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Abstract 

SPLACID is a semi-formal language conceived for the 
specification and synthesis of (advanced) transactional 
models from basic features, such as transaction types and 
(relaxed) ACID variants. SPLACID is an improvement of 
the ACTA framework offering a well-structured and formal 
syntax. Neither ACTA nor SPLACID, however, benefit from 
a formal tool-supported semantics. This paper presents the 
first step for having a full formal semantics of SPLACID by 
translation to Alloy. In particular, we present the transla-
tion of the SPLACID concepts into Alloy concepts focusing 
on those concepts pertaining to the structure of a Transac-
tional Model and those characterizing the isolation variant. 
The Alloy specification obtained by this translation pre-
serve the SPLACID main key-properties, namely, modular-
ity, flexibility and reusability. To support this claim we 
show how flexible, modular and reusable structures and 
isolation variants can be obtained in Alloy. Finally, we 
analyze the flat and nested transactional model structures 
and the serializability-based isolation variant using the 
Alloy Analyzer. 
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1. Introduction 
 

The quality of a distributed concurrent computation and, in 
particular, its reliability may be increased through transac-
tional principles [11]. Since transactional principles estab-
lish constraints which may reduce dramatically the number 
of allowed computations, to be applicable in nowadays 
distributed systems, they have to offer a certain degree of 
flexibility [7]. The ACID (Atomicity, Consistency, Isola-
tion and Durability)-based Transactional Model (TM), 
called Flat transactions,  has been recognized to be too rigid 
and limited from a functionality point of view when used 
for application domains having requirements in contrast 

with those typically expected for transactions [9]. Several 
advanced TMs (i.e. Nested transactions) have been intro-
duced to overcome functionality-related limitations [6]. 
These models differ from each other in the way ACID 
properties are relaxed. The SPLACID language [8] has 
been introduced to offer a means to specify TMs in a flexi-
ble and Software Product Line (SPL)-oriented way. 
SPLACID is a semi-formal language conceived for the 
specification and synthesis of TMs from basic features, 
such as transaction types and (relaxed) ACID variants. 
SPLACID, therefore, allows users to structure in a mod-
ular, reusable and flexible manner the constraints which are 
necessary to limit the allowed computations. SPLACID 
targets two groups of users: transactional engine developers 
who might use SPLACID to specify new advanced transac-
tional models; transactional application developers who 
might use SPLACID to specify the adequate TM with re-
spect to the application needs. 
SPLACID is an improvement of the ACTA framework [4]. 
The ACTA framework represented the first effort towards 
the provision of a means for the specification and synthesis 
of TMs. The ACTA specifications, which consist of a list 
of semi-formal axioms, do not present a clear structure. 
SPLACID improves the ACTA framework by offering a 
well-structured and formal syntax. Neither ACTA nor 
SPLACID, however, benefit from a complete formal se-
mantics. To achieve a formal semantics for SPLACID and 
more specifically an executable (tool-supported) semantics, 
we translate SPLACID specifications into Alloy [13] speci-
fications and exploit the tool support, provided by the Alloy 
Analyzer, to carry on analysis.  
For our purposes, Alloy is the right candidate for the fol-
lowing two main reasons: 1) it is a light-weight formal lan-
guage, suitable at the early stages of the software develop-
ment to identify the right software abstractions; 2) it is 
equipped with a powerful logic which includes the transi-
tive closure operator. In our context, having a means to 
identify the right software abstractions is fundamental be-
cause it makes easier: 1) the development of a transactional 
engine supporting an advanced TM; 2) the selection of the 
adequate TM with respect to the application needs in case 
of transactional application development. The transitive 
closure operator is also fundamental because often analyz-
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ing abstractions related to transactional principles means 
satisfying specific reachability constraints. For instance, to 
reason about concurrency control abstractions, the transi-
tive closure operator is used to express the acyclicity con-
straints in the graph representing the dependencies among 
transactions. Acyclicity ensures serializability (see i.e. [1]). 
In this paper, we present the first step aimed at achieving a 
full SPLACID semantics in Alloy. In particular, we focus 
on the translation of those SPLACID concepts pertaining to 
the structure of a TM and on those characterizing the isola-
tion variant. 
The rest of the paper is organized as follows. Section 2 
introduces the background information. Section 3 proposes 
an Alloy semantics for SPLACID. Section 4 explains how 
to achieve modular, flexible and reusable specifications for 
TMs in Alloy. Section 5 uses the Alloy Analyzer to find 
instances satisfying the constraints which have to hold at 
the boundary of the Flat and Nested transactions model and 
also constraints which have to hold to guarantee serializa-
bility. Section 6 discusses related work. Finally, Section 7 
presents some concluding remarks and future work. 

2. Background 
 
This section briefly introduces the background on which we 
build our contribution. The section is organized as follows. 
Sub-section 2.1 illustrates the commonalities and the vari-
abilities of the Software Product Line (SPL) constituted of 
Transactional Models (TMs), called TMsPL. Sub-section 
2.2, presents the SPLACID language and its language con-
structs suitable to specify the abstractions, which represent 
the commonalities and the variabilities of the TMsSPL. 
Finally, Sub-section 2.3, introduces the Alloy formal lan-
guage and its interesting features which make it appealing 
for providing an executable semantics. 

