
Efficient Sum of Outer Products Dictionary Learning (SOUP-DIL) 
and Its Application to Inverse Problems

Saiprasad Ravishankar [Member, IEEE], Raj Rao Nadakuditi [Member, IEEE], and Jeffrey A. 
Fessler [Fellow, IEEE]
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 
MI, 48109 USA

Abstract

The sparsity of signals in a transform domain or dictionary has been exploited in applications such 

as compression, denoising and inverse problems. More recently, data-driven adaptation of 

synthesis dictionaries has shown promise compared to analytical dictionary models. However, 

dictionary learning problems are typically non-convex and NP-hard, and the usual alternating 

minimization approaches for these problems are often computationally expensive, with the 

computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the 

ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for 

aggregate sparsity penalized dictionary learning by first approximating the data with a sum of 

sparse rank-one matrices (outer products) and then using a block coordinate descent approach to 

estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-

form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, 

and propose novel and efficient algorithms for adaptive image reconstruction using block 

coordinate descent and sum of outer products methodologies. We provide a convergence study of 

the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical 

experiments show the promising performance and speedups provided by the proposed methods 

over previous schemes in sparse data representation and compressed sensing-based image 

reconstruction.
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Convergence analysis

I. Introduction

The sparsity of natural signals and images in a transform domain or dictionary has been 

exploited in applications such as compression, denoising, and inverse problems. Well-known 

models for sparsity include the synthesis, analysis [1], [2], and transform [3], [4] (or 
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generalized analysis) models. Alternative signal models include the balanced sparse model 

for tight frames [5], where the signal is sparse in a synthesis dictionary and also 

approximately sparse in the corresponding transform (transpose of the dictionary) domain, 

with a common sparse representation in both domains. These various models have been 

exploited in inverse problem settings such as in compressed sensing-based magnetic 

resonance imaging [5]–[7]. More recently, the data-driven adaptation of sparse signal models 

has benefited many applications [4], [8]–[18] compared to fixed or analytical models. This 

paper focuses on data-driven adaptation of the synthesis model and investigates highly 

efficient methods with convergence analysis and applications, particularly inverse problems. 

In the following, we first briefly review the topic of synthesis dictionary learning before 

summarizing the contributions of this work.

A. Dictionary Learning

The well-known synthesis model approximates a signal y ∈ ℂn by a linear combination of a 

small subset of atoms or columns of a dictionary D ∈ ℂn×J, i.e., y ≈ Dx with x ∈ ℂJ sparse, 

i.e., ║x║0 ≪n. Here, the ℓ0 “norm” counts the number of non-zero entries in a vector, and 

we assume ║x║0 is much lower than the signal dimension n. Since different signals may 

be approximated using different subsets of columns in the dictionary D, the synthesis model 

is also known as a union of subspaces model [19], [20]. When n = J and D is full rank, it is a 

basis. Else when J > n, D is called an overcomplete dictionary. Because of their richness, 

overcomplete dictionaries can provide highly sparse (i.e., with few non-zeros) 

representations of data and are popular.

For a given signal y and dictionary D, finding a sparse coefficient vector x involves solving 

the well-known synthesis sparse coding problem. Often this problem is to minimize 

 subject to ║x║0 ≤ s, where s is a set sparsity level. The synthesis sparse coding 

problem is NP-hard (Non-deterministic Polynomial-time hard) in general [21]. Numerous 

algorithms [22]–[27] including greedy and relaxation algorithms have been proposed for 

such problems. While some of these algorithms are guaranteed to provide the correct 

solution under certain conditions, these conditions are often restrictive and violated in 

applications. Moreover, these algorithms typically tend to be computationally expensive for 

large-scale problems.

More recently, data-driven adaptation of synthesis dictionaries, called dictionary learning, 

has been investigated [12], [28]–[31]. Dictionary learning provides promising results in 

several applications, including in inverse problems [8], [9], [13], [32]. Given a collection of 

signals  (e.g., patches extracted from some images) that are represented as columns 

of the matrix Y ∈ ℂn×N, the dictionary learning problem is often formulated as follows [30]:

(P0)

Here, dj and xi denote the columns of the dictionary D ∈ ℂn×J and sparse code matrix X ∈ 
ℂJ×N, respectively, and s denotes the maximum sparsity level (number of non-zeros in 
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representations xi) allowed for each signal. Constraining the columns of the dictionary to 

have unit norm eliminates the scaling ambiguity [33]. Variants of Problem (P0) include 

replacing the ℓ0 “norm” for sparsity with an ℓ1 norm or an alternative sparsity criterion, or 

enforcing additional properties (e.g., incoherence [11], [34]) for the dictionary D, or solving 

an online version (where the dictionary is updated sequentially as new signals arrive) of the 

problem [12].

Algorithms for Problem (P0) or its variants [12], [29]–[31], [35]–[41] typically alternate in 

some form between a sparse coding step (updating X), and a dictionary update step 
(updating D). Some of these algorithms (e.g., [30], [38], [40]) also partially update X in the 

dictionary update step. A few recent methods update D and X jointly in an iterative fashion 

[42], [43]. The K-SVD method [30] has been particularly popular [8], [9], [13]. Problem 

(P0) is highly non-convex and NP-hard, and most dictionary learning approaches lack 

proven convergence guarantees. Moreover, existing algorithms for (P0) tend to be 

computationally expensive (particularly alternating-type algorithms), with the computations 

usually dominated by the sparse coding step.

Some recent works [41], [44]–[48] have studied the convergence of (specific) dictionary 

learning algorithms. However, these dictionary learning methods have not been 

demonstrated to be useful in applications such as inverse problems. Bao et al. [41] find that 

their proximal scheme denoises less effectively than K-SVD [8]. Many prior works use 

restrictive assumptions (e.g., noiseless data, etc.) for their convergence results.

Dictionary learning has been demonstrated to be useful in inverse problems such as in 

tomography [49] and magnetic resonance imaging (MRI) [13], [50]. The goal in inverse 

problems is to estimate an unknown signal or image from its (typically corrupted) 

measurements. We consider the following general regularized linear inverse problem:

(1)

where y ∈ ℂp is a vectorized version of a signal or image (or volume) to be reconstructed, z 
∈ ℂm denotes the observed measurements, and A ∈ ℂm×p is the associated measurement 

matrix for the application. For example, in the classical denoising application (assuming 

i.i.d. gaussian noise), the operator A is the identity matrix, whereas in inpainting (i.e., 

missing pixels case), A is a diagonal matrix of zeros and ones. In medical imaging 

applications such as computed tomography or magnetic resonance imaging, the system 

operator takes on other forms such as a Radon transform, or a Fourier encoding, 

respectively. A regularizer ζ(y) is used in (1) to capture assumed properties of the 

underlying image y and to help compensate for noisy or incomplete data z. For example, 

ζ(y) could encourage the sparsity of y in some fixed or known sparsifying transform or 

dictionary, or alternatively, it could be an adaptive dictionary-type regularizer such as one 

based on (P0) [13]. The latter case corresponds to dictionary-blind image reconstruction, 

where the dictionary for the underlying image patches is unknown a priori. The goal is then 

to reconstruct both the image y as well as the dictionary D (for image patches) from the 
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observed measurements z. Such an approach allows the dictionary to adapt to the underlying 

image [13].

B. Contributions

This work focuses on dictionary learning using a general overall sparsity penalty instead of 

column-wise constraints like in (P0). We focus on ℓ0 “norm” penalized dictionary learning, 

but also consider alternatives. Similar to recent works [30], [51], we approximate the data 

(Y) by a sum of sparse rank-one matrices or outer products. The constraints and penalties in 

the learning problems are separable in terms of the dictionary columns and their 

corresponding coefficients, which enables efficient optimization. In particular, we use simple 

and exact block coordinate descent approaches to estimate the factors of the various rank-

one matrices in the dictionary learning problem. Importantly, we consider the application of 

such sparsity penalized dictionary learning in inverse problem settings, and investigate the 

problem of overall sparsity penalized dictionary-blind image reconstruction. We propose 

novel methods for image reconstruction that exploit the proposed efficient dictionary 

learning methods. We provide a novel convergence analysis of the algorithms for 

overcomplete dictionary learning and dictionary-blind image reconstruction for both ℓ0 and ℓ1 

norm-based settings. Our experiments illustrate the empirical convergence behavior of our 

methods, and demonstrate their promising performance and speed-ups over some recent 

related schemes in sparse data representation and compressed sensing-based [52], [53] 

image reconstruction. These experimental results illustrate the benefits of aggregate sparsity 

penalized dictionary learning, and the proposed ℓ0 “norm”-based methods.

