
Towards an Alloy Formal Model for Flexible Advanced Transactional Model Devel-
opment

Barbara Gallina, Nicolas Guelfi, Pierre Kelsen
Laboratory for Advanced Software Systems

University of Luxembourg
6, rue R. Coudenhove-Kalergi,

L-1359 Luxembourg
{barbara.gallina, nicolas.guelfi, pierre.kelsen}@uni.lu

Abstract

SPLACID is a semi-formal language conceived for the
specification and synthesis of (advanced) transactional
models from basic features, such as transaction types and
(relaxed) ACID variants. SPLACID is an improvement of
the ACTA framework offering a well-structured and formal
syntax. Neither ACTA nor SPLACID, however, benefit from
a formal tool-supported semantics. This paper presents the
first step for having a full formal semantics of SPLACID by
translation to Alloy. In particular, we present the transla-
tion of the SPLACID concepts into Alloy concepts focusing
on those concepts pertaining to the structure of a Transac-
tional Model and those characterizing the isolation variant.
The Alloy specification obtained by this translation pre-
serve the SPLACID main key-properties, namely, modular-
ity, flexibility and reusability. To support this claim we
show how flexible, modular and reusable structures and
isolation variants can be obtained in Alloy. Finally, we
analyze the flat and nested transactional model structures
and the serializability-based isolation variant using the
Alloy Analyzer.

Keywords
ACID properties, Relaxed ACID properties, dependability,
reusability, Software Product Line, ACTA framework,
formal semantics, Alloy language.

1. Introduction

The quality of a distributed concurrent computation and, in
particular, its reliability may be increased through transac-
tional principles [11]. Since transactional principles estab-
lish constraints which may reduce dramatically the number
of allowed computations, to be applicable in nowadays
distributed systems, they have to offer a certain degree of
flexibility [7]. The ACID (Atomicity, Consistency, Isola-
tion and Durability)-based Transactional Model (TM),
called Flat transactions, has been recognized to be too rigid
and limited from a functionality point of view when used
for application domains having requirements in contrast

with those typically expected for transactions [9]. Several
advanced TMs (i.e. Nested transactions) have been intro-
duced to overcome functionality-related limitations [6].
These models differ from each other in the way ACID
properties are relaxed. The SPLACID language [8] has
been introduced to offer a means to specify TMs in a flexi-
ble and Software Product Line (SPL)-oriented way.
SPLACID is a semi-formal language conceived for the
specification and synthesis of TMs from basic features,
such as transaction types and (relaxed) ACID variants.
SPLACID, therefore, allows users to structure in a mod-
ular, reusable and flexible manner the constraints which are
necessary to limit the allowed computations. SPLACID
targets two groups of users: transactional engine developers
who might use SPLACID to specify new advanced transac-
tional models; transactional application developers who
might use SPLACID to specify the adequate TM with re-
spect to the application needs.
SPLACID is an improvement of the ACTA framework [4].
The ACTA framework represented the first effort towards
the provision of a means for the specification and synthesis
of TMs. The ACTA specifications, which consist of a list
of semi-formal axioms, do not present a clear structure.
SPLACID improves the ACTA framework by offering a
well-structured and formal syntax. Neither ACTA nor
SPLACID, however, benefit from a complete formal se-
mantics. To achieve a formal semantics for SPLACID and
more specifically an executable (tool-supported) semantics,
we translate SPLACID specifications into Alloy [13] speci-
fications and exploit the tool support, provided by the Alloy
Analyzer, to carry on analysis.
For our purposes, Alloy is the right candidate for the fol-
lowing two main reasons: 1) it is a light-weight formal lan-
guage, suitable at the early stages of the software develop-
ment to identify the right software abstractions; 2) it is
equipped with a powerful logic which includes the transi-
tive closure operator. In our context, having a means to
identify the right software abstractions is fundamental be-
cause it makes easier: 1) the development of a transactional
engine supporting an advanced TM; 2) the selection of the
adequate TM with respect to the application needs in case
of transactional application development. The transitive
closure operator is also fundamental because often analyz-

2009 33rd Annual IEEE Software Engineering Workshop

1550-6215/09 $26.00 © 2009 IEEE

DOI 10.1109/SEW.2009.13

94

ing abstractions related to transactional principles means
satisfying specific reachability constraints. For instance, to
reason about concurrency control abstractions, the transi-
tive closure operator is used to express the acyclicity con-
straints in the graph representing the dependencies among
transactions. Acyclicity ensures serializability (see i.e. [1]).
In this paper, we present the first step aimed at achieving a
full SPLACID semantics in Alloy. In particular, we focus
on the translation of those SPLACID concepts pertaining to
the structure of a TM and on those characterizing the isola-
tion variant.
The rest of the paper is organized as follows. Section 2
introduces the background information. Section 3 proposes
an Alloy semantics for SPLACID. Section 4 explains how
to achieve modular, flexible and reusable specifications for
TMs in Alloy. Section 5 uses the Alloy Analyzer to find
instances satisfying the constraints which have to hold at
the boundary of the Flat and Nested transactions model and
also constraints which have to hold to guarantee serializa-
bility. Section 6 discusses related work. Finally, Section 7
presents some concluding remarks and future work.

2. Background

This section briefly introduces the background on which we
build our contribution. The section is organized as follows.
Sub-section 2.1 illustrates the commonalities and the vari-
abilities of the Software Product Line (SPL) constituted of
Transactional Models (TMs), called TMsPL. Sub-section
2.2, presents the SPLACID language and its language con-
structs suitable to specify the abstractions, which represent
the commonalities and the variabilities of the TMsSPL.
Finally, Sub-section 2.3, introduces the Alloy formal lan-
guage and its interesting features which make it appealing
for providing an executable semantics.

