mean Pixel Accuracy
(mAcc) and Mean Intersection over Union (mIoU) as the
metrics.

C. Comparison Results

Compared with the SSL Methods. We compare our
model with state-of-the-art semi-supervised learning methods,
Mean Teacher [47] (MT), ClassMix [50], FixMatch [10],

TABLE IV
SEGMENTATION PERFORMANCE ON THE AI4MARS.

Method
20% data 100% data

mAcc mIoU mAcc mIoU

Supervised 71.68 66.14 74.43 68.34

MT [47] 75.44 70.13 77.82 71.98
MT [47]+ClassMix [50] 76.86 70.49 78.56 72.67

FixMatch [10] 76.27 70.36 77.37 71.90
RanPaste [61] 75.16 70.37 77.39 70.59

U2PL [38] 77.11 70.89 78.62 72.41
AugSeg [11] 76.88 70.15 77.45 72.34

UniMatch [12] 75.60 70.24 77.21 71.36

Ours 77.60 71.79 80.33 74.68

RanPaste [61], U2PL [38], AugSeg [11], and UniMatch [12],
covering the latest consistency regularization-based and con-
trastive learning-based methods as well as the naive super-
vised training results, which only utilize the labeled data.
We conduct these compared methods with their official im-
plementations (except for the MT which we adopt a better
training hyper-parameters for fair), using the same backbone
ResNet-50. As shown in Table V-B and Table IV, our method
achieves the best performance across different labeled data
ratios and datasets. MT [47] uses Gaussian noise and Dropout
as augmentations for both teacher and student branches. How-
ever, earlier works do not use weak-to-strong augmentation
strategy, which makes them sub-optimal. We also employ
the ClassMix [50] augmentation with MT. But the quality of
the generated mixed image strongly depends on the quality
of the pseudo-labels, which cannot be guaranteed on the
Mars images with unclear object contours. FixMatch [10]
and UniMatch [12] perform even worse than the supervised
baseline when the more labeled data are available. This is
mainly because they employ a shared encoder instead of the
teacher-student architecture, which we find is less effective
in our setting. Besides, AugSeg [11] achieves state-of-the-
art performance on Earth image benchmarks, while it is not
satisfying in Mars semantic segmentation task due to the
adopted various color augmentations. As for the contrastive
learning-based methods, U2PL uses filtered pseudo-labels to
perform the pixel-wise contrastive learning. However, the
training cost of such methods is generally high, which will



10 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

TABLE V
SEGMENTATION PERFORMANCE OF DIFFERENT CLASSES ON THE S5MARS USING ALL LABELED TRAINING DATA.

Method
Class IoU (%)

mIoU
Sky Ridge Soil Sand Bedrock Rock Rover Trace Hole

FixMatch [10] 88.97 90.06 83.05 74.19 92.09 20.31 52.54 88.75 73.26 73.69
U2PL [38] 94.86 93.25 85.80 81.02 92.18 23.55 93.77 78.06 64.96 78.60

AugSeg [11] 94.75 93.00 84.78 77.36 92.02 10.33 83.08 81.00 75.84 76.90
Ours 95.64 94.20 87.18 83.18 92.42 22.89 87.17 85.60 74.10 80.15

TABLE VI
COMPARISON WITH THE ZERO-SHOT MODELS ON S5MARS DATASET.

Methods mAcc (%) mIoU (%) Inference Time

SAM-CLS [14] 36.38 28.53 691 ms/img

SAN [62] 14.70 3.28 102 ms/img
SAN-FT [62] 11.60 10.54 102 ms/img

Ours 84.73 80.15 19 ms/img

be discussed in Section V-D.
We also present the segmentation performance of each

class in Table V. Note that the optimal data augmentations
and learning strategy may differ across different categories.
Remarkably, our method can achieves the best results on the
head classes. Meanwhile, the performance on the tail classes,
of which the sample number is small, is also comparable with
other methods.

Compared with Zero-Shot General Models. Recently,
the general large models for segmentation achieves a great
success, which can deal with the unseen data in training
with the help of massive amounts of training data or the
help of the vision-language model, e.g., CLIP [63]. Here we
highlight that current zero-shot learning methods or open-
vocabulary methods are still unable to handle the Mars image
semantic segmentation task well due to the fine-grained feature
classification and required expert knowledge.