C. Relation to Recent Works

The sum of outer products approximation to data has been exploited in recent works [30], 

[51] for developing dictionary learning algorithms. Sadeghi et al. [51] considered a variation 

of the Approximate K-SVD algorithm [54] by including an ℓ1 penalty for coefficients in the 

dictionary update step of Approximate K-SVD. However, a formal and rigorous description 

of the formulations and various methods for overall sparsity penalized dictionary learning, 

and their extensions, was not developed in that work. In this work, we investigate in detail 

Sum of OUter Products (SOUP) based learning methodologies in a variety of novel problem 

settings. We focus mainly on ℓ0 “norm” penalized dictionary learning. While Bao et al. [41], 

[55] proposed proximal alternating schemes for ℓ0 dictionary learning, we show superior 

performance (both in terms of data representation quality and runtime) with the proposed 

simpler direct block coordinate descent methods for sparse data representation. Importantly, 

we investigate the novel extensions of SOUP learning methodologies to inverse problem 

settings. We provide a detailed convergence analysis and empirical convergence studies for 

the various efficient algorithms for both dictionary learning and dictionary-blind image 

reconstruction. Our methods work better than classical overcomplete dictionary learning-

based schemes (using K-SVD) in applications such as sparse data representation and 

magnetic resonance image reconstruction from undersampled data. We also show some 

benefits of the proposed ℓ0 “norm”-based adaptive methods over corresponding ℓ1 methods in 

applications.
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D. Organization

The rest of this paper is organized as follows. Section II discusses the formulation for ℓ0 

“norm”-based dictionary learning, along with potential alternatives. Section III presents the 

dictionary learning algorithms and their computational properties. Section IV discusses the 

formulations for dictionary-blind image reconstruction, along with the corresponding 

algorithms. Section V presents a convergence analysis for various algorithms. Section VI 

illustrates the empirical convergence behavior of various methods and demonstrates their 

usefulness for sparse data representation and inverse problems (compressed sensing). 

Section VII concludes with proposals for future work.

II. Dictionary Learning Problem Formulations

This section and the next focus on the “classical” problem of dictionary learning for sparse 

signal representation. Section IV generalizes these methods to inverse problems.

A. ℓ0 Penalized Formulation

Following [41], we consider a sparsity penalized variant of Problem (P0). Specifically, 

replacing the sparsity constraints in (P0) with an ℓ0 penalty  and introducing a 

variable C = XH ∈ ℂN×J, where (·)H denotes matrix Hermitian (conjugate transpose), leads 

to the following formulation:

(2)

where ║C║0 counts the number of non-zeros in matrix C, and λ2 with λ > 0, is a weight 

to control the overall sparsity.

Next, following previous work like [30], [51], we express the matrix DCH in (2) as a sum of 

(sparse) rank-one matrices or outer products , where cj is the jth column of C. 

This SOUP representation of the data Y is natural because it separates out the contributions 

of the various atoms in representing the data. For example, atoms of a dictionary whose 

contributions to the data (Y) representation error or modeling error are small could be 

dropped. With this model, (2) becomes (P1) as follows, where :

(P1)

As in Problem (P0), the matrix  in (P1) is invariant to joint scaling of dj and cj as αdj 

and (1/α)cj, for α ≠ 0. The constraint ║dj║2 = 1 helps in removing this scaling ambiguity. 

We also enforce the constraint ║cj║∞ ≤ L, with L > 0, in (P1) [41] (e.g., L = ║Y║F). 
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This is because the objective in (P1) is non-coercive. In particular, consider a dictionary D 
that has a column dj that repeats. Then, in this case, the SOUP approximation for Y in (P1) 

could have both the terms  and  with cj that is highly sparse (and non-zero), and 

the objective would be invariant1 to (arbitrarily) large scalings of cj (i.e., non-coercive 

objective). The ℓ∞ constraints on the columns of C (that constrain the magnitudes of entries 

of C) alleviate possible problems (e.g., unbounded iterates in algorithms) due to such a non-

coercive objective.

Problem (P1) aims to learn the factors  and  that enable the best SOUP sparse 

representation of Y. However, (P1), like (P0), is non-convex, even if one replaces the ℓ0 

“norm” with a convex penalty.

Unlike the sparsity constraints in (P0), the term  in 

Problem (P1) (or (2)) penalizes the number of non-zeros in the (entire) coefficient matrix 

(i.e., the number of non-zeros used to represent a collection of signals), allowing variable 

sparsity levels across the signals. This flexibility could enable better data representation 

error versus sparsity trade-offs than with a fixed column sparsity constraint (as in (P0)). For 

example, in imaging or image processing applications, the dictionary is usually learned for 

image patches. Patches from different regions of an image typically contain different 

amounts of information2, and thus enforcing a common sparsity bound for various patches 

does not reflect typical image properties (i.e., is restrictive) and usually leads to sub-optimal 

performance in applications. In contrast, Problem (P1) encourages a more general and 

flexible image model, and leads to promising performance in the experiments of this work. 

Additionally, we have observed that the different columns of C (or rows of X) learned by the 

proposed algorithm (in Section III) for (P1) typically have widely different sparsity levels or 

number of non-zeros in practice.

B. Alternative Formulations

Several variants of Problem (P1) could be constructed that also involve the SOUP 

representation. For example, the ℓ0 “norm” for sparsity could be replaced by the ℓ1 norm [51] 

resulting in the following formulation:

(P2)

Here, μ > 0, and the objective is coercive with respect to C because of the ℓ1 penalty. Another 

alternative to (P1) enforces p-block-orthogonality constraints on D. The dictionary in this 

1Such degenerate representations for Y, however, cannot be minimizers in the problem because they simply increase the ℓ0 sparsity 
penalty without affecting the fitting error (the first term) in the cost.
2Here, the emphasis is on the required sparsity levels for encoding different patches. This is different from the motivation for multi-
class models such as in [16], [56] (or [11], [18]), where patches from different regions of an image are assumed to contain different 
“types” of features or textures or edges, and thus common sub-dictionaries or sub-transforms are learned for groups of patches with 
similar features.
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case is split into blocks (instead of individual atoms), each of which has p (unit norm) atoms 

that are orthogonal to each other. For p = 2, we would have (added) constraints such as 

. In the extreme (more constrained) case of p = n, the dictionary 

would be made of several square unitary3 blocks (cf. [58]). For tensor-type data, (P1) can be 

modified by enforcing the dictionary atoms to be in the form of a Kronecker product. The 

algorithm proposed in Section III can be easily extended to accommodate several such 

variants of Problem (P1). We do not explore all such alternatives in this work due to space 

constraints, and a more detailed investigation of these is left for future work.

III. Learning Algorithm and Properties

A. Algorithm

We apply a block coordinate descent method to estimate the unknown variables in Problem 

(P1). For each j (1 ≤ j ≤ J), the algorithm has two steps. First, we solve (P1) with respect to cj 

keeping all the other variables fixed. We refer to this step as the sparse coding step in our 

method. Once cj is updated, we solve (P1) with respect to dj keeping all other variables 

fixed. This step is referred to as the dictionary atom update step or simply dictionary update 
step. The algorithm thus updates the factors of the various rank-one matrices one-by-one. 

The approach for (P2) is similar and is a simple extension of the OS-DL method in [51] to 

the complex-valued setting. We next describe the sparse coding and dictionary atom update 

steps of the methods for (P1) and (P2).