2.1 Commonalities and variabilities in TMsPL
TMs, as discussed in [7], may be better understood and
compared by adopting an SPL perspective. SPL glasses
enable the identification of commonalities and variabilities
among TMs. Before revealing the commonalities and vari-
abilities among TMs, in what follows, we recall the basic
SPL terminology.
A commonality is the ability of an asset to be maintained as
a constant; while a variability is the ability of an asset to be
changed (customized) for use in a particular context. Vari-
abilities are defined through variation points and variants.
A variation point is the place within an artefact where a
decision can be made [10]. Variants represent the alterna-
tives associated to a variation point. A Feature Diagram
(FD) is a graphical representation of a hierarchically ar-
ranged set of features (properties of a system). Features
might be mandatory (in case of commonalities), optional or
alternative (in case of variabilities). A cardinality-based FD
is an FD annotated with cardinalities [5].
Advanced TMs often introduce a structure in the “flatland”
represented by the initial TM, as well as a different “ACID-

ity” (that is different notions of ACID properties, ACID
variants, which might be combined). A TM, as the partial
cardinality-based FD in Figure 1 summarizes, is commonly
structured as collection of inter-dependent transaction
types. Each transaction type is characterized by commonal-
ities (constraints constraining the transaction boundary,
coexistence of an Atomicity variant, a Consistency variant,
an Isolation variant and a Durability variant) and variabili-
ties represented by the ACID variation points. At the Isola-
tion variation point, for instance, a pre-defined Isolation
variant [1] might be selected or a new variant might be
composed by selecting a view type, a conflict type, etc.
Similarly, at the other variation points, pre-defined variants
might be selected or new variants might be introduced by
selecting and combining variants pertaining to the ACD
variants sub-features. The complete introduction of all the
features which appear in the cardinality-based FD, shown
in Figure 1, is, however, outside of the scope of this paper.
The interested reader may infer them by reading [8].

Figure 1 Cardinality-based FD of the TMsPL

2.2 SPLACID
SPLACID [8] is a semi-formal language designed to spec-
ify and synthesize TMs on the basis of their fundamental
properties. SPLACID has been conceived to be used within
the (under construction) SPL-oriented requirements engi-
neering process, called PRISMA, to support the specifica-
tion activity. SPLACID is based on ACTA [4], a unified
framework conceived for the specification, synthesis and
verification of TMs from building blocks. The main advan-
tage of SPLACID over ACTA is that it offers a well-
structured concrete syntax, given in BNF like form, which
integrates the SPL perspective extensively described in [7]
and briefly presented in the previous sub-section.
SPLACID makes it possible to structure a specification of a
TM by selecting, whenever possible, reusable features. In
the following, we recall some syntactical SPLACID rules.

::
*

1- TMTId
TransactionType StructuralDependencyType

=< >
+< > < >

< TransactionalModelType >

The above recalled rule defines a TM. A TM is defined as a
sequence of: 1) the TM identifier, 2) one or several transac-
tion types; 3) zero or more structural dependency types. A
TM represents a directed multi-graph having as nodes a set

95

of transaction types and as directed edges a set of structural
dependency types, constraining the struc-
ture.
2 |- >::= Predef_SDepID
< TransTypeId > SDepID < TransTypeId > Predicate

< < >
< > ⇔< >

StructuralDependencyType

The above recalled rule defines a Structural Dependency
Type which relates two transaction types (forming the
edge) in case a predicate is satisfied. As a result, a TM may
represent simple TMs such as Flat transactions (which
have no structure and therefore are represented by a graph
having only one node, the Flat type, and an empty set of
edges), but also complex advanced TMs. For instance, the
Nested transactions TM has two transaction types (Root
and Child) inter-related through four dependencies: two to
establish initiation dependency and the other two to estab-
lish termination dependency (i.e., child initiation follows
the root initiation; the root termination follows the child
termination). The combination of initiation and termination
dependencies is equivalent to a composed structural de-
pendency identifying containment.
One composed structural dependency could therefore con-
nect the root type with the child type specifying that every
transaction of type child must be contained within its root.
Another composed structural dependency could connect the
child type to itself specifying that every transaction of type
child invoked by another transaction of type child has to be
contained in it.
3- ::

:
_ |TransTypeId

TransTypeId BoundaryType AVariantType
CVariantType IVariantType DVariantType

Predef=<
< > < >< >
< >< >< >

>< TransactionType >

The above-recalled rule defines a transaction type. A trans-
action type is defined either as a pre-defined transaction
type identifier or as a sequence of: 1) a transaction type
identifier, 2) the boundary type (identifying the types of
events that mark the initiation and termination of each
transaction of that type); 3) the ACID variants which repre-
sent the properties in terms of ACIDity of the transaction
type.
4- :: _ |

:
Predef BoundaryId

BoundaryId IEset TEset pre post Boundaries
=< >

< > < >< >< − − >
< BoundaryType >

The above-recalled rule, defines the boundary of a transac-
tion type. The boundary is defined either as a pre-defined
boundary type identifier or as a sequence of: 1) the bound-
ary identifier; 2) the set of Initiation Event types; 3) the set
of Termination Events types; 4) the pre and post conditions
of the event types.
In SPLACID, the specifications of the ACID properties are
nicely modularized. As a result, it is possible to reason
about each property in isolation, and even to write specifi-
cations that describe different variants of a property. Once a
“library” of property specifications is available, once the
SPL domain is engineered, a TM can be built in SPLACID
simply by assigning the desired ACID property variants to
the transaction types it is composed of.

In the following, we recall the rule defining the isolation
variant.

