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Abstract—The following identification problem is considered:
Minimize the 2 norm of the difference between a given time series
and an approximating one under the constraint that the approxi-
mating time series is a trajectory of a linear time invariant system
of a fixed complexity. The complexity is measured by the input
dimension and the maximum lag. The question leads to a problem
that is known as the global total least squares problem and alter-
natively can be viewed as maximum likelihood identification in the
errors-in-variables setup. Multiple time series and latent variables
can be considered in the same setting. Special cases of the problem
are autonomous system identification, approximate realization,
and finite time optimal 2 model reduction. The identification
problem is related to the structured total least squares problem.
This paper presents an efficient software package that implements
the theory. The proposed method and software are tested on data
sets from the database for the identification of systems DAISY.

Index Terms—DAISY, errors-in-variables, model reduction,
MPUM, numerical software, system identification, structured
total least squares.

I. INTRODUCTION

A. The Structured Total Least Squares Problem

THE structured total least squares (STLS) problem orig-
inates [1], [2] from the signal processing and numerical

linear algebra communities and is not widely known in the
area of systems and control. It is a generalization to ma-
trices with structure of the total least squares problem [3],
[4] known in the early system identification literature as the
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Fig. 1. Different problems aiming at a (low complexity) model �̂ that
approximates a given (high complexity) model ��. The time series w is an
observed response and h is an observed impulse response.

Koopmans–Levin’s method [5]. In this paper, we show the
applicability of the STLS method for system identification.
We extend previous results [6], [7] of the application of STLS
for single-input–single-output (SISO) system identification to
the multiple-input–multiple-output (MIMO) case and present
numerical results on data sets from DAISY [8].

The STLS problem is defined as follows: Given a time series
and a structure specification , find the global minimum point

of the optimization problem

subject to (1)

The constraint of (1) enforces the structured matrix to be
rank deficient, with rank at most . The cost function
measures the distance of the given data to its approximation

. Thus the STLS problem aims at optimal structured low rank
approximation of by .

B. Approximate Modeling Problems

Fig. 1, shows several approximate modeling problems. On top
is the model reduction problem: given a linear time-invariant
(LTI) system , find an LTI approximation of a desired lower
complexity. A tractable solution that gives very good results in
practice is balanced truncation [9]. We consider finite time
optimal model reduction: The sequence of the first Markov
parameters of is approximated by the sequence of the corre-
sponding Markov parameters of in the norm sense.

The identification problem is similar to the model reduction
one, but starts instead from an observed response . Various
data collection models (the down arrows from to and in
Fig. 1) are possible. For example, the errors-in-variables model:

, where is a trajectory generated by and is
measurement noise.

Of independent interest are the identification problems from
an observed impulse response , called approximate realization
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problem, and the autonomous system identification problem,
where and are free responses. A classical solution to these
problems is Kung’s algorithm [10].

The key observation that motivates the application of STLS
for system identification and model reduction is that their
kernel subproblem is to find a block-Hankel rank deficient
matrix approximating a given full-rank matrix with
the same structure. Methods like balanced model reduction,
subspace identification, and Kung’s algorithm solve the kernel
problem via the singular value decomposition (SVD). For
finite matrices, however, the SVD approximation of is
unstructured. For this reason the algorithms based on the SVD
are suboptimal with respect to an induced norm of the residual

. The STLS method, on the other hand, preserves
the structure and is optimal according to this criterion. Our
purpose is to show how system theoretic problems with misfit
optimality criterion are solved as equivalent STLS problems
and subsequently make use of efficient numerical methods
developed for the STLS problem [11]–[13].

C. The Global Total Least Squares Problem

Let be a user specified model class and let be an ob-
served time series of length . We view a model
as a collection of legitimate time series. The more the model
forbids from the universe of possible time series, the less com-
plex and therefore more powerful it is. The model class restricts
the maximal allowed model complexity. Within , we aim to
find the model that best fits the data according to the misfit
criterion

with

The resulting optimization problem is known as the global total
least squares (GTLS) problem [14]. The described system iden-
tification framework is put forward in [15].

