
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experiences in Speeding Up Computer Vision Applications on
Mobile Computing Platforms

Citation for published version:
Backes, L, Rico, A & Franke, B 2015, Experiences in Speeding Up Computer Vision Applications on Mobile
Computing Platforms. in Proceedings of the International Symposium on Systems, Architectures, Modeling,
and Simulation (SAMOS XV), Samos, Greece, July 20-23, 2015. Institute of Electrical and Electronics
Engineers, pp. 1-8. https://doi.org/10.1109/SAMOS.2015.7363653

Digital Object Identifier (DOI):
10.1109/SAMOS.2015.7363653

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the International Symposium on Systems, Architectures, Modeling, and Simulation (SAMOS XV),
Samos, Greece, July 20-23, 2015

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Sept. 2024

https://doi.org/10.1109/SAMOS.2015.7363653
https://doi.org/10.1109/SAMOS.2015.7363653
https://www.research.ed.ac.uk/en/publications/9602aed2-29f0-4888-9132-b088925d4808


Experiences in Speeding Up Computer Vision
Applications on Mobile Computing Platforms

Luna Backes
Barcelona Supercomputing Center,

Barcelona, Spain
Email: luna.backes@bsc.es

Alejandro Rico
Barcelona Supercomputing Center,

Barcelona, Spain
Email: alejandro.rico@bsc.es

Björn Franke
The University of Edinburgh,
Edinburgh, United Kingdom

Email: bfranke@ed.ac.uk

Abstract—Computer vision (CV) is widely expected to be the
next big thing in mobile computing. The availability of a camera
and a large number of sensors in mobile devices will enable
CV applications that understand the environment and enhance
people’s lives through augmented reality. One of the problems
yet to solve is how to transfer demanding state-of-the-art CV
algorithms —designed to run on powerful desktop computers
with several GPUs— onto energy-efficient, but slow, processors
and GPUs found in mobile devices. To accommodate to the lack
of performance, current CV applications for mobile devices are
simpler versions of more complex algorithms, which generally
run slowly and unreliably and provide a poor user experience.
In this paper, we investigate ways to speed up demanding
CV applications to run faster on mobile devices. We selected
KinectFusion (KF) as a representative CV application. The KF
application constructs a 3D model from the images captured
by a Kinect. After porting it to an ARM platform, we applied
several optimisation and parallelisation techniques using OpenCL
to exploit all the available computing resources. We evaluated the
impact on performance and power and demonstrate a 4⇥ speed-
up with just a 1.38⇥ power increase. We also evaluated the
performance portability of our optimisations by running on a
different platform, and assessed similar improvements despite
the different multi-core configuration and memory system. By
measuring processor temperature, we found overheating to be the
main limiting factor for running such high-performance codes on
a mobile device not designed for full continuous utilisation.

I. INTRODUCTION

Mobile devices represent a new era in computing with
a market rapidly growing [1]. At the same time, mobile
processor performance has increased by a factor of 25⇥ in
3 years [2]. The challenge now is power: the power envelope
is going to remain fixed, at about 2W for smartphones and
5-7W for tablets. This is due to the need for cooling, which is
limited in compact mobile devices. This thermal limit equally
determines the power limit that stays constant. This also affects
performance: a mobile device working at maximum speed for
a long time heats up quickly, which forces the system to reduce
its operating frequency.

Smartphones and other mobile devices integrate more sen-
sors in each generation. Some examples are GPS, accelerome-
ter, gyroscope, proximity, light and camera. These hardware
components make mobile devices an appealing option for
computer vision (CV). The possibilities of CV in mobile
devices are endless [3], for example: games, improve disabled
people’s life or new learning techniques. However, demanding

This work was funded by the EPSRC grant PAMELA EP/K008730/1 and
the Mont-Blanc project (EU FP7 grant agreements 288777 and 610402).

state-of-the-art CV algorithms require powerful desktop GPUs
able to provide high performance.

Existing CV applications for mobile devices are simpler
versions of more complex algorithms in an attempt to provide
high frame rates at the expense of functionality and accu-
racy [4]. We tried a set of existing CV apps on a powerful
smartphone, the Samsung Galaxy Note 3, and found that
user experience is poor due to erroneous outputs, overheating
that led some apps to abort, and slow frame rates. This
experience shows that existing attempts of CV on mobile
devices are not completely satisfactory, and motivates the work
of several projects, such as PAMELA [5] and Google’s project
Tango [6], towards providing more optimized CV software and
specialised hardware.

In this paper, we investigate ways to speed up demanding
CV applications on mobile devices. We selected the Kinect-
Fusion (KF) application [7] as a representative CV application
that requires high performance. KF processes images of objects
taken from multiple angles by a Kinect and constructs a 3D
model of the observed objects. It usually runs on desktop
machines with powerful GPUs because it requires high per-
formance to process the images and construct the model at
interactive rates (approximately 30 FPS). We ported KF to run
on a mobile system-on-chip (SoC), the Samsung Exynos 5250.
We profiled the application and ported it to OpenCL to make
use of the embedded GPU available in the chip. We performed
a set of optimisations by porting several parts to the application
to run on the GPU, parallelised other parts to exploit multiple
CPUs, and minimised synchronizations and data transfers.

With this work we attempt to quantify how far current
mobile SoCs are capable of running demanding CV applica-
tions, such as KF, at interactive rates; anticipate what problems
developers may face when porting such applications to mobile
devices; and provide a sense of the potential improvements of
our optimisations on such applications.