*

5- :: | :

_ []

Predef_IVariantId IVariantId
ViewType ConflictMatrixType ConflictSetType
BDType I TE pre post I XEset+

=< > < >
< >< >< >
< > < − − > < − >

< IVariantType >

The isolation variant is defined either as a pre-defined vari-
ant identifier (in case of reusable, well-known [1], isolation
variants) or as the sequence of: 1) the variant identifier; 2)
the view type (which defines the visibility associated to a
transaction); 3) the conflict matrix type (which defines a
compatibility matrix between operation types accessing the
same object); 4) the conflict set type (which defines the set
of object events to which a transaction has to pay atten-
tion); 5) the eventual behavioural dependencies (which
define the ordering constraints due to the occurrence of the
events accessing objects); 6) the pre and post conditions
related to isolation characterizing the Termination Events;
7) the eventual extra significant events, which influence the
interference.
The complete introduction of the rules defining all the non-
terminals presented in the above-introduced rules is outside
of the scope of this paper. The interested reader may refer
to [8]. In the following, we present the ideal specification
of Flat transactions in SPLACID in which reusability is
maximized:
Flat transactions-
Flat /*one transaction type only composes the TM*/
Where Flat is further specified as:
StandardBoundary /*reuse of a pre-defined boundary type*/
FailureAtomicity /*reuse of a pre-defined atomicity type*/
FullConsistency /*reuse of a pre-defined consistency type*/
SerializabilityBasedIsolation /*reuse of a pre-defined isolation type*/
StrictDurability /*reuse of a pre-defined durability type*/
In SPLACID, reuse might be maximized by selecting and
composing reusable pieces of specifications (identified by
pre-defined identifiers). These pieces are the result of a
domain engineering phase following SPL engineering prac-
tices (as prescribed within the, under construction,
PRISMA process).
The semantics of a SPLACID specification coincides with
the History, the strict partial order of events modelling the
computation. The semantics of the different constructs of
the SPLACID language consists of a set of constraints on
the ordering relation existing among events and on the
events themselves. In the above introduced SPLACID
specification, for instance, the StandardBoundary imposes
that: 1) the set of Initiation Event types is composed of a
single element, called InitiateType; 2) the set of Termina-
tion Event types is composed of a single element, called
TerminateType; 3) each transaction having a transaction
type characterized by the StandardBoundary must satisfy a
standard constraint. This constraint requires that: transac-
tions must have exactly one event of type Initiation Event
Type; exactly one event of type Termination Event Type;
the event of type Initiation Event Type has to be the first
one; the one of type Termination Event Type has to be the
last one; events which do not mark the transaction bound-

96

ary have to follow the event of type Initiation Event Type
and precede the event of type Termination Event Type.

2.3 Alloy

Alloy [13] is a formal language suitable at the early stages
of software development to identify the right software ab-
stractions. Alloy's logic is a relational logic which com-
bines the quantifiers of first order logic with the operators
of the relational calculus (i.e. the transitive closure opera-
tor, fundamental for reachability properties analysis). Al-
loy's logic permits to express complex structural and beha-
vioural constraints. Alloy's logic is undecidable. However a
tool, called Alloy Analyzer, to analyze the soundness of the
Alloy models is available. This tool supports the analysis
under a given scope (its analysis is complete up to the
scope) and it looks for some assignment to variables that
makes the constraints true. Once an assignment is found,
instances (models) satisfying the constraints can be visually
shown. If an assignment is not found the only conclusion is
that the constraints cannot be solved within the chosen
scope. The scope defines a multidimensional space of test
cases, each dimension corresponding to the bound on a
particular type (maximum number of instances allowed for
a particular type). The scope specification is separated by
the model and this separation permits to adjust the scope in
a fine-grain manner without modifying the model. Despite
the incompleteness of the Alloy analysis, the “small scope
hypothesis” (according to which, the analysis of all small
cases increases the chance of covering meaningful test-
cases) encourages the fundamental but delicate work of
sizing the scope.
An Alloy model (specification) is a structured specification
made of signatures, relations, facts, predicates, functions,
assertions and commands. A signature introduces a basic
type (a typed set of atoms). Signatures have an optional
body constituted of a collection of relations called fields,
each with a fixed type. Signature extension is a powerful
feature to support classification hierarchy. Facts are expli-
cit constraints on relations and signatures. Facts always
hold. They have therefore to be verified by all the instances
of the model. Predicates define reusable constraints. Func-
tions define reusable expressions. Assertions introduce a
constraint that is intended to follow from the facts of the
model. Commands (check and run) give directions to the
Alloy Analyzer tool during its analysis and they allow users
to carry on two distinct kinds of analysis: simulation (run-
ning of a predicate) and assertions checking. These two
kinds of analysis reduce to the same analysis problem dis-
cussed above concerning assignment finding.

3. An Alloy semantics for SPLACID

So far, the SPLACID language offers only a well-
structured concrete syntax; no formal semantics is yet
available. In this section, we provide a first step towards a
complete formal semantics for SPLACID. To obtain the
semantics, we translate SPLACID specifications into Alloy

specifications and then we exploit the Alloy Analyzer tool
to carry on satisfiability analysis.
Mapping SPLACID concepts into Alloy
To achieve an Alloy specification from a SPLACID speci-
fication, a translation has to be carried out. In the following
we give some general translation guidelines.
For each syntactical non-terminal representing a set (i.e.
TransactionalModelType, TransactionType, StructuralDe-
pendencyType, etc.), an abstract signature is created in Al-
loy. This translation is motivated by the fact that a non-
terminal represents an abstract construct used to categorize
terminals and no instance is needed for it. In Alloy, an ab-
stract signature has no elements except those belonging to
its extensions. Therefore an abstract signature adequately
represents a non-terminal.
For each syntactical terminal representing an element of a
set (i.e. Flat is a concrete Transaction Type), an enumera-
tion having only one element is created in Alloy (one Sig, a
singleton set).
A sequence is mapped into a set of fields (fields are rela-
tions in Alloy). In case of a sequence of non-terminals, for
each non-terminal (except those representing identifiers or
constraints) a field is created which relates it with the ab-
stract signature representing the non-terminal on the left-
side of the rule. Each multiplicity indication is mapped in
the equivalent multiplicity indication in Alloy (i.e. ‘+’ is
mapped into some).