2.1 Commonalities and variabilities in TMsPL 
TMs, as discussed in [7], may be better understood and 
compared by adopting an SPL perspective. SPL glasses 
enable the identification of commonalities and variabilities 
among TMs. Before revealing the commonalities and vari-
abilities among TMs, in what follows, we recall the basic 
SPL terminology. 
A commonality is the ability of an asset to be maintained as 
a constant; while a variability is the ability of an asset to be 
changed (customized) for use in a particular context. Vari-
abilities are defined through variation points and variants. 
A variation point is the place within an artefact where a 
decision can be made [10]. Variants represent the alterna-
tives associated to a variation point.  A Feature Diagram 
(FD) is a graphical representation of a hierarchically ar-
ranged set of features (properties of a system). Features 
might be mandatory (in case of commonalities), optional or 
alternative (in case of variabilities). A cardinality-based FD 
is an FD annotated with cardinalities [5]. 
Advanced TMs often introduce a structure in the “flatland” 
represented by the initial TM, as well as a different “ACID-

ity” (that is different notions of ACID properties, ACID 
variants, which might be combined). A TM, as the partial 
cardinality-based FD in Figure 1 summarizes, is commonly 
structured as collection of inter-dependent transaction 
types. Each transaction type is characterized by commonal-
ities (constraints constraining the transaction boundary, 
coexistence of an Atomicity variant, a Consistency variant, 
an Isolation variant and a Durability variant) and variabili-
ties represented by the ACID variation points. At the Isola-
tion variation point, for instance, a pre-defined Isolation 
variant [1] might be selected or a new variant might be 
composed by selecting a view type, a conflict type, etc. 
Similarly, at the other variation points, pre-defined variants 
might be selected or new variants might be introduced by 
selecting and combining variants pertaining to the ACD 
variants sub-features. The complete introduction of all the 
features which appear in the cardinality-based FD, shown 
in Figure 1, is, however, outside of the scope of this paper. 
The interested reader may infer them by reading [8]. 
 

 
Figure 1 Cardinality-based FD of the TMsPL 

2.2 SPLACID 
SPLACID [8] is a semi-formal language designed to spec-
ify and synthesize TMs on the basis of their fundamental 
properties. SPLACID has been conceived to be used within 
the (under construction) SPL-oriented requirements engi-
neering process, called PRISMA, to support the specifica-
tion activity. SPLACID is based on ACTA [4], a unified 
framework conceived for the specification, synthesis and 
verification of TMs from building blocks. The main advan-
tage of SPLACID over ACTA is that it offers a well-
structured concrete syntax, given in BNF like form, which 
integrates the SPL perspective extensively described in [7] 
and briefly presented in the previous sub-section. 
SPLACID makes it possible to structure a specification of a 
TM by selecting, whenever possible, reusable features. In 
the following, we recall some syntactical SPLACID rules. 

::
*

1- TMTId
TransactionType StructuralDependencyType

=< >
+< > < >

< TransactionalModelType >
 

The above recalled rule defines a TM. A TM is defined as a 
sequence of: 1) the TM identifier, 2) one or several transac-
tion types; 3) zero or more structural dependency types. A 
TM represents a directed multi-graph having as nodes a set 
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of transaction types and as directed edges a set of structural 
dependency types, constraining the struc-
ture.
2 |- >::= Predef_SDepID
< TransTypeId > SDepID < TransTypeId > Predicate

< < >
< > ⇔< >

StructuralDependencyType
 

 

The above recalled rule defines a Structural Dependency 
Type which relates two transaction types (forming the 
edge) in case a predicate is satisfied. As a result, a TM may 
represent simple TMs such as Flat transactions (which 
have no structure and therefore are represented by a graph 
having only one node, the Flat type, and an empty set of 
edges), but also complex advanced TMs. For instance, the 
Nested transactions TM has two transaction types (Root 
and Child) inter-related through four dependencies: two to 
establish initiation dependency and the other two to estab-
lish termination dependency (i.e., child initiation follows 
the root initiation; the root termination follows the child 
termination). The combination of initiation and termination 
dependencies is equivalent to a composed structural de-
pendency identifying containment. 
One composed structural dependency could therefore con-
nect the root type with the child type specifying that every 
transaction of type child must be contained within its root. 
Another composed structural dependency could connect the 
child type to itself specifying that every transaction of type 
child invoked by another transaction of type child has to be 
contained in it.  
3- ::

:
_ |TransTypeId

TransTypeId BoundaryType AVariantType
CVariantType IVariantType DVariantType

Predef=<
< > < >< >
< >< >< >

>< TransactionType >
 

 

The above-recalled rule defines a transaction type. A trans-
action type is defined either as a pre-defined transaction 
type identifier or as a sequence of: 1) a transaction type 
identifier, 2) the boundary type (identifying the types of 
events that mark the initiation and termination of each 
transaction of that type); 3) the ACID variants which repre-
sent the properties in terms of ACIDity of the transaction 
type. 
4- :: _ |

:
Predef BoundaryId

BoundaryId IEset TEset pre post Boundaries
=< >

< > < >< >< − − >
< BoundaryType >

 

The above-recalled rule, defines the boundary of a transac-
tion type. The boundary is defined either as a pre-defined 
boundary type identifier or as a sequence of: 1) the bound-
ary identifier; 2) the set of Initiation Event types; 3) the set 
of Termination Events types; 4) the pre and post conditions 
of the event types. 
In SPLACID, the specifications of the ACID properties are 
nicely modularized. As a result, it is possible to reason 
about each property in isolation, and even to write specifi-
cations that describe different variants of a property. Once a 
“library” of property specifications is available, once the 
SPL domain is engineered, a TM can be built in SPLACID 
simply by assigning the desired ACID property variants to 
the transaction types it is composed of.  

In the following, we recall the rule defining the isolation 
variant.  