The approach of Roorda and Heij [14], [16] is based on
solving the inner minimization problem, the misfit computa-
tion, by using isometric state representation and subsequently
used alternating least squares or Gauss–Newton type algorithm
for the outer minimization problem. They use a state space
representation with driving input. Our approach of solving
the GTLS problem, is different. We relate the identification
problem to the STLS problem (1) and subsequently use solution
methods developed for the STLS problem. Also we use a kernel
representation of the system.

D. Link With the Most Powerful Unfalsified Model

In [17], the concept of the most powerful unfalsified model
(MPUM) is introduced. A model is unfalsified by the obser-
vation if . A model is more powerful than if

. Thus the concept of the MPUM is to find the most
powerful model consistent with the observations—a most rea-
sonable and intuitive identification principle.

In practice, however, the MPUM could be unacceptably com-
plex. For example, in the errors-in-variables setup the observa-
tion w, is perturbed by noise,
so that with probability one the MPUM is all of w . Such a
model is useless because it imposes no laws.

The GTLS problem addresses this issue by restricting the
model complexity by the constraint , where is an
a priori specified model class. Whenever the MPUM does not
belong to , an approximation is needed. The idea is to modify
as little as possible the given time series, so that the MPUM of
the modified time series belongs to —a most reasonable gen-
eralization of the MPUM to the bounded complexity case. The
measure of closeness is chosen as the norm, which weights
equally all variables over all time instants. Weighted norms can
be used in order to take into account prior knowledge about
nonuniform variance among the variables and/or in time.

E. Outline of this Paper

Section II gives background material on LTI systems de-
scribed by kernel representation. Section III defines and solves
the identification problems. Section IV describes some exten-
sions of the identification problem. Section V describes the
special identification problems from impulse and free response.
Section VI shows results of the proposed method on data sets
from DAISY, and Section VII gives conclusions.

II. PRELIMINARIES

A. Kernel Representation

Consider a time series . The block-
Hankel matrix with block rows, constructed from the time se-
ries , is denoted by

...
...

...

The time series satisfies the set of difference equations

for (2)

with maximum lags (i.e., unit delays in time), if and only if

where

The rank deficiency of is related to the existence of an
LTI system that “explains” the data and the Hankel structure
is related to the dynamic nature of the model.

In the behavioral approach to system theory [18], (2) is called
a kernel representation of the system . A more compact nota-
tion is

where (3)

and is the backward shift operator, . Let
be the set of all trajectories of a system , described by (3),

i.e.,

w

We identify the behavior of with the system itself. No
a priori separation of the variables into inputs and outputs is
imposed.
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B. Shortest Lag Representation

A kernel representation (3) for a given is not unique. If the
polynomial matrix defines a kernel representation of ,
then for any unimodular matrix also
defines a kernel representation of . The kernel representation
is called minimal if is full row rank. There exists a minimal
one, called shortest lag representation [19, Sec. 7], in which
the number of equations , the maximum lag
, and the total lag , where is the lag of the th

equation, are all minimal. A kernel representation
is a shortest lag representation if and only if is row proper.
Let be the degree of the th row of . The polynomial matrix

is called row proper if the leading row coefficient matrix, i.e.,
the matrix of which the th entry is the coefficient of the
term with power of , is full row rank.

In a shortest lag representation the number of equations is
equal to the number of outputs in an input/output representation
and the total lag is equal to the state dimension in a minimal
state–space representation. These numbers are invariants of the
system; see [19, Sec. 4]. The maximal lag of , denoted by ,
is called the lag of the system, and its total lag, denoted by ,
is called the order of the system.

C. Model Class

The number of inputs and the number of outputs
in an input–output or input/state/output representation are also
invariants of the system . We denote by the set of LTI
systems with inputs and lag at most . (Occasionally, we dis-
play the number of variables as follows w .) The natural
numbers and specify the maximum complexity of a model
in the model class . For and sufficiently large,
the restriction of the behavior to the interval has
dimension .

The specification of the complexity by the lag of the system
does not fix the order, i.e., the minimal state dimension. For a
system , the order of is in the range

.
In Section V, we use the notation for the

input/state/output representation

(4)

of the LTI system such that (4) holds .
The column vector with (block) entries is denoted
by .