Figure 2 Mapping SPLACID concepts into Alloy concepts
Figure 2 partially presents the mapping that we have identi-
fied between SPLACID concepts and Alloy concepts.
In the following we apply the mapping rules limiting our
attention to the concepts useful for the definition of the
structure of a TM and to those useful for the definition of
the isolation variant. We then introduce informally some of
the constraints which constrain the SPLACID concepts and
we explain how to map them into Alloy facts or predicates.
The Alloy code presented in the paper is directly com-
mented in terms of Alloy comments (‘--‘).

Focus on structure-related concepts
Following the first mapping rule shown in Figure 2, the
non-terminal called TransactionalModelType, representing
the set of TMs, is mapped into the abstract signature called
TransactionalModelType. This abstract signature has two
fields which relate the abstract signature itself to the two
further abstract signatures TransactionType and Struc-
turalDependencyType, corresponding to the two non-
terminals written in the right-side of the syntactical rule 1
(defined in Sub-section 2.2).
abstract sig TransactionalModelType {
 --an abstract signature has no elements

97

 --except those belonging to its extensions
 t: some TransactionType,
 --non empty set which contains the nodes of
 --the graph defining the TM structure
 dependencies: set StructuralDependencyType
 --set which contains the edges of the graph
}
In the following we present the Alloy code obtained by
applying the first mapping rule to the other structure-related
concepts.
abstract sig TransactionType {
 boundaries: BoundaryType,
 iVariant:IVariantType,
 --dVariant: DVariantType, aVariant: AVariantType,
 --cVariant: CVariantType, still in progress
}
abstract sig StructuralDependencyType{
 sd: TransactionType->TransactionType
}
abstract sig BoundaryType {
 iEventTypes:set InitiationEventType,
 --set of event types to mark a transaction initiation
 tEventTypes:set TerminationEventType
 --set of event types to mark a transaction termination
}
The TransactionalModelType extensions may generate
flexible TMs according to the needs, by varying, for in-
stance, the Transaction Types which compose it and their
ACIDity. Potentially all the TMs which differ on the basis
of the structure and ACIDity might be specified.
Focus on Isolation-related concepts
In the following, we present the Alloy code defining the
abstract signatures related to isolation. Following the first
mapping rule shown in Figure 2, we obtain the following
translation:
abstract sig IVariantType {
 view: ViewType,
 conflict: ConflictMatrixType,
 conflictSet: ConflictSetType,
 bd: BDType,
 iXETypes : set IExtraEventType,
}
The IVariantType extensions may generate a spectrum of
isolation degrees according to the needs, by varying the
ConflictMatrixType or the BDType, etc. (see Section 2.2,
rule IVariantType). This guarantees flexibility and reusabil-
ity of specific sub-features.
pred IVariantType::relates[t1,t2: Transaction] {
--This predicate composes the IVariant sub-features and is
--used to define the dependence graph
 t1->t2 in this.bd.d some e1: t1.eventSet &
this.view.viewEvents[t2] & this.conflictSet.conflictEvents[t2]|
some e2: t2.eventSet & this.view.viewEvents[t1] &
this.conflictSet.conflictEvents[t1]|
 e1.op.type->e2.op.type in this.conflict.m
}
pred IVariantType::acyclic {
--This predicate imposes acyclicity in the dependence graph

let r= { t1: Transaction, t2: Transaction |
this.relates[t1,t2]}| no ^r & iden

}

--defines the visibility of a transaction
abstract sig ViewType{
 v: Transaction -> one EventOrder,
 --associaciates to each transaction a strict partial order of events
}
--defines a relation between operation types
abstract sig ConflictMatrixType{
 m: OperationType-> OperationType,
}
abstract sig BDType{
 d: Transaction -> Transaction,
--establish dependencies between transactions due to behaviour
}
abstract sig ConflictSetType{
 c: Transaction-> Event,
 --associates Object Events to the transaction
} { (Transaction.c).type=ObjectEventType}

Mapping SPLACID constraints into Alloy
The set of allowed SPLACID specifications is obtained by
mapping also syntactical non-terminals representing struc-
tural constraints. In the following, we present the predicate
which translates the standard constraint (see Section 2.2)
which has to hold at the boundary:
pred BoundaryType::standardAxiomsHold[eposet: EventOr-
der] {--eposet is a strict partial order of events
one e1: eposet.domain | one e2: eposet.domain|all
e3:(eposet.domain -(e1+e2)) | (e1&e2)=none and
-- one initiation event and first event
(e1.type in this.iEventTypes) and (eposet.eventSource[e1])
-- one termination event and last event
and (e2.type in this.tEventTypes) and (eposet.eventSink[e2])
and eposet.precedes[e1,e2]
--all object events have to follow the event of type initiation
-- event and precede the one of type termination event
and (e3.type=ObjectEventType) and eposet.precedes[e1,e3]
and eposet.precedes[e3,e2]
}
In the following we present the predicate which translate
the constraint which has to hold to have a structural de-
pendency:
pred StructuralDependencyType::relatesStructurally[tt1,tt2:
TransactionType] {
--a structural dependency implies the existence of an
--ordered pair of events (initiation or termination) belonging
--to two different transactions
(tt1->tt2) in this.sd=>
(some e1:Event|some e2:Event|some t1: Transaction| some
t2:Transaction| no (e1 &e2) and no (t1 &t2) and e1.type in (
tt1.boundaries.iEventTypes + tt1.boundaries.tEventTypes)
and e2.type in (tt2.boundaries.iEventTypes +
tt2.boundaries.tEventTypes) and t1.type=tt1 and t2.type=tt2
and e1 in t1.eventSet and e2 in t2.eventSet=>
(e2->e1 in History.r))
}
Both predicates are completely reusable since they are de-
fined at the abstract (meta-model) level. The interested
reader may refer to the report [17] for further examples.