*

5- :: | :

_ [ ]

Predef_IVariantId IVariantId
ViewType ConflictMatrixType ConflictSetType
BDType I TE pre post I XEset+

=< > < >
< >< >< >
< > < − − > < − >

< IVariantType >
 

 

The isolation variant is defined either as a pre-defined vari-
ant identifier (in case of reusable, well-known [1], isolation 
variants) or as the sequence of: 1) the variant identifier; 2) 
the view type (which defines the visibility associated to a 
transaction); 3) the conflict matrix type (which defines a 
compatibility matrix between operation types accessing the 
same object); 4) the conflict set type (which defines the set 
of object events to which a transaction has to pay atten-
tion); 5) the eventual behavioural dependencies (which 
define the ordering constraints due to the occurrence of the 
events accessing objects); 6) the pre and post conditions 
related to isolation characterizing the Termination Events; 
7) the eventual extra significant events, which influence the 
interference. 
The complete introduction of the rules defining all the non-
terminals presented in the above-introduced rules is outside 
of the scope of this paper. The interested reader may refer 
to [8].  In the following, we present the ideal specification 
of Flat transactions in SPLACID in which reusability is 
maximized: 
Flat transactions-  
Flat     /*one transaction type only composes the TM*/ 
Where Flat is further specified as: 
StandardBoundary     /*reuse of a pre-defined boundary type*/ 
FailureAtomicity        /*reuse of a pre-defined atomicity type*/ 
FullConsistency            /*reuse of a pre-defined consistency type*/ 
SerializabilityBasedIsolation /*reuse of a pre-defined isolation type*/ 
StrictDurability         /*reuse of a pre-defined durability type*/ 
In SPLACID, reuse might be maximized by selecting and 
composing reusable pieces of specifications (identified by 
pre-defined identifiers). These pieces are the result of a 
domain engineering phase following SPL engineering prac-
tices (as prescribed within the, under construction, 
PRISMA process). 
The semantics of a SPLACID specification coincides with 
the History, the strict partial order of events modelling the 
computation. The semantics of the different constructs of 
the SPLACID language consists of a set of constraints on 
the ordering relation existing among events and on the 
events themselves. In the above introduced SPLACID 
specification, for instance, the StandardBoundary imposes 
that: 1) the set of Initiation Event types is composed of a 
single element, called InitiateType; 2) the set of Termina-
tion Event types is composed of a single element, called 
TerminateType; 3) each transaction having a transaction 
type characterized by the StandardBoundary must satisfy a 
standard constraint. This constraint requires that: transac-
tions must have exactly one event of type Initiation  Event 
Type; exactly one event of type Termination Event Type; 
the event of type Initiation Event Type has to be the first 
one; the one of type Termination Event Type has to be the 
last one; events which do not mark the transaction bound-
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ary have to follow the event of type Initiation Event Type 
and precede the event of type Termination Event Type. 

2.3 Alloy 
 
Alloy [13] is a formal language suitable at the early stages 
of software development to identify the right software ab-
stractions. Alloy's logic is a relational logic which com-
bines the quantifiers of first order logic with the operators 
of the relational calculus (i.e. the transitive closure opera-
tor, fundamental for reachability properties analysis). Al-
loy's logic permits to express complex structural and beha-
vioural constraints. Alloy's logic is undecidable. However a 
tool, called Alloy Analyzer, to analyze the soundness of the 
Alloy models is available. This tool supports the analysis 
under a given scope (its analysis is complete up to the 
scope) and it looks for some assignment to variables that 
makes the constraints true. Once an assignment is found, 
instances (models) satisfying the constraints can be visually 
shown. If an assignment is not found the only conclusion is 
that the constraints cannot be solved within the chosen 
scope. The scope defines a multidimensional space of test 
cases, each dimension corresponding to the bound on a 
particular type (maximum number of instances allowed for 
a particular type). The scope specification is separated by 
the model and this separation permits to adjust the scope in 
a fine-grain manner without modifying the model. Despite 
the incompleteness of the Alloy analysis, the “small scope 
hypothesis” (according to which, the analysis of all small 
cases increases the chance of covering meaningful test-
cases) encourages the fundamental but delicate work of 
sizing the scope. 
An Alloy model (specification) is a structured specification 
made of signatures, relations, facts, predicates, functions, 
assertions and commands. A signature introduces a basic 
type (a typed set of atoms). Signatures have an optional 
body constituted of a collection of relations called fields, 
each with a fixed type. Signature extension is a powerful 
feature to support classification hierarchy. Facts are expli-
cit constraints on relations and signatures. Facts always 
hold. They have therefore to be verified by all the instances 
of the model. Predicates define reusable constraints. Func-
tions define reusable expressions. Assertions introduce a 
constraint that is intended to follow from the facts of the 
model. Commands (check and run) give directions to the 
Alloy Analyzer tool during its analysis and they allow users 
to carry on two distinct kinds of analysis: simulation (run-
ning of a predicate) and assertions checking. These two 
kinds of analysis reduce to the same analysis problem dis-
cussed above concerning assignment finding. 