III. IDENTIFICATION IN THE MISFIT SETTING BY STLS

The considered identification problem is defined as follows.
Problem 1(GTLS): For given time series and a complexity

specification , where is the number of inputs and is the
lag of the identified system, solve the optimization problem

(5)

The optimal approximating time series is , corresponding to
a global minimum point of (5), and the optimal approximating
system is .

Problem 1 is the GTLS problem for the model class
. The inner minimization problem, i.e., the misfit

computation, has the system theoretic meaning of finding the
best approximation of the given time series , that is a trajec-
tory of the (fixed from the outer minimization problem) system

. This is a smoothing problem.
Our goal is to express (5) as an STLS problem (1). There-

fore, we need to ensure that the constraint is

equivalent to . As a byproduct of doing this, we
relate the parameter , in the STLS problem formulation, to the
system . The equivalence is proven under an assumption that
is conjectured to hold generically in the data space w .

Lemma 1: Consider a time series
w, and natural numbers and . Assume

that for certain matrix
w, where , with being full row

rank. Then the system , defined by the kernel represen-
tation with , is such that

, and the order of is .
Proof: By definition is a linear system with lag

. The assumption that is full-row rank implies
that is row proper. Then the number of outputs of is

and, therefore, . This proves
that .

Let be the degree of the th equation in . The
assumption that is full row rank implies that for all .
Therefore, .

Finally, implies , for
, so that .

The next lemma states the reverse implication.
Lemma 2: Consider a time series

w

and natural numbers and . Assume that there is
a system with order , such that .
Let , where , be a shortest lag
kernel representation of . Then, is full-row rank and the
matrix annihilates the Hankel matrix

, i.e., .
Proof: Let be the degree of the th equation in

. We have and . The assumption
is possible only if , for all . Because is row proper

(by the shortest lag assumption of the kernel representation), the
leading row coefficient matrix has full-row rank. But since

, for all .
The fact that follows from .
We have the following main result.
Theorem 1: Assume that is a system that admits

a kernel representation
with of full-row rank. Then,
the constraint is equivalent to the constraint

, where .

Proof: The assumption of the theorem is stronger than the
assumptions of Lemmas 1 and 2 because not only is required
to be of full row rank but its submatrix is required to have this
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property. In the direction of assuming , by Lemma
2, it follows that . Since is of full-row rank,

is equivalent to , with

. In the opposite direction, by
Lemma 1, with

. Therefore, is of full-row rank.
Theorem 1 states the desired equivalence of the GTLS

problem and the STLS problem under the assumption that the
optimal approximating system admits a kernel representation

with full row rank (6)

We conjecture that (6) holds true for almost all w .
Define the subset of w consisting of all time series

w for which the GTLS problem is equivalent to the STLS
problem, i.e.,

w
Problem (5) has a unique global

minimizer that satisfies (6)

Conjecture 1: The set is generic in w , i.e., it contains
an open subset, whose complement has measure zero.

The existence and uniqueness part of the conjecture (see the
definition of ) is justified in [20, Sec. 5.1]. The justification
for (6) being generic is the following one. The highest possible
order of a system in the model class is . One can ex-
pect that generically in the data space w . By
Lemma 2, implies that in a kernel representation

is of full row rank. But generically in
the matrix , defined by , is

of full-row rank. Although the justification for the conjecture is
quite obvious, the proof seems to be rather involved.

A. Properties of the Solution

The following are properties of the smoothing problem: i)
is orthogonal to the correction , and ii)

is generated by an LTI system . Since the GTLS
problem has as an inner minimization problem, the smoothing
problem, the same properties hold in particular for the optimal
solution of (5). These results are stated for the SISO case in [6]
and then proven for the MIMO case in [14, Sec. VI].

Statistical properties of the GTLS problem, are studied in the
literature. For the stochastic analysis, the errors-in-variables
model is assumed and the basic results are consistency and
asymptotic normality. Consistency in the SISO case is proven
in [21]. Consistency in the MIMO case is proven in [20], in
the framework of the GTLS problem. Complete statistical
theory with practical confidence bounds is presented in [22],
in the setting of the Markov estimator for semilinear models.
Consistency of the STLS estimator for the general structure
specification described in Appendix A is proven in [23].