1) Sparse Coding Step for (P1)—Minimizing (P1) with respect to cj leads to the 

following non-convex problem, where  is a fixed matrix based on the 

most recent values of all other atoms and coefficients:

(3)

The following proposition provides the solution to Problem (3), where the hard-thresholding 

operator Hλ(·) is defined as

(4)

with b ∈ ℂN, and the subscript i above indexes vector entries. We use bi (without bold font) 

to denote the ith (scalar) element of a vector b. We assume that the bound L > λ holds and 

let 1N denote a vector of ones of length N. The operation “⊙” denotes element-wise 

multiplication, and z = min(a; u) for vectors a; u ∈ ℝN denotes the element-wise minimum 

3Recent works have shown the promise of learned orthonormal (or unitary) dictionaries or sparsifying transforms in applications such 
as image denoising [17], [57]. Learned multi-class unitary models have been shown to work well in inverse problem settings such as in 
MRI [18], [56].
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operation, i.e., zi = min(ai; bi), 1 ≤ i ≤ N. For a vector c ∈ ℂN, ej∠c ∈ ℂN is computed 

element-wise, with “∠” denoting the phase.

Proposition 1: Given Ej ∈ ℂn×N and dj ∈ ℂn, and assuming L > λ, a global minimizer of the 

sparse coding problem (3) is obtained by the following truncated hard-thresholding 

operation:

(5)

The minimizer of (3) is unique if and only if the vector  has no entry with a magnitude 

of λ.

The proof of Proposition 1 is provided in the supplementary material.

2) Sparse Coding Step for (P2)—The sparse coding step of (P2) involves solving the 

following problem:

(6)

The solution is given by the following proposition (proof in the supplement), and was 

previously discussed in [51] for the case of real-valued data.

Proposition 2: Given Ej ∈ ℂn×N and dj ∈ ℂn, the unique global minimizer of the sparse 

coding problem (6) is

(7)

3) Dictionary Atom Update Step—Minimizing (P1) or (P2) with respect to dj leads to 

the following problem:

(8)

Proposition 3 provides the closed-form solution for (8). The solution takes the form given in 

[54]. We briefly derive the solution in the supplementary material considering issues such as 

uniqueness.

Proposition 3: Given Ej ∈ ℂn×N and cj ∈ℂN, a global minimizer of the dictionary atom 

update problem (8) is
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(9)

where v can be any unit ℓ2 norm vector (i.e., on the unit sphere). In particular, here, we set v 
to be the first column of the n × n identity matrix. The solution is unique if and only if cj ≠ 0.

4) Overall Algorithms—Fig. 1 shows the Sum of OUter Products DIctionary Learning 

(SOUP-DIL) Algorithm for Problem (P1), dubbed SOUP-DILLO in this case, due to the ℓ0 

“norm”. The algorithm needs initial estimates  for the variables. For example, 

the initial sparse coefficients could be set to zero, and the initial dictionary could be a known 

analytical dictionary such as the overcomplete DCT [8]. When , setting  to be the 

first column of the identity matrix in the algorithm could also be replaced with other 

(equivalent) settings such as or setting  to a random unit norm vector. All of these 

settings have been observed to work well in practice. A random ordering of the atom/sparse 

coefficient updates in Fig. 1, i.e., random j sequence, also works in practice in place of 

cycling in the same order 1 through J every iteration. One could also alternate several times 

between the sparse coding and dictionary atom update steps for each j. However, this 

variation would increase computation.

The method for (P2) differs from SOUP-DILLO in the sparse coding step (Proposition 2). 

From prior work [51], we refer to this method (for (P2)) as OS-DL. We implement this 

method in a similar manner as in Fig. 1 (for complex-valued data); unlike OS-DL in [51], 

our implementation does not compute the matrix Ej for each j.

Finally, while we interleave the sparse coefficient (cj) and atom (dj) updates in Fig. 1, one 

could also cycle first through all the columns of C and then through the columns of D in the 

block coordinate descent (SOUP) methods. Such an approach was adopted recently in [59] 

for ℓ1 penalized dictionary learning. We have observed similar performance with such an 

alternative update ordering strategy compared to an interleaved update order. Although the 

convergence results in Section V are for the ordering in Fig. 1, similar results can be shown 

to hold with alternative (deterministic) orderings in various settings.

B. Computational Cost Analysis

For each iteration t in Fig. 1, SOUP-DILLO involves J sparse code and dictionary atom 

updates. The sparse coding and atom update steps involve matrix-vector products for 

computing bt and ht, respectively.

Memory Usage—An alternative approach to the one in Fig. 1 involves computing 

 (as in Propositions 1 and 3) directly at the 

beginning of each inner j iteration. This matrix could be updated sequentially and efficiently 

for each j by adding and subtracting appropriate sparse rank-one matrices, as done in OS-DL 

Ravishankar et al. Page 9

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in [51] for the ℓ1 case. However, this alternative approach requires storing and updating 

, which is a large matrix for large N and n. The procedure in Fig. 1 avoids this 

overhead (similar to the Approximate K-SVD approach [35]), and is faster and saves 

memory usage.

Computational Cost—We now discuss the cost of each sparse coding and atom update 

step in the SOUP-DILLO method of Fig. 1 (a similar discussion holds for the method for 

(P2)). Consider the tth iteration and the jth inner iteration in Fig. 1, consisting of the update 

of the jth dictionary atom dj and its corresponding sparse coefficients cj. As in Fig. 1, let D ∈ 
ℂn×J be the dictionary whose columns are the current estimates of the atoms (at the start of 

the jth inner iteration), and let C ∈ ℂN×J be the corresponding sparse coefficients matrix. 

(The index t on D and C is dropped to keep the notation simple.) Assume that the matrix C 
has αNn non-zeros, with α ≪ 1 typically. This translates to an average of αn non-zeros per 

row of C or αNn/J non-zeros per column of C. We refer to α as the sparsity factor of C.

The sparse coding step involves computing the right hand side of (10). While computing 

 requires Nn multiply-add4 operations, computing  using matrix-vector 

products requires Jn + αNn multiply-add operations. The remainder of the operations in (10) 

and (11) have O(N) cost.

Next, when , the dictionary atom update is as per (12) and (13). Since  is sparse with 

say rj non-zeros, computing  in (12) requires nrj multiply-add operations, and computing 

 requires less than Jn+αNn multiply-add operations. The cost of the remaining 

operations in (12) and (13) is negligible.

Thus, the net cost of the J ≥ n inner iterations in iteration t in Fig. 1 is dominated (for N ≫ J, 
n) by NJn+2αmNJn+βNn2, where αm is the maximum sparsity factor of the estimated C’s 

during the inner iterations, and β is the sparsity factor of the estimated C at the end of 

iteration t. Thus, the cost per iteration of the block coordinate descent SOUP-DILLO 

Algorithm is about (1 + α′)NJn, with α′ ≪ 1 typically. On the other hand, the proximal 

alternating algorithm proposed recently by Bao et al. for (P1) [41], [55] (Algorithm 2 in 

[55]) has a per-iteration cost of at least 2NJn+6αNJn+4αNn2. This is clearly more 

computation5 than SOUP-DILLO. The proximal methods [55] also involve more parameters 

than direct block coordinate descent schemes.

Assuming J ∝ n, the cost per iteration of the SOUP-DILLO Algorithm scales as O(Nn2). 

This is lower than the per-iteration cost of learning an n × J synthesis dictionary D using K-

SVD [30], which scales6 (assuming that the synthesis sparsity level s ∝ n and J ∝ n in K-

SVD) as O(Nn3). SOUP-DILLO converges in few iterations in practice (cf. supplement). 

4In the case of complex-valued data, this would be the complex-valued multiply-accumulate (CMAC) operation (cf. [60]) that requires 
4 real-valued multiplications and 4 real-valued additions.
5Bao et al. also proposed another proximal alternating scheme (Algorithm 3 in [55]) for discriminative incoherent dictionary learning. 
However, this method, when applied to (P1) (as a special case of discriminative incoherent learning), has been shown in [55] to be 
much slower than the proximal Algorithm 2 [55] for (P1).
6When s ∝ n and J ∝ n, the per-iteration computational cost of the efficient implementation of K-SVD [54] also scales similarly as 
O(Nn3).
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Therefore, the per-iteration computational advantages may also translate to net 

computational advantages in practice. This low cost could be particularly useful for big data 

applications, or higher dimensional (3D or 4D) applications.