98

4. Specifications of TMs in Alloy
The Alloy abstract signatures, representing the non-
terminals of the SPLACID grammar (the abstract meta-
classes of the SPLACID meta-model), are extended in this
section to define modelling concepts which often represent
pre-defined and reusable features (concrete meta-classes).
These features allow users to define TMs in a modular,
flexible and reusable way, according to the specific appli-
cation domain needs.
In what follows, we illustrate the Alloy code obtained by
following the second mapping rule shown in Figure 2. In
particular, we illustrate the translation of the pre-defined
modelling concepts related to the Flat and Nested transac-
tions models and to their structure. In so doing, we see that
the pre-defined boundary type, called StandardBoundary-
Type, is reused to characterize all the transaction types
composing the two models.

Structure: Flat transactions
Flat transactions represent an element of the set of possible
TMs. Following the second mapping rule shown in Figure
2, we translate this element in Alloy as a singleton set.
one sig FlatModel extends TransactionalModelType {}
--the sig FlatModel contains a single atom
{ --represents a fact signature
 t = Flat and no dependencies,
 --that is a constraint which always has to hold
 --requiring the multi-graph representing the FlatModel
 --to be a single node (the Flat TransactionType)
}
In the following, we present the Alloy code of the signa-
tures which define the Flat transaction type.
one sig Flat extends TransactionType{} {
 boundaries= StandardBoundaryType --reuse enforcement
 --iVariant will be later discussed and analyzed
}
one sig StandardBoundaryType extends BoundaryType{} {
 --the set of InitiationEvent types has to equal the InitiateType
 iEventTypes = InitiateType
 -- the set of tEvent types has to equal the TerminateType
 tEventTypes = TerminateType
all t1:Transaction| t1.type.boundaries = this =>
(boundaries.standardAxiomsHold[t1.eventOrder])
--reuse of the standard constraint introduced in Section 3
and #t1.eventOrder.domain >=2
}

Structure: Nested transactions
Nested transactions also represent a concrete element of the
set of possible TMs. Therefore in Alloy a singleton set is
used. In the following, we present the Alloy code of the
NestedModel signature. Root and Child represent the two
transaction types which compose the nested model. Four
edges relate the two transaction types and these edges
represent structural dependencies establishing containment
relationship (as explained in sub-section 2.2).
one sig NestedModel extends TransactionalModelType {}{
t = Child + Root
dependencies= {ChildBeginDependsOnRoot + RootTermina-
tionDependsOnChild + ChildBeginDependsOnChild + Child-
TerminationDependsOnChild

}
fact{all e:Event |e in History.domain =>some t:Transaction |
t.type in Root+Child and e in t.eventSet}
--a child has to have a parent!
fact {all e:Event|some t: Transaction |(e in History.domain
and e in t.eventSet and t.type=Child)=>
some t1:Transaction|t1.type = Root+Child and e.source=t1}
}
one sig Child extends TransactionType{}{
boundaries= StandardBoundaryType --reuse enforcement
--each transaction of type child has a parent
--their events are invoked by a source
all e: Event|all t:Transaction|(e in t.eventSet and t.type=this)
=>(one t1:Transaction| no (t1&t) and t1.type in Root +Child
and t1= e.source)
}
one sig Root extends TransactionType {}
{
boundaries= StandardBoundaryType --reuse enforcement
all t: Transaction| t.type = this =>(all e:Event| e in t.eventSet
=> no e.source)
}
For brevity we do not present all four dependencies but
only one, the other three are similarly defined.
one sig ChildBeginDependsOnChild extends BeginDep{}{
sd=Child->Child
relatesStructurally[Child,Child]
(all t1: Transaction | all t2: Transaction| (t1.type=Child and
t2.type=Child and no (t1 &t2) and t1.iEventSet.source = t2) =>
(all e1: t1.iEventSet | all e2: t2.iEventSet |(e2->e1) in Histo-
ry.r))
}

Figure 3 Multi-graph representing Nested Transactions

Isolation Variant (towards flexible ACIDity)
The abstract signatures, useful for the definition of the Iso-
lation Variant, are here extended to define a specific type of
Isolation namely traditional serializability-based Isolation.
In the following we present the Alloy code of the signatures
needed to define serializability-based Isolation.
one sig SerializabilityBasedIsolation extends IVariantType{}{

 view = FullView
 conflict = SyntaxBasedConflictMatrix
 conflictSet = StandardConflictSetType
 bd = allBD
no iXETypes

}
one sig FullView extends ViewType{} {
all t:Transaction | one eo: EventOrder | eo.equals[History]
and t->eo in v
}
--two operations conflict if at least one is a write
one sig SyntaxBasedConflictMatrix extends ConflictMatrix-
Type{}{
 m= Write->Write + Write-> Read + Read->Write
}
--a dependency between two transactions exist when there are

99

--two events of type ObjectEventType (each of which belonging
--to a single transaction) which both trigger an operation on the
--same object and are related through the ordering relation.
one sig allBD extends BDType{} {
d={t1:Transaction, t2:Transaction| some disj e1,e2:Event|
(e1.op.ob = e2.op.ob and History.precedes[e2,e1] and e1 in
t1.eventSet and e2 in t2.eventSet and
e1.type=ObjectEventType and e2.type=ObjectEventType)}
}
--to each transaction are associated those events of type
--ObjectEventType which do not belong to the transaction
--domain
one sig StandardConflictSetType extends ConflictSetType{} {
c= {t: Transaction, e: Event | e.type=ObjectEventType and not
e in t.eventSet }
}
In traditional serializability, each transaction has a full
view. In fact, in-place update is always implicitly assumed
(see our FullView signature). Conflicts between operations
(read-write) are identified on the basis of a syntactic-based
compatibility matrix. If at least one operation is a write, a
conflict is identified. To protect itself from interference,
each transaction has to pay attention to all the object events
invoked by all other transactions (conflict set definition).
The above provided singleton sets related to isolation
(which represent reusable features) might be reused to ob-
tain other isolation variants. To obtain the PL1 [1] based
Isolation variant, for instance, all the singleton sets charac-
terizing the serializability-based Isolation variant might be
reused, except for the allBD BDType which has to be re-
placed by a different dependency type (see WriteWrite de-
pendency in [1]).