B. Numerical Implementation

A recursive solution of the smoothing problem
is obtained by dynamic programming in [24]. An alternative
derivation by isometric state representation is given in [14].
Both solutions are derived from a system theoretic point of
view. A related problem occurs in the STLS formulation, where
it is viewed from a numerical linear algebra point of view and
is solved in a different way.

Because of the flexible structure specification, the inner min-
imization problem in the STLS formulation (1) is more general
than the smoothing problem, where the block-Hankel structure
is fixed. A closed form expression is derived and a special struc-
ture of the involved matrices is recognized, see [12] for details.
The structure is then used on the level of the computation by
employing numerical linear algorithms for structured matrices
[25]. The resulting computational complexity is linear in the
length of the given time series .

The outer minimization problem , how-
ever, is a difficult nonconvex optimization problem that requires
iterative methods. Two methods are proposed in the frame-
work of the GTLS problem. In [14], an alternating least squares
method is used. Its convergence is linear and can be very slow in
certain cases. In [16], a Gauss–Newton algorithm is proposed.
For the solution of the STLS problem, a Levenberg-Marquardt
algorithm is used. More details on the implementation of the
latter algorithm can be found in Appendix A, where a software
package for solving the STLS problem (1) is described. The
convergence of all these algorithms to the desired global min-
imum is not guaranteed and depends on the provided initial
approximation and the given data.

IV. EXTENSIONS

A. Input/Output Partitionings

A standard assumption in system identification is that an
input/output partitioning of the variables is a priori given.
Consider a permutation matrix and redefine as

. The first variables of the redefined time series are
assumed to be inputs and the remaining variables outputs.
With and , the kernel
representation becomes a left matrix fraction rep-
resentation . The transfer function of for the
fixed by input/output partitioning is .

Let with squares. Under the assumption
, the state–space representation

. . .
...

...

is minimal. Therefore, the transition from and (which is
the result obtained from the STLS optimization problem) to
an input/state/output representation is trivial and requires extra
computations only for the formation of the matrix.

Conjecture 1 implies that generically the optimal approxima-
tion admits an input/output partitioning , with
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. Moreover, we conjecture that generically admits an
arbitrary input–output partitioning (i.e., , with
any permutation matrix ).

B. Exact Variables

Another standard assumption is that the inputs are exact (in
the errors-in-variables context noise free). Let and be the
estimated input and output. The assumption that is exact im-
poses the constraint .

More generally, if some variables of are exact, then the
corresponding elements in are fixed. In the STLS problem
formulation (1), the exact elements of can be separated in
a block of by permuting the columns of . The
software package described in Appendix A allows specification
of exact blocks in that are not modified in the solution

. After solving the modified problem, the solution of the
original problem, with exact variables, is obtained by applying
the reverse permutation.

With a given input–output partition (defined by a permutation
matrix ) and exact inputs, the GTLS problem becomes the
output error identification problem

In Problem 5, the approximating trajectory is any trajectory of
, while in the output error identification problem, the approxi-

mating trajectory is generated by the given input and only the
initial conditions are freely chosen. In the single output, output
error identification problem, the misfit

subject to

is equivalent to the cost function minimized by the prediction
error methods. Simulation results are shown in Section VI-A.

C. Multiple Time Series

In certain cases, e.g., the noisy realization problem, not one
but several observed time series are given.
Assume that all time series are of the same length and define
to be the matrix valued time series , so that

. The only modification needed for this case is to
consider block-Hankel matrix with size of the blocks

instead of , as for the case of a single observed time
series. The software package described in Appendix A can deal
with such problems.

D. Known Initial Conditions

In the GTLS problem, no prior knowledge about initial con-
ditions is assumed. Thus, the best fitting trajectory is searched
in the whole behavior of the approximating system. If the ini-
tial conditions are a priori known, should be searched only
among the trajectories of , generated with the specified initial
conditions. A typical examples of identification problems with
known initial conditions are approximate realization and identi-
fication from step response observations. In both cases, the ini-
tial conditions are a priori known to be zero.

Fig. 2. Example of an autonomous identification problem in the
errors-in-variables setting. Solid line—exact trajectory �y, dotted line—data y,
dashed line—approximating trajectory ŷ.

Zero initial conditions can be taken into account in the iden-
tification problem by extending the given time series with
zero samples. Let be the obtained in this way extended data
sequences. In order to ensure that the approximation is also
obtained under zero initial conditions, the first samples of
should be preserved unmodified in .