SAM [14] can produce the high-quality object binary masks.
To obtain the corresponding label, we apply a classification
head subsequent to the image encoder. Specifically, the pre-
trained image encoder in SAM is fixed and we train a
classification decoder, which takes the encoded feature as input
and outputs the pixel-wise semantic label, denoted by SAM-
CLS. We can find that the extracted features by the encoder are
not discriminative for Mars semantic segmentation, as shown
in Table VI. As for vision-language models, we compare with
state-of-the-art method, SAN [62]. We evaluate the model
with both official model weights and fine-tuned weights on
the target dataset, denoted as SAN-FT. However, poor perfor-
mance is obseverd as shown in Table VI. This is mainly due
to two aspects: 1) the Martian terrain category is relatively
rare in the corpus, 2) domain-specific expert knowledge is
required for the fine-grained classification, which lead to the
difficulty of feature space alignment for the Mars segmentation
dataset. Moreover, their high training and inference overhead
makes them sub-optimal for resource-constrained extraterres-
trial tasks.

Overall, our method achieves remarkable performance,

TABLE VII
ABLATION STUDIES ON AugIN.

IDENTITY DENOTES THE METHOD
WITHOUT AugIN.

Method mAcc mIoU

Identity 84.20 79.59
EFDM [64] 83.97 78.78
WCT [65] 83.38 78.83
FDA [58] 84.20 78.70

AugIN-µ 83.64 78.88
AugIN-σ 84.73 80.15
AugIN 83.58 78.69

TABLE VIII
ABLATION STUDIES ON DIFFERENT

MIXING METHODS. IDENTITY
DENOTES THE METHOD WITHOUT

ANY MIXING AUGMENTATION.

Method mAcc mIoU

Identity 83.33 78.56

CutMix [48] 83.85 78.98
ClassMix [50] 83.81 78.89

DACS [66] 83.80 78.69
SAM-Mix (Ours) 84.73 80.15

TABLE IX
ABLATION STUDIES ON THE OBJECT AUGMENTATIONS IN SAM-Mix.

Flip Rotate Rescaling mAcc (%) mIoU (%)

84.57 79.46
! 84.81 79.71
! ! 84.80 79.88
! ! ! 84.73 80.15

which verifies the effectiveness of the proposed method.

D. Ablation Studies

In the following, we conduct a series of ablations studies
on the S5Mars dataset using full data by default. ResNet-50
is adopted as the backbone.
Effect of AugIN. Recall that AugIN exchanges the mean or
standard deviation of different samples as shown in Fig. 8.
First, we give the ablation studies on the different variants
of the AugIN in Table VII. AugIN-µ, AugIN-σ and AugIN
denote swapping the mean, standard deviation, and both,
respectively. As we can see, AugIN-σ can bring boost to
the model performance, while swapping mean shows adverse
effect. By comparing the performance of different categories,
we find that the main performance degradation comes from
the hole, rover, and rock. We argue that this is because the
mean of a image corresponds to the brightness. Exchanging
the mean can cause the inappropriate brightness changes of
objects. For example, the brightness of rover is obviously
different from that of rock, and corrupting this information is
not conducive to distinguish objects. In contrast, the standard
deviation mainly affects the degree of dispersion of the data
while maintaining the overall brightness, which is mainly
reflected in the clarity of the object edge. This helps the model
to produce better prediction results at the object edge. We
finally choose AugIN-σ in implementation.
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AugIN-μ (Different brightness) AugIN-σ (Changes in edge sharpness)

Original Image

Fig. 8. Examples of augmented results by AugIN. AugIN-µ mainly affects the
image brightness while AugIN-σ changes the sharpness of the object edges.

TABLE X
ABLATION STUDIES ON SOFT AND HARD PSEUDO-LABELS.