5. Satisfiability analysis

The Alloy Analyzer tool may be used to analyze the model
automatically. Two types of analysis can be carried out:
simulation and checking. In this section, we only discuss
simulation analysis to show the satisfiability of the predi-
cates of our Alloy model. In particular, we ask the tool to
show consistent instances satisfying very simple but impor-
tant predicates. In the first two analyses we do not take into
consideration the isolation variant (the iVariant field is
commented). We only look at constraints related to the
boundary. In the third analysis we focus on a specific isola-
tion variant, namely serializability-based Isolation.
Before presenting the analysis which has been carried out,
we introduce further elements of the Alloy model, needed
to the analysis purposes.
Once a TM has been specified, a transactional computation
is the combination of the business needs and the desired
TM. A transactional computation exhibits events belonging
to the business needs (events of type ObjectEvent, which,
in a first phase, can be limited to events executing read and
write operations) and events belonging to the TM manage-
ment, known as events of type SignificantEvent. Figure 4
illustrates the taxonomy related to the event types.

Figure 4 Meta-model representing the event types hierarchy

In the following, we present the Alloy code useful to spec-
ify events:
sig Event {
 type: EventType,
 op: lone Operation,
--to each Event is associated at most 1 operation
 source: lone Transaction,--represents the invoker
} {--an operation is associated only in case of events of type
--ObjectEvent
some t: Transaction| this in t.eventSet type in (Initiation-
EventType+TerminationEventType)=>no op
type in ObjectEventType=>one op
--a transaction is not allowed to be the invoker/parent of its own
--events
some t: Transaction| this in t.eventSet=>not (source=t)
}
In the following, we present the Alloy code used to specify
the business needs:
sig BusinessEvents {
--represents the business events, the set of read/write operations
--to be executed to achieve the business goal

domBE: set Event,
}{
all e: Event | e in domBE=> e.type = ObjectEventType
some t: Transaction| this=t.bE and domBE in t.eventSet
}

fact businessEventsHaveDisjointEvents {
--the intersection between the domains has to be empty
all disj be1, be2: BusinessEvents | no be1.domBE &
be2.domBE
}
The Alloy code used to specify transactions is the follow-
ing:
sig Transaction {
 type: TransactionType,
 bE: one BusinessEvents,
 eventOrder: EventOrder,
} {
--the set of events associated to each transaction has to
--contain events of type Initiation and Termination compliant
--with its type
this.eventSet.type & InitiationEventType in
type.boundaries.iEventTypes
this.eventSet.type & TerminationEventType in
type.boundaries.tEventTypes
}
--all events of type ObjectEvent belonging to a transaction
--domain, also belong to the domain of the BusinessEvents
--associated to the transaction
fact {all e:Event|some t:Transaction|((e.type in ObjectEvent-
Type) and (e in t.eventSet)) =>(one be:BusinessEvents
|t.bE=be and e in t.bE.domBE)}
fact transactionsHaveDisjointEventSets {

100

all disj t1, t2: Transaction | no t1.eventSet & t2.eventSet
}
fact transactionsHaveDisjointBEs {
all disj t1, t2: Transaction| no t1.bE & t2.bE
}
 sig EventOrder { -- strict partial order on events
 domain: set Event,
 r: Event -> Event
}{
r.Event + Event.r in domain
all e: domain| e->e not in r -- irreflexivity
all e1,e2: domain| e1->e2 in r => not e2->e1 in r -- asymmetry
-- transitivity
all e1,e2,e3: domain| (e1->e2 in r and e2->e3 in r) => e1->e3 in r
--an atom of this signature is present in the instances only in case
-- it is associated to a transaction or to the History
(some t: Transaction| t.eventOrder= this) or History=this
}
pred EventOrder::eventSource[e1: Event] {
 no e: Event| e->e1 in this.r
}--an event is a source if no event preceding it exists
pred EventOrder::eventSink[e1: Event] {
 no e: Event| e1->e in this.r
}--an event is a sink if no event following it exists
pred EventOrder::precedes[e1,e2: Event] { -- e1<e2
 e1->e2 in this.r
}
The Alloy code used to specify a computation of a set of
(concurrent) transactions is the following:
one sig History extends EventOrder {
-- partial order over set of events of a set of transactions
} {
domain = { e: Event| some t: Transaction| e in t.eventSet }
all t: Transaction| all e1, e2: t.eventSet |
t.eventOrder.precedes[e1,e2] iff this.precedes[e1,e2]

all disj e1,e2: domain | e1.type=ObjectEventType and
e2.type=ObjectEventType and e1.op.ob = e2.op.ob=> (pre-
cedes[e1,e2] or precedes[e2,e1])
}

Sat analysis: histories compliant with the Flat model
The predicate showFlatHistories used to direct the Alloy
Analyzer is the one shown in the following:
pred showFlatHistories {
some disj t1, t2: Transaction | some disj e1, e2, e3, e4, e5, e6:
Event | t1.type=Flat and t2.type=Flat
and t1.type+t2.type in FlatModel.t
}
This predicate, informally, requires the Analyzer to find
instances in which there are two disjoint transactions (com-
pliant with the flat model) and six disjoint events.
The instances found by the tool, like the one presented in
Figure 3, correspond to the set of allowed computations
that could be obtained manually by considering all the
possible orderings compliant with the simplified flat model.
The analysis is executed by limiting the scope to 6 atoms.