Note 1: In the current software implementation of the GTLS
method the specification that the leading data samples are exact
is not possible. This feature of the identification problem goes
beyond the scope of the current STLS solution method and soft-
ware.

E. Latent Inputs

The classical system identification framework [26] differs
from the one in this paper in the choice of the optimization
criterion and the model class. In [26], an unobserved input

is assumed to act on the system that generates
the observations and the optimization criterion is defined as the
prediction error.

The unobserved input , called latent input, plays the role of
innovations. Written in a polynomial form, the model with latent
inputs is the classical ARMAX model

Latent input can be accommodated in the setting of Section III,
by augmenting the model class with extra inputs
and the cost function with the term . The re-
sulting identification problem is

subject to

(7)
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It unifies the misfit and latency description of the uncertainty
and is put forward by Lemmerling and De Moor [7]. The pure
latency identification problem

subject to (8)

corresponds to the prediction error approach.
The misfit-latency identification problem (7) can easily be re-

formulated as an equivalent pure misfit identification problem
(5). Let , where is an -dimen-
sional zero time series. Then, the misfit minimization problem
for the time series and the model class is equiva-
lent to (7). The pure latency identification problem (8) can also
be treated in our framework by considering exact (see Sub-
section IV-B) and modifying only . Note that the latent input
amounts to increasing the complexity of the model class, so that
a better fit is achieved with a less powerful model.

V. SPECIAL PROBLEMS

In this section, we consider three special identification prob-
lems in an input/output setting. In the first one the data is an
observed impulse response. In the second one the data is an ob-
served free response. In the third one, the data is an exact im-
pulse response of a high order system, i.e., a system that is not
in the specified model class.

A. Approximate Realization

Identification from exact impulse response is the topic of (par-
tial) realization theory. When the given data
(impulse response observations) is not exact, an approximation
is needed. Kung’s algorithm is a well known solution for this
problem. However, Kung’s algorithm is suboptimal in terms of
the misfit criterion

where

is an impulse response of

The GTLS problem can be used to find optimal in terms of the
misfit approximate model.

Problem 2 (Approximate realization [27]): Given a matrix
valued time series and a natural number ,
solve the optimization problem .

The approximate realization problem is a special GTLS
problem and can be treated as such. Now, however, the given
matrix valued trajectory is an observed impulse response, so
that the input is a pulse and the initial conditions are zeros.
For this reason the direct approach is inefficient. In the rest of
this section, we describe an indirect solution that exploits the
special features of the data.

The following statement is a corollary of Theorem 1.
Corollary 1: Consider a shortest lag kernel representation

(i.e., row proper) and define , where is
square. If is nonsingular, then is an impulse

response of if and only if , where

Corollary 1 shows that under assumption (6), the approximate
realization problem can be solved as an STLS problem with
structured data matrix . Next we specify how one can
obtain an input/state/output representation of the
optimal approximating system from and the approxi-
mated Markov parameters .

By Corollary 1, . Let

be a rank revealing factorization. Since is an impulse response
of and must be of the form

(The basis of the representation is fixed by the rank revealing
factorization.) We have

so that

However, . On the other hand

so that . Therefore a basis for
the null space of defines an observability matrix
of , from which and can be obtained up to a similarity
transformation. is the unique solution of the system

and .
Example 1 (Approximate realization): Consider a simulation

example in the errors-in-variables setup, i.e., the data
is obtained as a noise corrupted impulse response of an LTI
system . The time horizon is and the the additive noise
standard deviation is 0.25. The true system is random stable
(obtained via MATLAB’s function) with inputs,

outputs, and lag . The approximate model is
searched in the model class .

We apply both a direct identification from input/output data
(the impulse response data is extended with zeros) and the in-
direct procedure described above. In the first case the optimiza-
tion algorithm converges in 1.13 s and in the second case in 0.63
s, which shows the better efficiency of the indirect algorithm.
The relative estimation error in the first case is
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Fig. 3. Example of a finite time ` model reduction problem. Solid line—impulse response of the given (high-order) system, dashed line—impulse response of
the reduced order system.