3. An Alloy semantics for SPLACID 
 
So far, the SPLACID language offers only a well-
structured concrete syntax; no formal semantics is yet 
available. In this section, we provide a first step towards a 
complete formal semantics for SPLACID. To obtain the 
semantics, we translate SPLACID specifications into Alloy 

specifications and then we exploit the Alloy Analyzer tool 
to carry on satisfiability analysis.  
Mapping SPLACID concepts into Alloy 
To achieve an Alloy specification from a SPLACID speci-
fication, a translation has to be carried out. In the following 
we give some general translation guidelines. 
For each syntactical non-terminal representing a set (i.e. 
TransactionalModelType, TransactionType, StructuralDe-
pendencyType, etc.), an abstract signature is created in Al-
loy. This translation is motivated by the fact that a non-
terminal represents an abstract construct used to categorize 
terminals and no instance is needed for it. In Alloy, an ab-
stract signature has no elements except those belonging to 
its extensions. Therefore an abstract signature adequately 
represents a non-terminal. 
For each syntactical terminal representing an element of a 
set (i.e. Flat is a concrete Transaction Type), an enumera-
tion having only one element is created in Alloy (one Sig, a 
singleton set). 
A sequence is mapped into a set of fields (fields are rela-
tions in Alloy). In case of a sequence of non-terminals, for 
each non-terminal (except those representing identifiers or 
constraints) a field is created which relates it with the ab-
stract signature representing the non-terminal on the left-
side of the rule. Each multiplicity indication is mapped in 
the equivalent multiplicity indication in Alloy (i.e. ‘+’ is 
mapped into some). 

 
Figure 2 Mapping SPLACID concepts into Alloy concepts 
Figure 2 partially presents the mapping that we have identi-
fied between SPLACID concepts and Alloy concepts.  
In the following we apply the mapping rules limiting our 
attention to the concepts useful for the definition of the 
structure of a TM and to those useful for the definition of 
the isolation variant. We then introduce informally some of 
the constraints which constrain the SPLACID concepts and 
we explain how to map them into Alloy facts or predicates. 
The Alloy code presented in the paper is directly com-
mented in terms of Alloy comments (‘--‘). 
 

Focus on structure-related concepts 
Following the first mapping rule shown in Figure 2, the 
non-terminal called TransactionalModelType, representing 
the set of TMs, is mapped into the abstract signature called 
TransactionalModelType. This abstract signature has two 
fields which relate the abstract signature itself to the two 
further abstract signatures TransactionType and Struc-
turalDependencyType, corresponding to the two non-
terminals written in the right-side of the syntactical rule 1 
(defined in Sub-section 2.2).  
abstract sig TransactionalModelType { 
   --an abstract signature has no elements  
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   --except those belonging to its extensions 
   t: some TransactionType,  
   --non empty set which contains the nodes of  
   --the graph defining the TM structure 
   dependencies: set StructuralDependencyType 
   --set which contains the edges of the graph 
} 
In the following we present the Alloy code obtained by 
applying the first mapping rule to the other structure-related 
concepts. 
abstract sig TransactionType {  
   boundaries: BoundaryType,  
   iVariant:IVariantType, 
   --dVariant: DVariantType, aVariant: AVariantType,  
   --cVariant: CVariantType, still in progress 
} 
abstract sig StructuralDependencyType{  
   sd: TransactionType->TransactionType 
} 
abstract sig BoundaryType {  
   iEventTypes:set InitiationEventType, 
   --set of event types to mark a transaction initiation 
   tEventTypes:set TerminationEventType 
   --set of event types to mark a transaction termination 
} 
The TransactionalModelType extensions may generate 
flexible TMs according to the needs, by varying, for in-
stance, the Transaction Types which compose it and their 
ACIDity. Potentially all the TMs which differ on the basis 
of the structure and ACIDity might be specified. 
Focus on Isolation-related concepts 
In the following, we present the Alloy code defining the 
abstract signatures related to isolation. Following the first 
mapping rule shown in Figure 2, we obtain the following 
translation: 
abstract sig IVariantType { 
   view: ViewType, 
   conflict: ConflictMatrixType, 
   conflictSet: ConflictSetType, 
   bd: BDType, 
   iXETypes : set IExtraEventType, 
} 
The IVariantType extensions may generate a spectrum of 
isolation degrees according to the needs, by varying the 
ConflictMatrixType or the BDType, etc. (see Section 2.2, 
rule IVariantType). This guarantees flexibility and reusabil-
ity of specific sub-features. 
pred IVariantType::relates[t1,t2: Transaction] { 
--This predicate composes the IVariant sub-features and is 
--used to define the dependence graph 
 t1->t2 in this.bd.d some e1: t1.eventSet & 
this.view.viewEvents[t2] & this.conflictSet.conflictEvents[t2]| 
some e2: t2.eventSet &  this.view.viewEvents[t1] & 
this.conflictSet.conflictEvents[t1]| 
  e1.op.type->e2.op.type in this.conflict.m 
} 
pred IVariantType::acyclic { 
--This predicate imposes acyclicity in the dependence graph 

let r= { t1: Transaction,  t2: Transaction | 
this.relates[t1,t2]}| no ^r & iden 

} 

--defines the visibility of a transaction 
abstract sig ViewType{  
    v: Transaction -> one EventOrder,  
 --associaciates to each transaction a strict partial order of events  
} 
--defines a relation between operation types 
abstract sig ConflictMatrixType{  
   m: OperationType-> OperationType,  
}  
abstract sig BDType{  
   d: Transaction -> Transaction,  
--establish dependencies between transactions due to behaviour 
}  
abstract sig ConflictSetType{  
   c: Transaction-> Event,  
   --associates Object Events to the transaction  
} { (Transaction.c).type=ObjectEventType} 
 