Figure 5 Instance of a flat transactional computation

From Figure 5, it can be seen that the r relation orders
events as follows:
Transaction0: Event5<Event3<Event4
Transaction1: Event2<Event1<Event0
The boundary’s constraints are, therefore, satisfied. For
each transaction, in fact, there is only one event of type
InitiateType (namely, Event5 for Transaction0 and Event2
for Transaction1) and this event represents the source in the
ordering relation r. For each transaction, there is only one
event of type TerminateType (namely, Event4 for Transac-
tion0 and Event0 for Transaction1) and this event
represents the sink in the ordering relation r. The remaining
two events (Event3 and Event1) are of type Object Event
Type and they are preceded by the events marking the initi-
ation and followed by the events marking the termination.

Sat analysis: histories compliant with the Nested model
The predicate showNestedHistories used to direct the Alloy
Analyzer is the one shown in the following:
pred showNestedHistories {
some disj t1, t2:Transaction|
t1.type =Root &&t2.type = Child and t1.type+t2.type in Nes-
tedModel.t&&(all e:t2.eventSet|e.source=t1)
}
This predicate, informally, requires the Analyzer to find
instances in which there are two disjoint transactions, t1
and t2, compliant with the simplified Nested transactions
model. Moreover, t1 has to be of type Root and t2 has to be
of type Child and it has to be invoked by t1.
The instances found by the tool, like the one presented in
Figure 6, correspond to the set of allowed computations
that could be obtained manually by considering all the
possible orderings compliant with the nested model. The
analysis is carried out by limiting the scope to 6 atoms.
From Figure 6, it can be seen that, to satisfy the boundary’s
constraints, four events are events marking the boundary
(Event0 and Event1 mark the boundary of Transaction1 of
type Root; while Event3 and Event2 mark the boundary of
Transaction0 of type Child). The remaining two events
(Event4 and Event5) are of type Object Event Type.
Each transaction satisfies the standard boundary axioms. In
fact we can see that the events belonging to the transaction
domain are ordered (through the r relation) correctly.
Transaction0: Event3<Event5<Event2
Transaction1: Event0<Event4<Event1
The nesting between the two transactions appears in the
ordering relation r of the History. In fact we can see that
Event0 precedes Event3 and that Event2 precedes Event1.

101

Figure 6 Instance of a nested transactional computation

Sat analysis: serializable histories
The predicate showFlatSerializableHistories used to direct
the Alloy Analyzer is the one shown in the following:
pred showFlatSerializableHistories {
some disj t1, t2:Transaction| some disj e1, e2, e3, e4, e5, e6, e7,
e8: Event | one oB:Object|
 e2 in t1.eventSet && e3 in t1.eventSet && e4 in t2.eventSet
&& e5 in t2.eventSet && e2.op.type=Write &&
e3.op.type=Write && e4.op.type=Write && e5.op.type=Write
&& (e2.op.ob)=oB && e3.op.ob=oB && e4.op.ob=oB &&
e5.op.ob=oB
}

This predicate, informally, requires the Analyzer to find
instances in which there are two disjoint Flat transactions
and eight disjoint events. Four events have to execute an
operation of type write on the same object. Among these
four events, two have to belong to one transaction and two
to the other.
Limiting the analysis, by considering only two transactions,
is coherent with the small-scope hypothesis [13]. Two
transactions are enough to reveal problems related to inter-
ference. The instances found by the tool correspond to the
set of allowed computations that could be obtained manual-
ly by considering serializable computations in the classical
formal framework introduced to reason about serializability
theory. Because of space reasons we do not present any
instances. The interested reader, however, could execute
the complete model available in the technical report related
to this paper [17].

6. Related works

Since the early nineties of the past century, researchers
have recognized that, to increase reuse of transactional core

features, it is crucial not only to reason at the meta-model
level in order to identify similarities and differences among
TMs, but also to do it formally.
The ACTA framework was the first effort in that direction.
ACTA is a semi-formal framework for the specification
and synthesis of TMs on the basis of building blocks. As
discussed in [8], however, it presents several weaknesses.
Other works, mainly ACTA descendants, have been pro-
posed to address some of the lacks that ACTA itself pre-
sented and some of them have already been discussed in the
related works presented in [8].
A factorization of transactions into individual features
(lock-based serializability, undoability, persistence, etc.) is
provided in [12, 16]. This work provides some high level
transactional constructs which extend the programming
language StandardML. Even though this work contributes
in highlighting the potential of achieving a general-purpose
control abstraction, with which variations of the transac-
tional model could be built, no further development has
followed.
A generalization of the notion of transaction, called gener-
alized advanced transaction, is provided in [15]. A general-
ized advanced transaction is defined as a directed graph
having as nodes a set of transactions and as edges a set of
dependencies. This work focuses on a detailed characteriza-
tion of the dependencies (structural and behavioural) that
may relate two transactions and on their correct scheduling.
With respect to the ACTA framework, this work better
investigates the notion of behavioural dependency and in-
troduces further useful notions for the analysis of depend-
encies (i.e. conflict between two dependencies; inclusion of
one dependency in another; redundant dependency). This
work, however, does not address the meta-model level.
An equational theory for transactions is provided in [3]. In
this work authors define three categories of actions (A-
actions, I-actions and D-actions) which respectively capture
the Atomicity, Isolation and Durability properties. A fur-
ther category of actions to capture the Consistency property
is not introduced. Consistency is expressed as an induction
rule and can be derived. The three kinds of actions can be
nested leading to different TMs. The categories classifying
the actions however are not further decomposed and there-
fore in this approach it is not possible to obtain several
variants. A property (i.e. atomicity) either characterizes an
action or not. The TMs which can be defined according to
this theory are only those which have a set of actions be-
longing to the power set of the set containing the three
categories as elements (A, I, and D Actions).
A specification of TMs at the logical level by appealing to
non Markovian theories of the situation calculus is pro-
vided in [14]. In this work authors not only provide a se-
mantics for the ACTA building blocks using the situation
calculus but they also specify further important aspects
such as integrity constraints. Finally they simulate their
specifications using GOLOG language support environ-
ment. This work also improves the ACTA framework to-
wards a tool support for specification simulation; however,

102

its focus is not centred in organizing building blocks
around ACID properties and within an SPL perspective.