0.2716 and in the second case 0.2608. (The difference is due to
the wrong treatment, see Note 1, of the initial conditions in the
direct method.) For comparison, the relative error with respect
to the data is 0.9219.

B. Identification of an Autonomous System

The autonomous system identification problem is a special
case of the GTLS problem when the model class is —the
set of autonomous systems with lag at most .

Problem 3 (Autonomous System Identification): Given a
time series and a natural number , find a system

and a free response of , such that minimizes
the approximation error over all free responses of
systems in the model class .

It is easy to reformulate Problem 3 as a special case of the
approximate realization problem. The shifted impulse response

of the system is equal to the free response of
the system , obtained under initial condition .
Therefore, Problem 3 can be solved as an approximate realiza-
tion problem with the obvious substitution. One can consider
in the same way autonomous system identification for multiple
time series .

Example 2 (Identification of an autonomous
system): Consider the same simulation setup as in Ex-
ample 1 with the only difference that the true data is a single
free response of length , obtained under random initial
condition. The relative error of approximation is
0.4184 versus 0.7269 for the given data . Fig. 2, shows the
fitting of by .

C. Finite Time Model Reduction

The finite time norm of a system with an
impulse response is defined as

For a strictly stable system is well defined and is
equal to its norm.

Without loss of generality assume that the given time series
in the approximate realization problem is the exact impulse

response of a (high order) system . (Any finite time series
can be considered as an impulse response of
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TABLE I
EXAMPLES FROM DAISY. T—TIME HORIZON, m—NUMBER OF INPUTS,

p—NUMBER OF OUTPUTS, l—LAG

a system in the model class .) Then, the approximate re-
alization problem can be interpreted as the following finite time

model reduction problem.
Problem 4 (Finite Time Model Reduction): Given a

system , a natural number , and a time horizon
, find a system , that minimizes the finite time

norm of the error system.
In the model reduction problem, the misfit is due to the low

order approximation. In the approximate realization problem,
assuming that the data is generated by an errors-in-variables
model, the misfit is due to the measurement error . The so-
lution methods, however, are equivalent, so in this section we
actually give an alternative interpretation of the approximate re-
alization problem.

Example 3 (Finite Time Model Reduction): The
high-order system is a random stable system (obtained
via MATLAB’s function ) with inputs,
outputs, and lag . A reduced-order model with lag

is searched. The time horizon is chosen large
enough for a sufficient decay of the impulse response of . (It
is selected automatically by MATLAB’s function .)

Fig. 3 shows the fitting of the impulse response of the high-
order system by the impulse response of the reduced-order
system .

VI. PERFORMANCE ON DATA SETS FROM DAISY

The data base for system identification DAISY [8] is used for
verification and comparison of identification algorithms. In this
section, we apply the GTLS method, described in the paper and
implemented by the software, presented in Appendix A, on data
sets from DAISY. In Section VI-A, we solve output error identi-
fication problems and in Section VI.B, we consider the data set
“Step response of a fractional distillation column,” which con-
sists of multiple vector time series.

A. Single Time Series Data Sets

The considered data sets are listed in Table I. Since all data
sets are with a given input/output partitioning, the only user de-
fined parameter that selects the complexity of the model class

is the lag .
The data is detrended and split into identification and valida-

tion data sets. The first 70% of the data, denoted by , is used
for identification, and the remaining 30%, denoted by , is
used for validation.

Approximate models are computed via the following
methods:

• the N4SID method implemented in the System
Identification Toolbox of MATLAB;

TABLE II
COMPARISON OF THE MODELS OBTAINED BY n4sid, gtls, AND pem

• the GTLS method implemented by the STLS
solver;

• the prediction error method of the System Identi-
fication Toolbox of MATLAB.

The inputs are assumed exact, so that identification in the output
error setting is considered. The validation is performed in terms
of the misfit obtained on the validation data set
and the simulation fit computed by the function from
the System Identification Toolbox.

so that these two criteria are equivalent.
Note 2 (About the Usage of the Methods): The function

is called with the option

which specifies output error model structure. In addition, the
options

and are used to disable the default for feedthrough
term set to zero, robustification of the cost function, and sta-
bility constraint. (The GTLS method does not constrain the
model class by enforcing stability.) With these options (for
the single output case) minimizes the output error misfit

. The function is called with the specification that
the inputs are exact, so that the GTLS and PEM methods solve
equivalent identification problems. For both functions, we
set the same convergence tolerance ,
maximum number of iterations , and initial
approximation (the model obtained by .