Mapping SPLACID constraints into Alloy 
The set of allowed SPLACID specifications is obtained by 
mapping also syntactical non-terminals representing struc-
tural constraints. In the following, we present the predicate 
which translates the standard constraint (see Section 2.2) 
which has to hold at the boundary: 
pred BoundaryType::standardAxiomsHold[eposet: EventOr-
der] {--eposet is a strict partial order of events 
one e1: eposet.domain | one e2: eposet.domain|all 
e3:(eposet.domain -(e1+e2)) | (e1&e2)=none and 
-- one initiation event and first event 
(e1.type in this.iEventTypes) and (eposet.eventSource[e1]) 
-- one termination event and last event 
and (e2.type in this.tEventTypes) and (eposet.eventSink[e2]) 
and eposet.precedes[e1,e2] 
--all object events have to follow the event of type initiation  
-- event and precede the one of type termination event 
and (e3.type=ObjectEventType) and eposet.precedes[e1,e3] 
and eposet.precedes[e3,e2] 
} 
In the following we present the predicate which translate 
the constraint which has to hold to have a structural de-
pendency: 
pred StructuralDependencyType::relatesStructurally[tt1,tt2: 
TransactionType] { 
--a structural dependency implies the existence of an  
--ordered pair of events (initiation or termination) belonging  
--to two different transactions 
(tt1->tt2) in this.sd=> 
(some e1:Event|some e2:Event|some t1: Transaction| some 
t2:Transaction| no (e1 &e2) and  no (t1 &t2) and e1.type in ( 
tt1.boundaries.iEventTypes + tt1.boundaries.tEventTypes ) 
and e2.type in ( tt2.boundaries.iEventTypes + 
tt2.boundaries.tEventTypes) and t1.type=tt1 and t2.type=tt2 
and e1 in t1.eventSet and e2 in t2.eventSet=>  
(e2->e1 in History.r)) 
} 
Both predicates are completely reusable since they are de-
fined at the abstract (meta-model) level. The interested 
reader may refer to the report [17] for further examples. 
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4. Specifications of TMs in Alloy 
The Alloy abstract signatures, representing the non-
terminals of the SPLACID grammar (the abstract meta-
classes of the SPLACID meta-model), are extended in this 
section to define modelling concepts which often represent 
pre-defined and reusable features (concrete meta-classes). 
These features allow users to define TMs in a modular, 
flexible and reusable way, according to the specific appli-
cation domain needs.  
In what follows, we illustrate the Alloy code obtained by 
following the second mapping rule shown in Figure 2. In 
particular, we illustrate the translation of the pre-defined 
modelling concepts related to the Flat and Nested transac-
tions models and to their structure. In so doing, we see that 
the pre-defined boundary type, called StandardBoundary-
Type, is reused to characterize all the transaction types 
composing the two models. 

Structure: Flat transactions 
Flat transactions represent an element of the set of possible 
TMs. Following the second mapping rule shown in Figure 
2, we translate this element in Alloy as a singleton set. 
one sig FlatModel extends TransactionalModelType {} 
--the sig FlatModel contains a single atom 
{ --represents a fact signature 
    t = Flat and no dependencies,  
    --that is a constraint which always has to hold 
    --requiring the multi-graph representing the FlatModel 
    --to be a single node (the Flat TransactionType) 
}  
In the following, we present the Alloy code of the signa-
tures which define the Flat transaction type.  
one sig Flat extends TransactionType{} { 
   boundaries= StandardBoundaryType --reuse enforcement 
   --iVariant will be later discussed and analyzed 
} 
one sig StandardBoundaryType extends BoundaryType{} { 
   --the set of InitiationEvent types has to equal the InitiateType 
   iEventTypes = InitiateType  
   -- the set of tEvent types has to equal the TerminateType 
   tEventTypes = TerminateType 
all t1:Transaction| t1.type.boundaries = this =>  
(boundaries.standardAxiomsHold[t1.eventOrder])  
--reuse of the standard constraint introduced in Section 3 
and #t1.eventOrder.domain >=2  
} 

Structure: Nested transactions 
Nested transactions also represent a concrete element of the 
set of possible TMs. Therefore in Alloy a singleton set is 
used. In the following, we present the Alloy code of the 
NestedModel signature. Root and Child represent the two 
transaction types which compose the nested model. Four 
edges relate the two transaction types and these edges 
represent structural dependencies establishing containment 
relationship (as explained in sub-section 2.2).  
one sig NestedModel extends TransactionalModelType {}{ 
t = Child + Root 
dependencies= {ChildBeginDependsOnRoot + RootTermina-
tionDependsOnChild + ChildBeginDependsOnChild + Child-
TerminationDependsOnChild 

} 
fact{all e:Event |e in History.domain =>some t:Transaction | 
t.type in Root+Child and e in t.eventSet} 
--a child has to have a parent! 
fact {all e:Event|some t: Transaction |(e in History.domain 
and e in t.eventSet and t.type=Child)=> 
some t1:Transaction|t1.type = Root+Child and e.source=t1} 
} 
one sig Child extends TransactionType{}{ 
boundaries= StandardBoundaryType --reuse enforcement 
--each transaction of type child has a parent 
--their events are invoked by a source 
all e: Event|all t:Transaction|(e in t.eventSet  and t.type=this) 
=>(one t1:Transaction| no (t1&t) and t1.type in Root +Child 
and t1= e.source)  
} 
one sig Root extends TransactionType {} 
{ 
boundaries= StandardBoundaryType --reuse enforcement 
all t: Transaction| t.type = this =>(all e:Event| e in t.eventSet 
=> no e.source)  
} 
For brevity we do not present all four dependencies but 
only one, the other three are similarly defined. 
one sig ChildBeginDependsOnChild extends BeginDep{}{ 
sd=Child->Child 
relatesStructurally[Child,Child] 
(all t1: Transaction | all t2: Transaction| (t1.type=Child and 
t2.type=Child and no (t1 &t2) and t1.iEventSet.source = t2) => 
(all e1: t1.iEventSet | all e2: t2.iEventSet |(e2->e1) in Histo-
ry.r)) 
} 