Soft Label Hard Label mAcc (%) mIoU (%)

! 83.36 78.12
! 84.28 79.70

! ! 84.73 80.15

Besides, to give a comprehensive evaluation, we provide the
results of replacing AugIN with other methods [58, 64, 65]
that exchange inter-image information. FDA [58] exchanges
low-frequency information which is similar to AugIN-µ. Other
style-transfer-based methods, i.e., EFDM [64] and WCT [65],
also fail to improve the performance because they still cannot
avoid the caused color distribution shift.
Effect of SAM-Mix. Table VIII gives the analysis of the
SAM-Mix augmentation. The main difference between these
approaches lies in the way the masks are generated. How-
ever, these generated masks have high uncertainty, making
it difficult for the model to learn consistency in SSL tasks.
CutMix randomly generates a rectangular mask from the beta
distribution. ClassMix takes the predicted region of a certain
category as the mask through the generated pseudo-labels,
while DACS uses the ground-truth labels to mix images.
However, these methods are performed in class-wise instead
of instance-wise. For example, all rocks would be cut and
pasted to another image, which can cause serious occlusions
and increase the difficulty of consistency learning. Meanwhile,
ClassMix, which relies on pseudo-labels, still cannot provide
good guidance in the early stage of training, while DACS,
which is based on ground-truth labels, heavily relies on the
number of labels and can only generate limited mixed samples.
In contrast, we utilize the masks output by SAM to locate
the objects and filter out the mask with higher confidence,
achieving better performance.

Meanwhile, we present the effect of the object-wise aug-
mentations, i.e., Rotation, Flip, and Rescaling for the cut out
object. As shown in the Tabel IX, these simple available geo-
metrical object augmentations can bring further improvement
slightly by promoting the mask diversity.
Soft-to-Hard Pseudo-Label. To depict the semantic features
in a more fine-grained manner, we utilize the soft pseudo-
labels in addition to the hard labels for the unlabeled im-
ages. Table X shows the effect of the soft and hard label,
respectively. As we can see, the model gives the best results
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Fig. 9. (a): The effect of soft pseudo-labels on performance of different
epochs. Faster convergence is observed when equipped with soft labels. (b)
Ablation study results on the loss weight of soft pseudo-labels.

TABLE XI
ABLATION STUDY ON THE

THRESHOLD thard .

thard mIoU (%)

0.9 78.82
0.7 79.31
0.6 79.87
0.5 80.15
0.4 80.00

TABLE XII
ABLATION STUDY ON THE

THRESHOLD tsoft .

tsoft mIoU (%)

1.0 79.83
0.95 79.75
0.9 80.15
0.8 80.04
0.6 79.58

when both kinds of labels are utilized. We note that only
employing the soft labels can not yield a good performance,
which illustrates that the hard label is important for its low
entropy constraints on the model output predictions. On the
other hand, soft labels serve as a useful complement to hard
labels, especially by making full use of the supervised signals
in low-confidence regions. It promotes consistency learning
by using the correlation between features and prototypes of
different categories as the objective, which can be deemed as
a relational knowledge distillation process.

Meanwhile, we note that the dual label optimization strategy
can significantly improve the convergence speed of the model
as shown in Fig. 9 (a). This is because of the extra supervisory
signal provided by those low-confidence regions, which would
be discarded using the hard labels.
Confidence-based Thresholding Strategy. We utilize hard
pseudo-labels in highly confident regions (> thard) while
using soft labels in regions with low confidence (< tsoft).
Table XI gives the results of different thresholds. For the hard
labels, a too-high threshold (> 0.7) can significantly reduce the
number of training labels, limiting the effect of pseudo-labels.
Meanwhile, a too-low threshold can degrade the performance
slightly, due to the additional introduced uncertain pseudo-
labels in model consistency learning. However, this effect
is relatively weak because only few pixels are involved.
For the soft labels, we discard the high confidence region.
Because these regions can be considered reliable, and the
model should give predictions with high confidence. In this
case, correlations generated with other semantic prototypes are
often noise, which is not conducive to consistency learning as
shown in Table XII. However, a too-low threshold degrades
the performance significantly, which is because these learning
targets with high uncertainty lead to an unstable learning
process.
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    img           label            supervised                   MT                     AugSeg               Ours

Fig. 10. Qualitative results on S5Mars dataset with full labels. Columns from left to right denote the original images, the ground-truth, the supervised results,
the MT [47]+ClassMix [50] results, AugSeg [11] results, and our method results, respectively.