The identified systems by , , and are com-
pared in Table II. In all examples there is a good match between
the models obtained with the and functions. In ad-
dition, the output error optimal model outperforms the model
computed by the N4SID method. Since the criterion is checked
on a part of the data that is not used for identification, there is
no a priori guarantee that this will be the case.

B. Identification From Step Response Measurements

Next, we consider the data set “Step response of a fractional
distillation column” from DAISY. It consists of three indepen-



1498 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 10, OCTOBER 2005

Fig. 4. Identification from step response measurements. Solid line—given data y, dashed line—GTLS approximation ŷ. (y is the step response from input i to
output j.)

dent time series, each one with data points. The given
data has a fixed input/output partitioning with inputs and

outputs. We further bound the complexity of the model
class by choosing the lag , so that an approximate model
is searched in the model class .

The step response data is special because, it consists of mul-
tiple time series, the input is exactly known, and the initial con-
ditions are also exactly known. In order to take into account the
known zero initial conditions, we precede the given time series
with zero samples. In order to take into account the exactly
known inputs, we use the modification of the GTLS method for
time series with exact variables. Multiple time series are pro-
cessed as explained in Section IV.

Fig. 4 shows the given data (the measured step responses)
with superimposed on them the step responses of the optimal
approximating system, computed by the GTLS method.

VII. CONCLUSION

We generalized previous results on the application of STLS
for system identification, approximate realization, and model

reduction to multivariable systems. The STLS method allows to
treat identification problems, without input/output partitioning
of the variables and errors-in-variables identification problems.
Multiple time series, latent variables, and prior knowledge about
exact variables can be taken into account.

A robust and efficient software tool for solving STLS prob-
lems is presented. It makes the proposed identification method
and its extensions practically applicable. The performance of the
software package is tested on data sets from DAISY. The results
show that examples with a few thousands data points and low
order model can be solved routinely.

APPENDIX

A. Software Package for Solving STLS Problems [13]

Efficient numerical methods for STLS problems were devel-
oped in the past, see [28]. Applied to the system identifica-
tion problem, however, they cover only SISO problems and the
input/output identification problem can not be treated. On the
other hand, the more general STLS methods of [1], [2] have
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cubic computational complexity and are restricted to rank re-
duction of order one. Thus, they are applicable only for small
size SISO problems.

The described package solves the STLS problem (1) with
, where is block-Toeplitz ,

block-Hankel , unstructured , or exact . All block-
Toeplitz/Hankel structured blocks have blocks elements of
the same row dimension .

The structure of is specified by and the array
that describes the structure of the blocks

specifies the block by giving its type ,
the number of columns , and (if is block-Hankel
or block-Toeplitz) the column dimension of a block ele-
ment. The input data for the problem is and the structure
specification and .

The package uses MINPACK’s Levenberg–Marquardt algo-
rithm to solve the optimization problem (1) in its equivalent for-
mulation, see [11]

where

The weight matrix is block-Toeplitz and block-banded struc-
tured, see [12], and this structure is exploited in the cost func-
tion and first derivative evaluation. There is no closed form ex-
pression for the Jacobian matrix , where

, so that the pseudo-Jacobian proposed in [29] is used
instead of . The cost function and pseudo-Jacobian evaluation
is performed with computational complexity .

The software is written in ANSI C language. For the
vector-matrix manipulations and for a C version of MIN-
PACK’s Levenberg-Marquardt algorithm, the GNU Scientific
library (GSL) is used. The computationally most intensive
step of the algorithm—the Cholesky decomposition of the
block-Toeplitz, block-banded weight matrix —is per-
formed via the subroutine from the SLICOT library
[30]. MATLAB interface via C-mex file is available.

An interface to the STLS solver for the purpose of approxi-
mate system identification is developed in [31]. The MATLAB

implements the mapping ,
where is a GTLS optimal model. The function
works with data consisting of multiple time series of equal
length and allows for specification of exact variables. The soft-
ware is available from http://www.esat.kuleuven.be/~imarkovs
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