 
Figure 3 Multi-graph representing Nested Transactions 
 
Isolation Variant (towards flexible ACIDity) 
The abstract signatures, useful for the definition of the Iso-
lation Variant, are here extended to define a specific type of 
Isolation namely traditional serializability-based Isolation. 
In the following we present the Alloy code of the signatures 
needed to define serializability-based Isolation. 
one sig SerializabilityBasedIsolation extends IVariantType{}{  

 view = FullView  
 conflict = SyntaxBasedConflictMatrix  
 conflictSet = StandardConflictSetType  
 bd = allBD 
no iXETypes  

} 
one sig FullView extends ViewType{} {  
all t:Transaction | one eo: EventOrder | eo.equals[History] 
and t->eo in v  
}  
--two operations conflict if at least one is a write 
one sig SyntaxBasedConflictMatrix extends ConflictMatrix-
Type{}{  
  m= Write->Write + Write-> Read + Read->Write  
}  
--a dependency between two transactions exist when there are 
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--two events of type ObjectEventType (each of which belonging 
--to a single transaction) which both trigger an operation on the 
--same object and are related through the ordering relation. 
one sig allBD extends BDType{} {  
d={t1:Transaction, t2:Transaction| some disj e1,e2:Event| 
(e1.op.ob = e2.op.ob and History.precedes[e2,e1] and e1 in 
t1.eventSet and e2 in t2.eventSet and 
e1.type=ObjectEventType and e2.type=ObjectEventType)} 
}  
--to each transaction are associated those events of type  
--ObjectEventType which do not belong to the transaction  
--domain 
one sig StandardConflictSetType extends ConflictSetType{} { 
c= {t: Transaction, e: Event | e.type=ObjectEventType and not 
e in t.eventSet }  
} 
In traditional serializability, each transaction has a full 
view. In fact, in-place update is always implicitly assumed 
(see our FullView signature). Conflicts between operations 
(read-write) are identified on the basis of a syntactic-based 
compatibility matrix. If at least one operation is a write, a 
conflict is identified. To protect itself from interference, 
each transaction has to pay attention to all the object events 
invoked by all other transactions (conflict set definition). 
The above provided singleton sets related to isolation 
(which represent reusable features) might be reused to ob-
tain other isolation variants. To obtain the PL1 [1] based 
Isolation variant, for instance, all the singleton sets charac-
terizing the serializability-based Isolation variant might be 
reused, except for the allBD BDType which has to be re-
placed by a different dependency type (see WriteWrite de-
pendency in [1]).  

5. Satisfiability analysis 
 

The Alloy Analyzer tool may be used to analyze the model 
automatically. Two types of analysis can be carried out: 
simulation and checking. In this section, we only discuss 
simulation analysis to show the satisfiability of the predi-
cates of our Alloy model. In particular, we ask the tool to 
show consistent instances satisfying very simple but impor-
tant predicates. In the first two analyses we do not take into 
consideration the isolation variant (the iVariant field is 
commented). We only look at constraints related to the 
boundary. In the third analysis we focus on a specific isola-
tion variant, namely serializability-based Isolation. 
Before presenting the analysis which has been carried out, 
we introduce further elements of the Alloy model, needed 
to the analysis purposes. 
Once a TM has been specified, a transactional computation 
is the combination of the business needs and the desired 
TM. A transactional computation exhibits events belonging 
to the business needs (events of type ObjectEvent, which, 
in a first phase, can be limited to events executing read and 
write operations) and events belonging to the TM manage-
ment, known as events of type SignificantEvent. Figure 4 
illustrates the taxonomy related to the event types. 

 
Figure 4 Meta-model representing the event types hierarchy 
 
In the following, we present the Alloy code useful to spec-
ify events: 
sig Event { 
 type: EventType, 
 op: lone Operation, 
--to each Event is associated at most 1 operation 
 source: lone Transaction,--represents the invoker 
} {--an operation is associated only in case of events of type  
--ObjectEvent  
some t: Transaction| this in t.eventSet type in (Initiation-
EventType+TerminationEventType)=>no op 
type in ObjectEventType=>one op 
--a transaction is not allowed to be the invoker/parent of its own  
--events 
some  t: Transaction| this in t.eventSet=>not (source=t) 
} 
In the following, we present the Alloy code used to specify 
the business needs: 
sig BusinessEvents { 
--represents the business events, the set of read/write operations  
--to be executed to achieve the business goal 

domBE: set Event, 
}{ 
all e: Event | e in domBE=> e.type = ObjectEventType 
some t: Transaction| this=t.bE and domBE in t.eventSet 
} 
 