IV. Dictionary-Blind Image Reconstruction

A. Problem Formulations

Here, we consider the application of sparsity penalized dictionary learning to inverse 

problems. In particular, we use the following ℓ0 aggregate sparsity penalized dictionary 

learning regularizer that is based on (P1)

in (1) to arrive at the following dictionary-blind image reconstruction problem:

(P3)

Here, Pi ∈ ℝn×p is an operator that extracts a  patch (for a 2D image) of y as a 

vector Piy, and D ∈ ℂn×J is a (unknown) synthesis dictionary for the image patches. A total 

of N overlapping image patches are assumed, and ν> 0 is a weight in (P3). We use Y to 

denote the matrix whose columns are the patches Piy, and X (with columns xi) denotes the 

corresponding dictionary-sparse representation of Y. All other notations are as before. 

Similarly as in (P1), we approximate the (unknown) patch matrix Y using a sum of outer 

products representation.

An alternative to Problem (P3) uses a regularizer ζ(y) based on Problem (P2) rather than 

(P1). In this case, we have the following ℓ1 sparsity penalized dictionary-blind image 

reconstruction problem, where :

(P4)

Similar to (P1) and (P2), the dictionary-blind image reconstruction problems (P3) and (P4) 

are non-convex. The goal in these problems is to learn a dictionary and sparse coefficients, 

and reconstruct the image using only the measurements z.
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B. Algorithms and Properties

We adopt iterative block coordinate descent methods for (P3) and (P4) that lead to highly 

efficient solutions for the corresponding subproblems. In the dictionary learning step, we 

minimize (P3) or (P4) with respect to (D, X) keeping y fixed. In the image update step, we 

solve (P3) or (P4) for the image y keeping the other variables fixed. We describe these steps 

below.

1) Dictionary Learning Step—Minimizing (P3) with respect to (D, X) involves the 

following problem:

(14)

By using the substitutions X = CH and , Problem (14) becomes (P1) 7. 

We then apply the SOUP-DILLO algorithm in Fig. 1 to update the dictionary D and sparse 

coefficients C. In the case of (P4), when minimizing with respect to (D, X), we again set X = 

CH and use the SOUP representation to recast the resulting problem in the form of (P2). The 

dictionary and coefficients are then updated using the OS-DL method.

2) Image Update Step—Minimizing (P3) or (P4) with respect to y involves the following 

optimization problem:

(15)

This is a least squares problem whose solution satisfies the following normal equation:

(16)

When periodically positioned, overlapping patches (patch overlap stride [13] denoted by r) 
are used, and the patches that overlap the image boundaries ‘wrap around’ on the opposite 

side of the image [13], then  is a diagonal matrix. Moreover, when the patch 

stride r = 1, , with β = n. In general, the unique solution to (16) can be 

found using techniques such as conjugate gradients (CG). In several applications, the matrix 

AHA in (16) is diagonal (e.g., in denoising or in inpainting) or readily diagonalizable. In 

such cases, the solution to (16) can be found efficiently [8], [13]. Here, we consider single 

coil compressed sensing MRI [6], where A = Fu ∈ ℂm×p (m ≪ p), the undersampled Fourier 

7The ℓ0 constraints on the columns of X translate to identical constraints on the columns of C.
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encoding matrix. Here, the measurements z are samples in Fourier space (or k-space) of an 

object y, and we assume for simplicity that z is obtained by subsampling on a uniform 

Cartesian (k-space) grid. Denoting by F ∈ ℂp×p the full Fourier encoding matrix with FHF = 

I (normalized), we get  is a diagonal matrix of ones and zeros, with ones at 

entries correspond to sampled k-space locations. Using this in (16) yields the following 

solution in Fourier space [13] with , , and β = n (i.e., 

assuming r = 1):

(17)

where (k1, k2) indexes k-space or frequency locations (2D coordinates), and Ω is the subset 

of k-space sampled. The y solving (16) is obtained by an inverse FFT of Fy in (17).

3) Overall Algorithms and Computational Costs—Fig. 2 shows the algorithms for 

(P3) and (P4), which we refer to as the SOUP-DILLO and SOUP-DILLI image 

reconstruction algorithms, respectively. The algorithms start with an initial (y0, D0, X0) (e.g., 

y0 = A†z, and the other variables initialized as in Section III-A4). In applications such as 

inpainting or single coil MRI, the cost per outer (t) iteration of the algorithms is typically 

dominated by the dictionary learning step, for which (assuming J ∝ n) the cost scales as 

O(KNn2), with K being the number of inner iterations of dictionary learning. On the other 

hand, recent image reconstruction methods involving K-SVD (e.g., DLMRI [13]) have a 

worse corresponding cost per outer iteration of O(KNn3).

V. Convergence Analysis

This section presents a convergence analysis of the algorithms for the non-convex Problems 

(P1)–(P4). Problem (P1) involves the non-convex ℓ0 penalty for sparsity, the unit ℓ2 norm 

constraints on atoms of D, and the term  that is a non-convex function 

involving the products of multiple unknown vectors. The various algorithms discussed in 

Sections III and IV are exact block coordinate descent methods for (P1)-(P4). Due to the 

high degree of non-convexity involved, recent results on convergence of (exact) block 

coordinate descent methods [61] do not immediately apply (e.g., the assumptions in [61] 

such as block-wise quasiconvexity or other conditions do not hold here). More recent works 

[62] on the convergence of block coordinate descent schemes also use assumptions (such as 

multi-convexity, etc.) that do not hold here. While there have been recent works [63]–[67] 

studying the convergence of alternating proximal-type methods for non-convex problems, 

we focus on the exact block coordinate descent schemes of Sections III and IV due to their 

simplicity. We discuss the convergence of these algorithms to the critical points (or 

generalized stationary points [68]) in the problems. In the following, we present some 

definitions and notations, before stating the main results.
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A. Definitions and Notations

A sequence {at} ⊂ ℂp has is an accumulation point a, if there a subsequence that converges 

to a. The constraints ║dj║2 = 1, 1 ≤ j ≤ J, in (P1) can instead be added as penalties in the 

cost by using barrier functions χ(dj) (taking the value +∞ when the norm constraint is 

violated, and zero otherwise). The constraints ║cj║∞ ≤ L, 1 ≤ j ≤ J, (P1), can also in be 

similarly replaced with barrier penalties ψ(cj) ∀ j. Then, we rewrite (P1) in unconstrained 

form with the following objective:

(18)

We rewrite (P2) similarly with an objective  obtained by replacing the ℓ0 “norm” 

above with the ℓ1 norm, and dropping the penalties ψ(cj). We also rewrite (P3) and (P4) in 

terms of the variable C = XH, and denote the corresponding unconstrained objectives 

(involving barrier functions) as g(C, D, y) and , respectively.

The iterates computed in the tth outer iteration of SOUP-DILLO (or alternatively in OS-DL) 

are denoted by the pair of matrices (Ct, Dt).

B. Results for (P1) and (P2)

First, we present a convergence result for the SOUP-DILLO algorithm for (P1) in Theorem 

1. Assume that the initial (C0, D0) satisfies the constraints in (P1).

Theorem 1—Let {Ct, Dt} denote the bounded iterate sequence generated by the SOUP-

DILLO Algorithm with data Y ∈ ℂn×N and initial (C0, D0). Then, the following results hold:

i. The objective sequence {ft} with ft ≜ f (Ct, Dt) is monotone decreasing, and 

converges to a finite value, say f∗ = f∗(C0, D0).

ii. All the accumulation points of the iterate sequence are equivalent in the sense 

that they achieve the exact same value f∗ of the objective.

iii. Suppose each accumulation point (C, D) of the iterate sequence is such that the 

matrix B with columns  and , has no entry with 

magnitude λ. Then every accumulation point of the iterate sequence is a critical 

point of the objective f(C, D). Moreover, the two sequences with terms ║Dt − Dt

−1║F and ║Ct − Ct−1║F respectively, both converge to zero.