TABLE XIII
COMPLEXITY ANALYSIS ON S5MARS DATASET.

Methods Training Time Params mIoU (%)

U2PL [38] 98.7h 196.15M 78.60
FixMatch [10] 34.3h 40.47M 73.69
AugSeg [11] 35.9h 80.94M 76.90

Ours 42.8h 80.94M 80.15

Loss Weight. We further conduct the ablation studies on the
loss weight λs of the soft pseudo-labels Lsoft

unsup in Fig. 9 (b).
As we can see, the model performance degrades when the loss
weight is too large. This indicates the hard pseudo-label signals
of the high-confidence regions are important to the model,
which constrain the model predictions to be with low entropy.
For the loss weight λunsup, we set it to be 2.0 following the
previous works [10, 11] to make our method more general.
Complexity Analysis. We first present the results of
U2PL [38] based on contrastive learning in Table XIII. These
methods have high complexity because they need to maintain
a large number of samples in the memory bank and perform
instance discrimination tasks with multiple negative samples.
As we can see, our method based on consistency regularization
has an obvious complexity advantage, which shows the advan-
tage of this type of method for extraterrestrial missions. Com-
pared with other consistency-regularization methods [10, 11],
our method has a longer training time due to the additional

Rock

Bedrock

Trace

Rover

Fig. 11. Some failure cases of our method. From left to right are the original
image, the ground-truth label, and the predicted result.

back-propagation process for soft pseudo-label optimization
and the data augmentations. Since the same backbone network
is used, the inference time is the same across these methods.
As for the model parameters, the difference lies in whether the
teacher and student models share parameters. Despite the cost
incurred in terms of training time and space parameters, we
argue that they are acceptable where a significant performance
gain is observed.
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E. Qualitative Results

We present subjective segmentation results in Fig. 10. The
compared methods employ the same ResNet50 backbone. As
we can see, the segmentation results of our method are more
accurate than other methods, which is reflected in clearer
object contours (first and fourth rows), more sensitive and
accurate object detection (second and fifth rows), and less cat-
egory mixing in segmentation map (third row). Compared with
AugSeg [11] which is also based on two-branch architecture
but with many color augmentations, our method can generate
better results, demonstrating the effectiveness of the proposed
augmentations for SSL Mars segmentation task.

F. Limitations and Discussions

Our method is efficiently designed in terms of data aug-
mentation and pseudo-label optimization for semi-supervised
Mars segmentation task. Notably, it scales well to the exist-
ing techniques, e.g., augmentation anchoring and distribution
alignment in [67] and is simple to implement, making it a
strong model to provide the basis for future work.

We present some failure cases in Fig. 11 As we can see,
the limitations mainly lie in two aspects: 1) There is confusion
between similar categories as shown in the first case. For ex-
ample, to distinguish the rock and bedrock, the model needs to
classify whether the rock is exposed to the ground, which can
be difficult. One direction is to carry out specific designs, e.g.,
training a independent classifier, for these difficult categories.
2) The images directly taken by the rovers on Mars often
have a long-tailed label distribution, which may affect the
reliability of the pseudo-labels in semi-supervised learning,
causing the noisy prediction or misclassification in the tail
classes as shown in the second and third case. We point out
these observed problems as future work, in the hope that more
meaningful works will emerge.

VI. CONCLUSION

In this paper, we address the SSL for Mars semantic
segmentation problem from both data and method perspective.
First, we propose a fine-grained annotated dataset S5Mars for
Martian terrain segmentation. This dataset provides sparse and
high-confidence labeled data, which effectively assists the sub-
sequent Mars exploration work. Then, we propose a simple yet
effective SSL framework. Specifically, we analyze the effect of
current used augmentations for Mars image segmentation. And
two effective augmentations, AugIN and SAM-Mix are further
proposed to improve the model performance. Meanwhile, a
soft-to-hard consistency learning strategy is introduced to
fully utilize the unlabeled data in a confidence-based manner.
Extensive comparison and ablation experiments demonstrate
the effectiveness of our method.
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K. Wohlfarth, and C. Wöhler, “Domars16k: A diverse dataset
for weakly supervised geomorphologic analysis on mars,” Re-
mote Sensing, vol. 12, no. 23, p. 3981, 2020.