fact businessEventsHaveDisjointEvents {  
--the intersection between the domains has to be empty 
all disj be1, be2: BusinessEvents | no be1.domBE & 
be2.domBE 
} 
The Alloy code used to specify transactions is the follow-
ing: 
sig Transaction { 
   type: TransactionType, 
  bE: one BusinessEvents, 
  eventOrder: EventOrder,  
} {  
--the set of events associated to each transaction has to  
--contain events of type Initiation and Termination compliant  
--with its type 
this.eventSet.type & InitiationEventType in 
type.boundaries.iEventTypes  
this.eventSet.type  &  TerminationEventType in 
type.boundaries.tEventTypes 
} 
--all events of type ObjectEvent belonging to a transaction  
--domain, also belong to the domain of the BusinessEvents  
--associated to the transaction 
fact {all e:Event|some t:Transaction|((e.type in ObjectEvent-
Type) and (e in t.eventSet) ) =>(one be:BusinessEvents 
|t.bE=be and e in t.bE.domBE)} 
fact transactionsHaveDisjointEventSets {  
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all disj t1, t2: Transaction | no t1.eventSet & t2.eventSet  
} 
fact transactionsHaveDisjointBEs {  
all disj t1, t2: Transaction| no t1.bE & t2.bE  
} 
 sig EventOrder { -- strict partial order on events 
 domain: set Event, 
 r: Event -> Event 
}{  
r.Event + Event.r in domain  
all e: domain| e->e not in r -- irreflexivity 
all  e1,e2: domain| e1->e2 in r => not e2->e1 in r -- asymmetry 
-- transitivity 
all e1,e2,e3: domain| (e1->e2 in r and e2->e3 in r) => e1->e3 in r 
--an atom of this signature is present in the instances only in case  
-- it  is associated to a transaction or to the History 
(some t: Transaction|  t.eventOrder= this) or History=this 
} 
pred EventOrder::eventSource[e1: Event] { 
 no e: Event| e->e1 in this.r 
}--an event is a source if no event preceding it exists 
pred EventOrder::eventSink[e1: Event] { 
 no e: Event| e1->e in this.r 
}--an event is a sink if no event following it exists 
pred EventOrder::precedes[e1,e2: Event] { -- e1<e2 
 e1->e2 in this.r 
} 
The Alloy code used to specify a computation of a set of 
(concurrent) transactions is the following: 
one  sig History extends EventOrder {  
-- partial order over set of events of a set of transactions 
} {  
domain = { e: Event| some t: Transaction| e in t.eventSet } 
all t: Transaction| all e1, e2: t.eventSet | 
t.eventOrder.precedes[e1,e2] iff this.precedes[e1,e2]  

 
all disj e1,e2: domain | e1.type=ObjectEventType and 
e2.type=ObjectEventType and e1.op.ob = e2.op.ob=> ( pre-
cedes[e1,e2] or precedes[e2,e1])  
} 
 

Sat analysis: histories compliant with the Flat model 
The predicate showFlatHistories used to direct the Alloy 
Analyzer is the one shown in the following:  
pred showFlatHistories {  
some disj t1, t2: Transaction | some disj e1, e2, e3, e4, e5, e6: 
Event | t1.type=Flat and t2.type=Flat 
and t1.type+t2.type in FlatModel.t 
}  
This predicate, informally, requires the Analyzer to find 
instances in which there are two disjoint transactions (com-
pliant with the flat model) and six disjoint events.  
The instances found by the tool, like the one presented in 
Figure 3, correspond to the set of allowed computations 
that could be obtained manually by considering all the 
possible orderings compliant with the simplified flat model. 
The analysis is executed by limiting the scope to 6 atoms. 
 

 
Figure 5 Instance of a flat transactional computation 
 
From Figure 5, it can be seen that the r relation orders 
events as follows: 
Transaction0: Event5<Event3<Event4 
Transaction1: Event2<Event1<Event0 
The boundary’s constraints are, therefore, satisfied. For 
each transaction, in fact, there is only one event of type 
InitiateType (namely, Event5 for Transaction0 and Event2 
for Transaction1) and this event represents the source in the 
ordering relation r. For each transaction, there is only one 
event of type TerminateType (namely, Event4 for Transac-
tion0 and Event0 for Transaction1) and this event 
represents the sink in the ordering relation r. The remaining 
two events (Event3 and Event1) are of type Object Event 
Type and they are preceded by the events marking the initi-
ation and followed by the events marking the termination.  
 

Sat analysis: histories compliant with the Nested model 
The predicate showNestedHistories used to direct the Alloy 
Analyzer is the one shown in the following:  
pred showNestedHistories { 
some disj t1, t2:Transaction| 
t1.type =Root &&t2.type = Child and t1.type+t2.type in Nes-
tedModel.t&&(all e:t2.eventSet|e.source=t1) 
} 
This predicate, informally, requires the Analyzer to find 
instances in which there are two disjoint transactions, t1 
and t2, compliant with the simplified Nested transactions 
model. Moreover, t1 has to be of type Root and t2 has to be 
of type Child and it has to be invoked by t1. 
The instances found by the tool, like the one presented in 
Figure 6, correspond to the set of allowed computations 
that could be obtained manually by considering all the 
possible orderings compliant with the nested model. The 
analysis is carried out by limiting the scope to 6 atoms. 
From Figure 6, it can be seen that, to satisfy the boundary’s 
constraints, four events are events marking the boundary 
(Event0 and Event1 mark the boundary of Transaction1 of 
type Root; while Event3 and Event2 mark the boundary of 
Transaction0 of type Child). The remaining two events 
(Event4 and Event5) are of type Object Event Type.  
Each transaction satisfies the standard boundary axioms. In 
fact we can see that the events belonging to the transaction 
domain are ordered (through the r relation) correctly. 
Transaction0: Event3<Event5<Event2 
Transaction1: Event0<Event4<Event1 
The nesting between the two transactions appears in the 
ordering relation r of the History. In fact we can see that 
Event0 precedes Event3 and that Event2 precedes Event1. 