Theorem 1 establishes that for an initial point the (C0, D0) bounded iterate sequence in 

SOUP-DILLO is such that all its (compact set of) accumulation points achieve the same 

value f∗ of the objective. They are equivalent in that sense. In other words, the iterate 

sequence converges to an equivalence class of accumulation points. The value of f∗ could 

vary with different initalizations.
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Theorem 1 (Statement (iii)) also establishes that every accumulation point of the iterates is a 

critical point of f(C, D), i.e., for each initial (C0, D0), the iterate sequence converges to an 

equivalence class of critical points of f. The results ║Dt − Dt−1║F → 0 and ║Ct − Ct−1║F 

→ 0 also imply that the sparse approximation to the data Zt = Dt (Ct)H satisfies ║Zt − Zt

−1║F → 0. These are necessary but not sufficient conditions for the convergence of the 

entire sequences {Dt}, {Ct}, and {Zt}. The assumption on the entries of the matrix B in 

Theorem 1 (i.e., |bji| ≠ λ) is equivalent to assuming that for every 1 ≤ j ≤ J, there is a unique 

minimizer of f with respect to cj with all other variables fixed to their values in the 

accumulation point (C, D).

Although Theorem 1 uses a uniqueness condition with respect to each accumulation point 

(for Statement (iii)), the following conjecture postulates that provided the following 

Assumption 1 (that uses a probabilistic model for the data) holds, the uniqueness condition 

holds with probability 1, i.e., the probability of a tie in assigning sparse codes is zero.

Assumption 1: The signals yi ∈ ℂn for 1 ≤ i ≤ N, are drawn independently from an 

absolutely continuous probability measure over the ball S ≜ {y ∈ ℂn:║y║2 ≤ β0} for some 

β0> 0

Conjecture 1—Let Assumption 1 hold. Then, with probability 1, every accumulation point 

(C, D) of the iterate sequence in the SOUP-DILLO Algorithm is such that for each 1 ≤ j ≤ J, 

the minimizer of  with respect to  is unique.

If Conjecture 1 holds, then every accumulation point of the iterates in SOUP-DILLO is 

immediately a critical point of f(C, D) with probability 1.

We now briefly state the convergence result for the OS-DL method for (P2). The result is 

more of a special case of Theorem 1. Here, the iterate sequence for an initial (C0, D0) 

converges directly (without additional conditions) to an equivalence class (i.e., 

corresponding to a common objective value ) of critical points of the 

objective .

Theorem 2—Let {Ct, Dt} denote the bounded iterate sequence generated by the OS-DL 

Algorithm with data Y ∈ ℂn×N and initial (C0, D0). Then, the iterate sequence converges to 

an equivalence class of critical points of , and ║Dt − Dt−1║F → 0 and ║Ct − Ct

−1║F → 0 as t→∞.

A brief proof of Theorem 1 is provided in the supplementary material. The proof for 

Theorem 2 is similar, as discussed in the supplement.

C. Results for (P3) and (P4)

First, we present the result for the SOUP-DILLO image reconstruction algorithm for (P3) in 

Theorem 3. We again assume that the initial (C0, D0) satisfies the constraints in the problem. 

Recall that Y denotes the matrix with patches Piy for 1 ≤ i ≤ N, as its columns.
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Theorem 3—Let {Ct, Dt, yt} denote the iterate sequence generated by the SOUP-DILLO 

image reconstruction Algorithm with measurements z ∈ ℂm and initial (C0, D0, y0). Then, 

the following results hold:

i. The objective sequence {gt} with gt ≜ g (Ct, Dt, yt) is monotone decreasing, and 

converges to a finite value, say g∗ = g∗(C0, D0, y0).

ii. The iterate sequence is bounded, and all its accumulation points are equivalent in 

the sense that they achieve the exact same value g∗ of the objective.

iii. Each accumulation point (C, D, y) of the iterate sequence satisfies

(19)

iv. As t → ∞, ║yt − yt−1║2 converges to zero.

v. Suppose each accumulation point (C, D, y) of the iterates is such that the matrix 

B with columns  and , has no entry with 

magnitude λ. Then every accumulation point of the iterate sequence is a critical 

point of the objective g. Moreover, ║Dt − Dt−1║F → 0 and ║Ct − Ct−1║F → 
0 as t→∞.

Statements (i) and (ii) of Theorem 3 establish that for each initial (C0, D0, y0), the bounded 

iterate sequence in the SOUP-DILLO image reconstruction algorithm converges to an 

equivalence class (common objective value) of accumulation points. Statements (iii) and (iv) 

establish that each accumulation point is a partial global minimizer (i.e., minimizer with 

respect to some variables while the rest are kept fixed) of g (C, D, y) with respect to y, and 

that ║yt − yt−1║2 → 0 Statement (v) shows that the iterates converge to the critical points 

of g In fact, the accumulation points of the iterates can be shown to be partial global 

minimizers of g (C, D, y) with respect to each column of C or D. Statement (v) also 

establishes the properties ║Dt − Dt−1║F → 0 and ║Ct − Ct−1║F → 0. Similarly as in 

Theorem 1, Statement (v) of Theorem 3 uses a uniqueness condition with respect to the 

accumulation points of the iterates.

Finally, we briefly state the convergence result for the SOUP-DILLI image reconstruction 

Algorithm for (P4). The result is a special version of Theorem 3, where the iterate sequence 

for an initial (C0, D0, y0) converges directly (without additional conditions) to an 

equivalence class (i.e., corresponding to a common objective value ) of 

critical points of the objective .

Theorem 4—Let {Ct, Dt, yt} denote the iterate sequence generated by the SOUP-DILLI 

image reconstruction Algorithm for (P4) with measurements z ∈ ℂm and initial (C0, D0, y0). 

Then, the iterate sequence converges to an equivalence class of critical points of . 

Moreover, ║Dt − Dt−1║F → 0 and ║Ct − Ct−1║F → 0, and ║yt − yt−1║2 → 0 as t → 
∞.

A brief proof sketch for Theorems 3 and 4 is provided in the supplementary material.
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The convergence results for the algorithms in Figs. 1 and 2 use the deterministic and cyclic 

ordering of the various updates (of variables). Whether one could generalize the results to 

other update orders (such as stochastic) is an interesting question that we leave for future 

work.

VI. Numerical Experiments

A. Framework

This section presents numerical results illustrating the convergence behavior as well as the 

usefulness of the proposed methods in applications such as sparse data representation and 

inverse problems. An empirical convergence study of the dictionary learning methods is 

included in the supplement. We used a large L = 108 in all experiments and the ℓ∞ 
constraints were never active.

Section VI-B illustrates the quality of sparse data representations obtained using the SOUP-

DILLO method, where we consider data formed using vectorized 2D patches of natural 

images. We compare the sparse representation quality obtained with SOUP-DILLO to that 

obtained with OS-DL (for (P2)), and the recent proximal alternating dictionary learning 

(which we refer to as PADL) algorithm for (P1) [41], [55] (Algorithm 2 in [55]). We used 

the publicly available implementation of the PADL method [73], and implemented OS-DL 

in a similar (memory efficient) manner as in Fig. 1. We measure the quality of trained sparse 

representation of data Y using the normalized sparse representation error (NSRE) ║Y − 
DCH║F/║Y║F.

Results obtained using the SOUP-DILLO (learning) algorithm for image denoising are 

reported in [74]. We have briefly discussed these results in Appendix A for completeness. In 

the experiments of this work, we focus on general inverse problems involving non-trivial 

sensing matrices A, where we use the iterative dictionary-blind image reconstruction 

algorithms discussed in Section IV. In particular, we consider blind compressed sensing MRI 

[13], where A = Fu, the undersampled Fourier encoding matrix. Sections VI-C and VI-D 

examine the empirical convergence behavior and usefulness of the SOUP-DILLO and 

SOUP-DILLI image reconstruction algorithms for Problems (P3) and (P4), for blind 

compressed sensing MRI. We refer to our algorithms for (P3) and (P4) for (dictionary-blind) 

MRI as SOUP-DILLO MRI and SOUP-DILLI MRI, respectively. Unlike recent synthesis 

dictionary learning-based works [13], [50] that involve computationally expensive 

algorithms with no convergence analysis, our algorithms for (P3) and (P4) are efficient and 

have proven convergence guarantees.