7. Conclusion and future work

In this paper, we have provided a first step towards the pro-
vision of a formal semantics for the SPLACID language by
translation into Alloy. We have presented general rules to
translate the SPLACID concepts into Alloy concepts and
then we have applied them focusing on those concepts per-
taining to the structure of a TM and those characterizing the
isolation variant. The Alloy specifications obtained by this
translation preserve the SPLACID main key-properties
consisting of modularity, flexibility and reusability. To
support this claim we have shown how flexible structures
and flexible isolation variants can be obtained in Alloy
thanks to reusable and modular pieces of specification. Fi-
nally we have discussed the results achieved by carrying on
the satisfiability analysis of the Alloy model. The analysis
in this first step has been limited to two aspects: 1) the
skeleton of the Flat and Nested transactions model to focus
on constraints related to the boundary and 2) the serializa-
bility variant in the Flat transactions model.
In the immediate future we aim at further improving the
engineering of the SPLACID language. In particular, we
will provide an abstract syntax in terms of a meta-model
and we will strengthen the integration of the SPL perspec-
tive within the Alloy formalization by making explicit the
variability modelling, as proposed, for instance, in [2].
We also aim at formalizing in Alloy various isolation vari-
ants [1] to be used in a structure-less as well as in a struc-
tured TM (i.e. Nested transactions). The formalization of
the other variation points (atomicity, consistency and dura-
bility) as well as the associated variants is also an immedi-
ate future goal. Our ultimate and long-term goal is to be
able to verify the soundness of a TM (product of the
TMsPL) derived by selection and composition of available
pieces of specification corresponding to the transactional
features and to assign an ACIDity measure to it.

References

[1] A. Adya, B. Liskov, and P. ÓNeil. Generalized isolation
level definitions. In 16th IEEE International Conference
on Data Engineering (ICDE’ 00), pages 67–80, Wash-
ington - Brussels - Tokyo, March 2000.

[2] R. Gheyi and T. Massoni and P. Borba. A Theory for
Feature Models in Alloy. First Alloy Workshop, Port-
land, Oregon, November 6, 2006.

[3] Black, Cremet, Guerraoui, and Odersky. An equational
theory for transactions. Foundations of Software Tech-
nology and Theoretical Computer Science, 23, 2003.

[4] P. K. Chrysanthis and K. Ramamritham. Synthesis of ex-
tended transaction models using acta. ACM Trans. Da-
tabase Syst., 19(3):450–491, 1994.

[5] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged con-
figuration using feature models. In Robert L. Nord, edi-

tor, Proceedings of the Third Software Product Line
Conference, LNCS 3154, pages 266–283, Boston, MA,
September 2004.

[6] A. K. Elmagarmid, editor. Database Transaction Models
for Advanced Applications. Morgan Kaufmann, San
Mateo , CA , USA, 1992.

[7] B. Gallina and N. Guelfi. A product line perspective for
quality reuse of development frameworks for distributed
transactional applications. In COMPSAC, pages 739–
744. IEEE Computer Society, 2008.

[8] B. Gallina and N. Guelfi. Splacid: an SPL-oriented,
ACTA-based Language, for Reusing (Varying) ACID
Properties. In The 32nd IEEE International Workshop
on Software Engineering, Porto Sani, Greece, ISBN
978-0-7695-3617-0, pages 115-124, 2008.

[9] J. Gray. The transaction concept: Virtues and limita-
tions. In Proc. Int’l. Conf. on Very Large Data Bases,
page 144, Cannes, France, September 1981.

[10] J. Van Gurp, J. Bosch, and M. Svahnberg. On the notion
of variability in software product lines. In Working
IEEE/IFIP Conference on Software Architecture
(WICSA), Washington, DC, USA, 2001.

[11] V. Hadzilacos. A theory of reliability in database sys-
tems. JACM: Journal of the ACM, 35, 1988.

[12] N. Haines, D. Kindred, J. G. Morrisett, S. M. Nettles,
and J. M. Wing. Composing first-class transactions.
ACM Transactions on Programming Languages and
Systems, 16(6):1719–1736, November 1994.

[13] D. Jackson. Software Abstractions: Logic, Language,
and Analysis. The MIT Press, Cambridge, Mass., 2006.

[14] I. Kiringa. Simulation of advanced transaction models
using GOLOG. LNCS, 2397:318–341, 2002.

[15] I. Ray and T. Xin. Analysis of dependencies in ad-
vanced transaction models. Distributed and Parallel Da-
tabases, 20(1):5–27, July 2006.

[16] J. Wing. Decomposing and recomposing transaction
concepts. In R. Guerraoui, O. Nierstrasz, and M. Riveill,
editors, Object-Based Distributed Programming
ECOOP ’93 Workshop, Kaiserslautern, Germany, July
26-27, 1993, volume 791 of LNCS, pages 111–122.
Springer, Berlin, 1994.

[17] B. Gallina, N. Guelfi, Towards an Alloy Formal Model
for Flexible and Reusable Advanced Transactional
Model Development, Technical Report, LASSY, Uni-
versity of Luxembourg, (to be sub-mitted).

103