101



 
Figure 6 Instance of a nested transactional computation 
 
Sat analysis: serializable histories 
The predicate showFlatSerializableHistories used to direct 
the Alloy Analyzer is the one shown in the following:  
pred showFlatSerializableHistories {  
some disj t1, t2:Transaction| some disj e1, e2, e3, e4, e5, e6, e7, 
e8: Event | one oB:Object| 
 e2 in t1.eventSet && e3 in t1.eventSet && e4 in t2.eventSet 
&& e5 in t2.eventSet && e2.op.type=Write && 
e3.op.type=Write && e4.op.type=Write && e5.op.type=Write 
&& (e2.op.ob)=oB && e3.op.ob=oB && e4.op.ob=oB && 
e5.op.ob=oB   
} 

This predicate, informally, requires the Analyzer to find 
instances in which there are two disjoint Flat transactions 
and eight disjoint events. Four events have to execute an 
operation of type write on the same object. Among these 
four events, two have to belong to one transaction and two 
to the other. 
Limiting the analysis, by considering only two transactions, 
is coherent with the small-scope hypothesis [13]. Two 
transactions are enough to reveal problems related to inter-
ference. The instances found by the tool correspond to the 
set of allowed computations that could be obtained manual-
ly by considering serializable computations in the classical 
formal framework introduced to reason about serializability 
theory. Because of space reasons we do not present any 
instances. The interested reader, however, could execute 
the complete model available in the technical report related 
to this paper [17]. 
 

6. Related works 
 
Since the early nineties of the past century, researchers 
have recognized that, to increase reuse of transactional core 

features, it is crucial not only to reason at the meta-model 
level in order to identify similarities and differences among 
TMs, but also to do it formally.  
The ACTA framework was the first effort in that direction. 
ACTA is a semi-formal framework for the specification 
and synthesis of TMs on the basis of building blocks. As 
discussed in [8], however, it presents several weaknesses. 
Other works, mainly ACTA descendants, have been pro-
posed to address some of the lacks that ACTA itself pre-
sented and some of them have already been discussed in the 
related works presented in [8].  
A factorization of transactions into individual features 
(lock-based serializability, undoability, persistence, etc.) is 
provided in [12, 16]. This work provides some high level 
transactional constructs which extend the programming 
language StandardML. Even though this work contributes 
in highlighting the potential of achieving a general-purpose 
control abstraction, with which variations of the transac-
tional model could be built, no further development has 
followed.  
A generalization of the notion of transaction, called gener-
alized advanced transaction, is provided in [15]. A general-
ized advanced transaction is defined as a directed graph 
having as nodes a set of transactions and as edges a set of 
dependencies. This work focuses on a detailed characteriza-
tion of the dependencies (structural and behavioural) that 
may relate two transactions and on their correct scheduling. 
With respect to the ACTA framework, this work better 
investigates the notion of behavioural dependency and in-
troduces further useful notions for the analysis of depend-
encies (i.e. conflict between two dependencies; inclusion of 
one dependency in another; redundant dependency). This 
work, however, does not address the meta-model level.  
An equational theory for transactions is provided in [3]. In 
this work authors define three categories of actions (A-
actions, I-actions and D-actions) which respectively capture 
the Atomicity, Isolation and Durability properties. A fur-
ther category of actions to capture the Consistency property 
is not introduced. Consistency is expressed as an induction 
rule and can be derived. The three kinds of actions can be 
nested leading to different TMs. The categories classifying 
the actions however are not further decomposed and there-
fore in this approach it is not possible to obtain several 
variants. A property (i.e. atomicity) either characterizes an 
action or not. The TMs which can be defined according to 
this theory are only those which have a set of actions be-
longing to the power set of the set containing the three 
categories as elements (A, I, and D Actions).  
A specification of TMs at the logical level by appealing to 
non Markovian theories of the situation calculus is pro-
vided in [14]. In this work authors not only provide a se-
mantics for the ACTA building blocks using the situation 
calculus but they also specify further important aspects 
such as integrity constraints. Finally they simulate their 
specifications using GOLOG language support environ-
ment. This work also improves the ACTA framework to-
wards a tool support for specification simulation; however, 
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its focus is not centred in organizing building blocks 
around ACID properties and within an SPL perspective. 
 

7. Conclusion and future work 
 

In this paper, we have provided a first step towards the pro-
vision of a formal semantics for the SPLACID language by 
translation into Alloy. We have presented general rules to 
translate the SPLACID concepts into Alloy concepts and 
then we have applied them focusing on those concepts per-
taining to the structure of a TM and those characterizing the 
isolation variant. The Alloy specifications obtained by this 
translation preserve the SPLACID main key-properties 
consisting of modularity, flexibility and reusability. To 
support this claim we have shown how flexible structures 
and flexible isolation variants can be obtained in Alloy 
thanks to reusable and modular pieces of specification. Fi-
nally we have discussed the results achieved by carrying on 
the satisfiability analysis of the Alloy model. The analysis 
in this first step has been limited to two aspects: 1) the 
skeleton of the Flat and Nested transactions model to focus 
on constraints related to the boundary and 2) the serializa-
bility variant in the Flat transactions model. 
In the immediate future we aim at further improving the 
engineering of the SPLACID language. In particular, we 
will provide an abstract syntax in terms of a meta-model 
and we will strengthen the integration of the SPL perspec-
tive within the Alloy formalization by making explicit the 
variability modelling, as proposed, for instance, in [2].  
We also aim at formalizing in Alloy various isolation vari-
ants [1] to be used in a structure-less as well as in a struc-
tured TM (i.e. Nested transactions). The formalization of 
the other variation points (atomicity, consistency and dura-
bility) as well as the associated variants is also an immedi-
ate future goal. Our ultimate and long-term goal is to be 
able to verify the soundness of a TM (product of the 
TMsPL) derived by selection and composition of available 
pieces of specification corresponding to the transactional 
features and to assign an ACIDity measure to it.  
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