Figure 3 shows the data (normalized to have unit peak pixel intensity) used in Sections VI-C 

and VI-D. In our experiments, we simulate undersampling of k-space with variable density 

2D random sampling (feasible when data corresponding to multiple slices are jointly 

acquired, and the readout direction is perpendicular to image plane) [13], or using Cartesian 

sampling with variable density random phase encodes (1D random). We compare the 

reconstructions from undersampled measurements provided by SOUP-DILLO MRI and 

SOUP-DILLI MRI to those provided by the benchmark DLMRI method [13] that learns 

adaptive overcomplete dictionaries using K-SVD in a dictionary-blind image reconstruction 
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framework. We also compare to the non-adaptive Sparse MRI method [6] that uses wavelets 

and total variation sparsity, the PANO method [75] that exploits the non-local similarities 

between image patches, and the very recent FDLCP method [18] that uses learned multi-

class unitary dictionaries. Similar to prior work [13], we employ the peak-signal-to-noise 

ratio (PSNR) to measure the quality of MR image reconstructions. The PSNR (expressed in 

decibels (dB)) is computed as the ratio of the peak intensity value of a reference image to the 

root mean square reconstruction error (computed between image magnitudes) relative to the 

reference.

All our algorithm implementations were coded in Matlab R2015a. The computations in 

Section VI-B were performed with an Intel Xeon CPU X3230 at 2.66 GHz and 8 GB 

memory, employing a 64-bit Windows 7 operating system. The computations in Sections VI-

C and VI-D were performed with an Intel Core i7 CPU at 2.6 GHz and 8 GB memory, 

employing a 64-bit Windows 7 operating system. A link to software to reproduce results in 

this work will be provided at http://web.eecs.umich.edu/∼fessler/.

B. Adaptive Sparse Representation of Data

Here, we extracted 3 × 104 patches of size 8 × 8 from randomly chosen locations in the 512 

× 512 standard images Barbara, Boats, and Hill. For this data, we learned dictionaries of size 

64×256 for various choices of the parameter λ in (P1) (i.e., corresponding to a variety of 

solution sparsity levels). The initial estimate for C in SOUP-DILLO is an all-zero matrix, 

and the initial estimate for D is the overcomplete DCT [8], [76]. We measure the quality 

(performance) of adaptive data approximations DCH using the NSRE metric. We also 

learned dictionaries using the recent methods for sparsity penalized dictionary learning in 

[41], [51]. All learning methods were initialized the same way. We are interested in the 

NSRE versus sparsity trade-offs achieved by different learning methods for the 3×104 image 

patches (rather than for separate test data)8.

First, we compare the NSRE values achieved by SOUP-DILLO to those obtained using the 

recent PADL (for (P1)) approach [41], [55]. Both the SOUP-DILLO and PADL methods 

were simulated for 30 iterations for an identical set of λ values in (P1). We did not observe 

any marked improvements in performance with more iterations of learning. Since the PADL 

code [73] outputs only the learned dictionaries, we performed 60 iterations of block 

coordinate descent (over the cj’s in (P1)) to obtain the sparse coefficients with the learned 

dictionaries. Figs. 4(a) and 4(b) show the NSREs and sparsity factors obtained in SOUP-

DILLO, and with learned PADL dictionaries for the image patch data. The proposed SOUP-

DILLO achieves both lower NSRE (improvements up to 0.8 dB over the PADL dictionaries) 

and lower net sparsity factors. Moreover, it also has much lower learning times (Fig. 4(c)) 

than PADL.

Next, we compare the SOUP-DILLO and OS-DL methods for sparsely representing the 

same data. For completeness, we first show the NSRE versus sparsity trade-offs achieved 

8This study is useful because in the dictionary-blind image reconstruction framework of this work, the dictionaries are adapted 
without utilizing separate training data. Methods that provide sparser adaptive representations of the underlying data also typically 
provide better image reconstructions in that setting [56].
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during learning. Here, we measured the sparsity factors (of C) achieved within the schemes 

for various λ and μ values in (P1) and (P2), and then compared the NSRE values achieved 

within SOUP-DILLO and OS-DL at similar (achieved) sparsity factor settings. OS-DL ran 

for 30 iterations, which was sufficient for good performance. Fig. 4(e) shows the NSRE 

versus sparsity trade-offs achieved within the algorithms. SOUP-DILLO clearly achieves 

significantly lower NSRE values at similar net sparsities than OS-DL. Since these methods 

are for the ℓ0 and ℓ1 learning problems respectively, we also took the learned sparse 

coefficients in OS-DL in Fig. 4(e) and performed debiasing [77] by re-estimating the non-

zero coefficient values (with supports fixed to the estimates in OS-DL) for each signal in a 

least squares sense to minimize the data fitting error. In this case, SOUP-DILLO in Fig. 4(e) 

provides an average NSRE improvement across various sparsities of 2.1 dB over OS-DL 

dictionaries. Since both SOUP-DILLO and OS-DL involve similar types of operations, their 

runtimes (Fig. 4(d)) for learning were quite similar. Next, when the dictionaries learned by 

OS-DL for various sparsities in Fig. 4(e) were used to estimate the sparse coefficients C in 

(P1) (using 60 iterations of ℓ0 block coordinate descent over the cj’s and choosing the 

corresponding λ values in Fig. 4(e)); the resulting representations DCH had on average 

worse NSREs and usually more nonzero coefficients than SOUP-DILLO. Fig. 4(f) plots the 

trade-offs. For example, SOUP-DILLO provides 3.15 dB better NSRE than the learned OS-

DL dictionary (used with ℓ0 sparse coding) at 7.5% sparsity. These results further illustrate 

the benefits of the learned models in SOUP-DILLO.

Finally, results included in the supplementary material show that when the learned 

dictionaries are used to sparse code (using orthogonal matching pursuit [22]) the data in a 

column-by-column (or signal-by-signal) manner, SOUP-DILLO dictionaries again 

outperform PADL dictionaries in terms of achieved NSRE. Moreover, at low sparsities, 

SOUP-DILLO dictionaries used with such column-wise sparse coding also outperformed 

(by 14–15 dB) dictionaries learned using K-SVD [30] (that is adapted for Problem (P0) with 

column-wise sparsity constraints). Importantly, at similar net sparsity factors, the NSRE 

values achieved by SOUP-DILLO in Fig. 4(e) tend to be quite a bit lower (better) than those 

obtained using the K-SVD method for (P0). Thus, solving Problem (P1) may offer potential 

benefits for adaptively representing data sets (e.g., patches of an image) using very few total 

non-zero coefficients. Further exploration of the proposed methods and comparisons for 

different dictionary sizes or larger datasets (of images or image patches) is left for future 

work.

C. Convergence of SOUP-DIL Image Reconstruction Algorithms in Dictionary-Blind 
Compressed Sensing MRI

Here, we consider the complex-valued reference image in Fig. 3(c) (Image (c)), and perform 

2.5 fold undersampling of the k-space of the reference. Fig. 5(a) shows the variable density 

sampling mask. We study the behavior of the SOUP-DILLO MRI and SOUP-DILLI MRI 

algorithms for (P3) and (P4) respectively, when used to reconstruct the water phantom data 

from undersampled measurements. For SOUP-DILLO MRI, overlapping image patches of 

size 6 × 6 (n = 36) were used with stride r = 1 (with patch wrap around), ν = 106/p (with p 
the number of image pixels), and we learned a fourfold overcomplete (or 36 × 144) 

dictionary with K = 1 and λ = 0.08 in Fig. 2. The same settings were used for the SOUP-
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DILLI MRI method for (P4) with μ = 0.08. We initialized the algorithms with y0 = A†z, C0 

= 0, and the initial D0 was formed by concatenating a square DCT dictionary with 

normalized random gaussian vectors.

Fig. 5 shows the behavior of the proposed dictionary-blind image reconstruction methods. 

The objective function values (Fig. 5(d)) in (P3) and (P4) decreased monotonically and 

quickly in the SOUP-DILLO MRI and SOUP-DILLI MRI algorithms, respectively. The 

initial reconstruction (Fig. 5(b)) shows large aliasing artifacts and has a low PSNR of 24.9 

dB. The reconstruction PSNR (Fig. 5(e)), however, improves significantly over the iterations 

in the proposed methods and converges, with the final SOUP-DILLO MRI reconstruction 

(Fig. 5(c)) having a PSNR of 36.8 dB. For the ℓ1 method, the PSNR converges to 36.4 dB, 

which is lower than for the ℓ0 case. The sparsity factor for the learned coefficient matrix C 
was 5% for (P3) and 16% for (P4). Although larger values of μ decrease the sparsity factor 

for the learned C in (P4), we found that the PSNR also degrades for such settings in this 

example.