[24] S. Niekum, “Reliable rock detection and classification for
autonomous science,” C. Thesis, 2005.

[25] S. Higa, Y. Iwashita, K. Otsu, M. Ono, O. Lamarre, A. Didier,
and M. Hoffmann, “Vision-based estimation of driving energy
for planetary rovers using deep learning and terramechanics,”
IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3876–
3883, 2019.

[26] F. Furlán, E. Rubio, H. Sossa, and V. Ponce, “Rock detection in
a mars-like environment using a cnn,” in Mexican Conference
on Pattern Recognition, 2019.

[27] X. Xiao, H. Cui, M. Yao, and Y. Tian, “Autonomous rock
detection on mars through region contrast,” Advances in Space
Research, vol. 60, no. 3, pp. 626–635, 2017.

[28] L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for seman-
tic image segmentation,” in Proc. European Conference on
Computer Vision, 2018.

[29] E. Goh, J. Chen, and B. Wilson, “Mars terrain segmentation
with less labels,” arXiv:2202.00791, 2022.

[30] Y. Xiong, X. Xiao, M. Yao, H. Liu, H. Yang, and Y. Fu, “Mars-
former: Martian rock semantic segmentation with transformer,”
IEEE Trans. on Geoscience and Remote Sensing, 2023.

[31] J. Zhang, Y. Xia, and G. Shen, “A novel deep neural network
architecture for mars visual navigation,” arXiv, 2018.

[32] M. Ono, B. Rothrock, K. Otsu, S. Higa, Y. Iwashita, A. Didier,
T. Islam, C. Laporte, V. Sun, K. Stack et al., “Maars: machine
learning-based analytics for automated rover systems,” in 2020
IEEE Aerospace Conference, 2020, pp. 1–17.

[33] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li,
L. Fei-Fei, A. Yuille, J. Huang, and K. Murphy, “Progressive
neural architecture search,” in Proc. European Conference on
Computer Vision, 2018.

[34] B. Sun and K. Saenko, “Deep coral: Correlation alignment for
deep domain adaptation,” in Proc. European Conference on
Computer Vision Workshops, 2016.

[35] J. Lambert, Z. Liu, O. Sener, J. Hays, and V. Koltun, “Mseg:
A composite dataset for multi-domain semantic segmentation,”
in Proc. IEEE Conference on Computer Vision and Pattern
Recognition, 2020.

[36] Y. Ouali, C. Hudelot, and M. Tami, “An overview of deep semi-
supervised learning,” arXiv:2006.05278, 2020.

[37] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training with
noisy student improves imagenet classification,” in Proc. IEEE
Conference on Computer Vision and Pattern Recognition, 2020.

[38] Y. Wang, H. Wang, Y. Shen, J. Fei, W. Li, G. Jin, L. Wu,
R. Zhao, and X. Le, “Semi-supervised semantic segmentation
using unreliable pseudo-labels,” in Proc. IEEE Conference on
Computer Vision and Pattern Recognition, 2022.

[39] Y. Zhong, B. Yuan, H. Wu, Z. Yuan, J. Peng, and Y.-X.
Wang, “Pixel contrastive-consistent semi-supervised semantic
segmentation,” in Proc. Int’l Conference on Computer Vision,
2021.

[40] L. Hu, J. Li, X. Peng, J. Xiao, B. Zhan, C. Zu, X. Wu,
J. Zhou, and Y. Wang, “Semi-supervised npc segmentation
with uncertainty and attention guided consistency,” Knowledge-

Based Systems, vol. 239, p. 108021, 2022.
[41] R. Mendel, L. A. De Souza, D. Rauber, J. P. Papa, and C. Palm,

“Semi-supervised segmentation based on error-correcting su-
pervision,” in Proc. European Conference on Computer Vision,
2020.

[42] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver,
and C. A. Raffel, “Mixmatch: A holistic approach to semi-
supervised learning,” Proc. Advances in Neural Information
Processing Systems, 2019.
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