The changes between successive iterates ║yt − yt−1║2 (Fig. 5(f)) or ║Ct − Ct−1║F (Fig. 

5(f)) or ║Dt − Dt−1║F (Fig. 5(h)) decreased to small values for the proposed algorithms. 

Such behavior was predicted for the algorithms by Theorems 3 and 4, and is indicative 

(necessary but not suffficient condition) of convergence of the respective sequences.

Finally, Fig. 5 also shows the dictionary learned (jointly with the reconstruction) for image 

patches by SOUP-DILLO MRI along with the initial (Fig. 5(i)) dictionary. The learned 

synthesis dictionary is complex-valued whose real (Fig. 5(j)) and imaginary (Fig. 5(k)) parts 

are displayed, with the atoms shown as patches. The learned atoms appear quite different 

from the initial ones and display frequency or edge like structures that were learned 

efficiently from a few k-space measurements.

D. Dictionary-Blind Compressed Sensing MRI Results—We now consider images 

(a)-(g) in Fig. 3 and evaluate the efficacy of the proposed algorithms for (P3) and (P4) for 

reconstructing the images from undersampled k-space measurements. We compare the 

reconstructions obtained by the proposed methods to those obtained by the DLMRI [13], 

Sparse MRI [6], PANO [75], and FDLCP [18] methods. We used the built-in parameter 

settings in the publicly available implementations of Sparse MRI [78] and PANO [69], 

which performed well in our experiments. We used the zero-filling reconstruction as the 

initial guide image in PANO [69], [75].

We used the publicly available implementation of the multi-class dictionaries learning-based 

FDLCP method [79]. The ℓ0 “norm”-based FDLCP was used in our experiments, as it was 

shown in [18] to outperform the ℓ1 version. The built-in settings [79] for the FDLCP 

parameters such as patch size, λ, etc., performed well in our experiments, and we tuned the 

parameter β in each experiment to achieve the best image reconstruction quality.

For the DLMRI implementation [80], we used image patches of size9 6 × 6 [13], and learned 

a 36 × 144 dictionary and performed image reconstruction using 45 iterations of the 

algorithm. The patch stride r = 1, and 14400 randomly selected patches10 were used during 
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the dictionary learning step (executed with 20 iterations of K-SVD) of DLMRI. Mean-

subtraction was not performed for the patches prior to the dictionary learning step. (We 

adopted this strategy for DLMRI here as it led to better performance.) A maximum sparsity 

level (of s = 7 per patch) is employed together with an error threshold (for sparse coding) 

during the dictionary learning step. The ℓ2 error threshold per patch varies linearly from 0.34 

to 0.04 over the DLMRI iterations, except for Figs. 3(a), 3(c), and 3(f) (noisier data), where 

it varies from 0.34 to 0.15 over the iterations. Once the dictionary is learnt in the dictionary 

learning step of each DLMRI (outer) iteration, all image patches are sparse coded with the 

same error threshold as used in learning and a relaxed maximum sparsity level of 14. This 

relaxed sparsity level is indicated in the DLMRI-Lab toolbox [80], as it leads to better 

performance in practice. As an example, DLMRI with these parameter settings provides 0.4 

dB better reconstruction PSNR for the data in Fig. 5 compared to DLMRI with a common 

maximum sparsity level (other parameters as above) of s = 7 in the dictionary learning and 

follow-up sparse coding (of all patches) steps. We observed the above parameter settings 

(everything else as per the indications in the DLMRI-Lab toolbox [80]) to work well for 

DLMRI in the experiments.

For SOUP-DILLO MRI and SOUP-DILLI MRI, patches of size 6×6 were again used (n = 

36 like for DLMRI) with stride r = 1 (with patch wrap around), ν = 106/p, M = 45 (same 

number of outer iterations as for DLMRI), and a 36 × 144 dictionary was learned. We found 

that using larger values of λ or μ during the initial outer iterations of the methods led to 

faster convergence and better aliasing removal. Hence, we vary λ from 0.35 to 0.01 over the 

(outer t) iterations in Fig. 2, except for Figs. 3(a), 3(c), and 3(f) (noisier data), where it varies 

from 0.35 to 0.04. These settings and μ = λ/1.4 worked well in our experiments. We used 5 

inner iterations of SOUP-DILLO and 1 inner iteration (observed optimal) of OS-DL. The 

iterative reconstruction algorithms were initialized as mentioned in Section VI-C.

Table I lists the reconstruction PSNRs11 corresponding to the zero-filling (the initial y0 in 

our methods), Sparse MRI, DLMRI, PANO, SOUP-DILLO MRI, and SOUP-DILLI MRI 

reconstructions for several cases. The proposed SOUP-DILLO MRI Algorithm for (P3) 

provides the best reconstruction PSNRs in Table I. In particular, it provides 1 dB better 

PSNR on the average compared to the K-SVD [30] based DLMRI method and the non-local 

patch similarity-based PANO method. While the K-SVD-based algorithm for image 

denoising [8] explicitly uses information of the noise variance (of Gaussian noise) in the 

observed noisy patches, in the compressed sensing MRI application here, the artifact 

properties (variance or distribution of the aliasing/noise artifacts) in each iteration of 

DLMRI are typically unknown, i.e., the DLMRI algorithm does not benefit from a superior 

modeling of artifact statistics and one must empirically set parameters such as the patch-

wise error thresholds. The improvements provided by SOUP-DILLO MRI over DLMRI thus 

might stem from a better optimization framework for the former (e.g., the overall sparsity 

penalized formulation or the exact and guaranteed block coordinate descent algorithm). A 

9The reconstruction quality improves slightly with a larger patch size, but with a substantial increase in runtime.
10Using a larger training size during the dictionary learning step of DLMRI provides negligible improvement in image reconstruction 
quality, while leading to increased runtimes. A different random subset is used in each iteration of DLMRI.
11While we compute PSNRs using magnitudes (typically the useful component of the reconstruction) of images, we have observed 
similar trends as in Table I when the PSNR is computed based on the difference (error) between the complex-valued images.
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more detailed theoretical analysis including the investigation of plausible recovery 

guarantees for the proposed schemes is left for future work.

SOUP-DILLO MRI (average runtime of 2180 seconds) was also faster in Table I than the 

previous DLMRI (average runtime of 3156 seconds). Both the proposed SOUP methods 

significantly improved the reconstruction quality compared to the classical non-adaptive 

Sparse MRI method. Moreover, the ℓ0 “norm”-based SOUP-DILLO MRI outperformed the 

corresponding ℓ1 method (SOUP-DILLI MRI) by 1.4 dB on average in Table I, indicating 

potential benefits for ℓ0 penalized dictionary adaptation in practice. The promise of non-

convex sparsity regularizers (including the ℓ0 or ℓp norm for p < 1) compared to ℓ1 norm-

based techniques for compressed sensing MRI has been demonstrated in prior works [18], 

[81], [82].

Table II compares the reconstruction PSNRs obtained by SOUP-DILLO MRI to those 

obtained by the recent ℓ0 “norm”-based FDLCP [18] for the same cases as in Table I. SOUP-

DILLO MRI initialized with zero-filling reconstructions performs quite similarly on the 

average (0.1 dB worse) as ℓ0 FDLCP in Table II. However, with better initializations, SOUP-

DILLO MRI can provide even better reconstructions than with the zero-filling initialization. 

We investigated SOUP-DILLO MRI, but initialized with the ℓ0 FDLCP reconstructions (for 

y). The parameter λ was set to the eventual value in Table I, i.e., 0.01 or 0.04 (for noisier 

data), with decreasing λ’s used for Image (c) with 2.5× Cartesian undersampling, where the 

FDLCP reconstruction was still highly aliased. In this case, SOUP-DILLO MRI consistently 

improved over the ℓ0 FDLCP reconstructions (initializations), and provided 0.8 dB better 

PSNR on the average in Table II. These results illustrate the benefits and potential for the 

proposed dictionary-blind compressed sensing approaches. The PSNRs for our schemes 

could be further improved with better parameter selection strategies.

Fig. 6 shows the reconstructions and reconstruction error maps (i.e., the magnitude of the 

difference between the magnitudes of the reconstructed and reference images) for various 

methods for an example in Table I. The reconstructed images and error maps for SOUP-

DILLO MRI show much fewer artifacts and smaller distortions than for the other methods. 

Another comparison is included in the supplement.

VII. Conclusions

This paper investigated in detail fast methods for synthesis dictionary learning. The SOUP 

algorithms for dictionary learning were further extended to the scenario of dictionary-blind 

image reconstruction. A convergence analysis was presented for the various efficient 

algorithms in highly non-convex problem settings. The proposed SOUP-DILLO algorithm 

for aggregate sparsity penalized dictionary learning had superior performance over recent 

dictionary learning methods for sparse data representation. The proposed SOUP-DILLO 

(dictionary-blind) image reconstruction method outperformed standard benchmarks 

involving the K-SVD algorithm, as well as some other recent methods in the compressed 

sensing MRI application. Recent works have investigated the data-driven adaptation of 

alternative signal models such as the analysis dictionary [14] or transform model [4], [15], 

[16], [56]. While we focused on synthesis dictionary learning methodologies in this work, 
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we plan to compare various kinds of data-driven models in future work. We have considered 

extensions of the SOUP-DIL methodology to other novel settings and applications elsewhere 

[83]. Extensions of the SOUP-DIL methods for online learning [12] or for learning multi-

class models are also of interest, and are left for future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A Discussion of Image Denoising Results For SOUP-DILLO in 

[74]

Results obtained using the SOUP-DILLO (learning) algorithm for image denoising are 

reported in [74], where the results were compared to those obtained using the K-SVD image 

denoising method [8]. We briefly discuss these results here for completeness.

Recall that the goal in image denoising is to recover an estimate of an image y ∈ ℂp (2D 

image represented as a vector) from its corrupted measurements z = y + ε where ε is the 

noise (e.g., i.i.d. Gaussian). First, while both K-SVD and the SOUP-DILLO (for (P1)) 

methods could be applied to noisy image patches to obtain adaptive denoising (as Dxi in Piz 
≈ Dxi) of the patches (the denoised image is obtained easily from denoised patches by 

averaging together the overlapping patches at their respective 2D locations, or solving (22) 

in [74]), the K-SVD-based denoising method [8] uses a dictionary learning procedure where 

the ℓ0 “norms” of the sparse codes are minimized so that a fitting constraint or error 

constraint of  is met for representing each noisy patch. In particular, when 

the noise is i.i.d. Gaussian, ε = nC2σ2 is used, with C > 1 (typically chosen very close to 1) a 

constant and σ2 being the noise variance for pixels. Such a constraint serves as a strong prior 

(law of large numbers), and is an important reason for the denoising capability of K-SVD 

[8].

In the SOUP-DILLO denoising method in [74], we set λ ∝ σ during learning (in (P1)), and 

once the dictionary is learned from noisy image patches, we re-estimated the patch sparse 

codes using a single pass (over the noisy patches) of orthogonal matching pursuit (OMP) 

[22], by employing an error constraint criterion like in K-SVD denoising. This strategy only 

uses information on the Gaussian noise statistics in a sub-optimal way, especially during 

learning. However, SOUP-DILLO still provided comparable denoising performance visa-vis 

K-SVD with this approach (cf. [74]). Importantly, SOUP-DILLO provided up to 0.1–0.2 dB 

better denoising PSNR than K-SVD in (very) high noise cases in [74].
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Fig. 1. 
The SOUP-DILLO Algorithm (due to the ℓ0 “norm”) for Problem (P1). Superscript t denotes 

the iterates in the algorithm. The vectors bt and ht above are computed efficiently via sparse 

operations.
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Fig. 2. 
The SOUP-DILLO and SOUP-DILLI image reconstruction algorithms for Problems (P3) 

and (P4), respectively. Superscript t denotes the iterates. Parameter L can be set very large in 

practice (e.g., L ∝ ║A†z║2).
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Fig. 3. 
Test data (magnitudes of the complex-valued MR data are displayed here). Image (a) is 

available at http://web.stanford.edu/class/ee369c/data/brain.mat. The images (b)-(e) are 

publicly available: (b) T2 weighted brain image [69], (c) water phantom [70], (d) cardiac 

image [71], and (e) T2 weighted brain image [72]. Image (f) is a reference sagittal brain 

slice provided by Prof. Michael Lustig, UC Berkeley. Image (g) is a complex-valued 

reference SENSE reconstruction of 32 channel fully-sampled Cartesian axial data from a 

standard spin-echo sequence. Images (a) and (f) are 512 × 512, while the rest are 256 × 256. 

The images (b) and (g) have been rotated clockwise by 90° here for display purposes. In the 

experiments, we use the actual orientations.
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Fig. 4. 
Comparison of dictionary learning approaches for adaptive sparse representation (NSRE and 

sparsity factors are expressed as percentages): (a) NSRE values for SOUP-DILLO at various 

λ along with those obtained by performing ℓ0 block coordinate descent sparse coding (as in 

(P1)) using learned PADL [41], [55] dictionaries (denoted ‘Post-L0’ in the plot legend); (b) 

(net) sparsity factors for SOUP-DILLO at various λ along with those obtained by 

performing ℓ0 block coordinate descent sparse coding using learned PADL [41], [55] 

dictionaries; (c) learning times for SOUP-DILLO and PADL; (d) learning times for SOUP-

DILLO and OS-DL for various achieved (net) sparsity factors (in learning); (e) NSRE vs. 

(net) sparsity factors achieved within SOUP-DILLO and OS-DL; and (f) NSRE vs. (net) 

sparsity factors achieved within SOUP-DILLO along with those obtained by performing ℓ0 

(block coordinate descent) sparse coding using learned OS-DL dictionaries.
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Fig. 5. 
Behavior of SOUP-DILLO MRI (for (P3)) and SOUP-DILLI MRI (for (P4)) for Image (c) 

with Cartesian sampling and 2.5× undersampling: (a) sampling mask in k-space; (b) 

magnitude of initial reconstruction y0 (PSNR = 24.9 dB); (c) SOUP DILLO MRI (final) 

reconstruction magnitude (PSNR = 36.8 dB); (d) objective function values for SOUP-

DILLO MRI and SOUP-DILLI MRI; (e) reconstruction PSNR over iterations; (f) changes 

between successive image iterates (║yt − yt−1║2) normalized by the norm of the reference 

image (║yref║2 = 122.2); (g) normalized changes between successive coefficient iterates 

(║Ct − Ct−1║F/║Yref║F) where Yref is the patch matrix for the reference image; (h) 

normalized changes between successive dictionary iterates  (i) initial 

real-valued dictionary in the algorithms; and (j) real and (k) imaginary parts of the learnt 

dictionary for SOUP-DILLO MRI. The dictionary columns or atoms are shown as 6 × 6 

patches.
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Fig. 6. 
Results for Image (c) with Cartesian sampling and 2.5× undersampling. The sampling mask 

is shown in Fig. 5(a). Reconstructions (magnitudes): (a) DLMRI [13]; (b) PANO [75]; (c) ℓ0 

“norm”-based FDLCP [18]; and (d) SOUP-DILLO MRI (with zero-filling initialization). 

(e)-(h) are the reconstruction error maps for (a)-(d), respectively.
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TABLE II

PSNRS corresponding to the ℓ0 “NORM”-based FDLCP reconstructions [18], and the SOUP-DILLO MRI (for 

(P3)) reconstructions obtained with a zero-filling (y0 = A†z) initialization or by initializing with the FDLCP 

result (last column). The various images, sampling schemes, and undersampling factors (UF) are the same as 

in Table I. The best PSNRs are marked in bold.

Image UF FDLCP
(ℓ0 “norm”)

SOUP-DILLO MRI
(Zero-filling init.)

SOUP-DILLO MRI
(FDLCP init.)

a 7x 31.5 31.1 31.5

b 2.5x 44.2 42.3 44.8

c 2.5x 33.5 37.3 37.3

c 4x 32.8 32.3 33.5

d 2.5x 38.5 38.4 38.7

e 2.5x 43.4 41.5 43.9

f 5x 30.4 30.6 30.6

g 2.5x 43.2 43.2 43.5
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