In this context, the contributions of this paper are:

• A profiling of the KF application running on the Sam-
sung Exynos 5250 and description of the optimisations
applied based on that profiling. We ported several
parts of the application to OpenCL to exploit more
parallelism using the embedded GPU, removed data
transfers between CPU and GPU using shared memory
and removed unnecessary CPU-GPU synchronisations
by allowing consecutive computations on the GPU to
reuse the data in GPU memory.



• A temperature evaluation of KF running on Samsung
Exynos 5250. We found that overheating is a major
issue in terms of stability and performance because
the processor applies thermal throttling to avoid tem-
perature exceeding 85 degrees to avoid damaging
the CPU. We also evaluated the impact of several
cooling solutions. Adding a heat sink and a fan
reduced execution time by 20% of the unoptimised KF
version. We also found that our optimisations made
KF less sensitive to temperature. Moving computation
to the GPU significantly reduces overheating and,
thus, thermal throttling happens much less frequently
than in the unoptimised version. Therefore, the GPU
version not only improves performance by exploiting
more parallelism, but also due to a reduced thermal
throttling activity.

• A performance and power evaluation of KF running on
Samsung Exynos 5250 on each optimisation step. We
measure the execution time and power consumption
of each one of our optimisations. We also break down
the execution time on the different stages of the KF
algorithm to analyse which of them our optimisations
affect. We achieved an overall 4⇥ speed-up with only
a 1.38⇥ power increase. This results in a 3⇥ reduction
on energy-to-solution which is crucial for battery-
restricted environments such as mobile devices. We
also repeated the analysis on a different mobile SoC,
the Samsung Exynos 5422, and experienced similar
improvements that show a good performance porta-
bility of our optimisations.

II. RELATED WORK

Computer vision (CV) for mobile devices is becoming a
trending topic since the performance of mobile processors
is becoming high enough to run simple CV applications.
Existing examples of such applications are video stabilisation
with rolling shutter correction, face detection and recognition,
low-light image/video enhancement, car plate detection and
recognition [8]; augmented reality (e.g., placing of furniture on
the recorded space [9]); and real-time translation of text [10].

An example is Word Lens [10], which translates text in
real time from the video captured by the mobile camera.
The application has to recognise the text from the image and
translate it, ideally, at an interactive rate. Another example is
video stabilisation [8], that processes the scene in real time and
recognises the objects to understand how the camera moves
relative to the scene and eliminate the trembling. These kinds
of video processing are specially difficult when it is dark, there
are plenty of similar objects together or the resolution of the
camera is low. For this reason, they require complex processing
algorithms that are computationally expensive.

An approach to increase the computational capacity of
mobile devices is to build specialised hardware. Movidius [11],
a vision processor company, develops processors with an
architecture specifically tailored for CV. Their latest generation
processor, the Myriad 2 [12], comprises 12 specialized vector
VLIW processors for high throughput, a wide range of inter-
faces for high connectivity, a set of imaging/vision accelerators
for specific processing tasks, and a high-bandwidth memory

TABLE I. PERCENTAGE OF TIME SPENT IN THE DIFFERENT STAGES OF
THE KF ORIGINAL VERSION.

Stages Time (%)
Acquisition 2.70%
Preprocessing 23.08%
Tracking 5.50%
Integration 49.87%
Rendering 18.64%
Drawing 0.14%

fabric that interconnects all the processing resources and pe-
ripherals. The architecture is implemented for high throughput
rather than latency so it runs at hundreds of megahertz targeting
power efficiency.

This chip is integrated in the specialised mobile device
developed in Google’s project Tango [6]. Their objective is to
provide a 5” Android phone with highly customized hardware,
including Movidius’ Myriad chip, and software designed to
track the full 3-dimensional motion of the device as you hold
it while simultaneously creating a map of the environment.
The project also includes the development of a 7” tablet with
the NVIDIA Tegra K1 processor, 4GB of RAM, 128GB of
storage, motion tracking camera, integrated depth sensing and
wireless interfaces.

Another approach to improve the capabilities of CV ap-
plications on mobile devices is to optimise the software for
existing mobile processors. Previous works [13], [14] ported
CV applications to mobile SoCs and provide significant speed-
ups mainly by using the GPU. Cheng and Wang [13] ported
a face recognition algorithm to OpenGL. The application
processes a single image to identify faces using a pattern
recognition algorithm. They tested their OpenGL version in
Android-powered devices and compared their efficiency in
GPUs from Qualcomm, NVIDIA and Imagination Technolo-
gies. Wang et al. [14] ported an image inpainting-based object
removal algorithm to OpenCL. The application processes a
single image to fill holes left by the removal of objects. It
uses patterns nearby the hole to build an approximation of the
pixels the object was covering. They tested their application
in an Android-powered device with a Qualcomm GPU [14].

Our work differs from these previous works in that we port
and optimise a highly-demanding application, KinectFusion,
that processes a video, instead of a single image, and we
provide a comprehensive evaluation of performance, power
and also temperature for multiple optimisation steps. As in
the work of Cheng and Wang [13], we also compare multiple
platforms with different GPUs, but we developed the GPU
version of our application in OpenCL rather than in OpenGL.
This provides a more maintainable software because it does
not require mapping the algorithm to textures and geometric
primitives as in OpenGL. Moreover, our optimisations do not
only exploit the GPU, as in previous works, but also the
multiple CPUs in the SoC.

III. KINECTFUSION OPTIMISATIONS

KinectFusion (KF) [7] provides 3D object scanning and
model creation using a Kinect for Windows sensor. The user
can scan a scene with the Kinect camera and simultaneously
see and interact with a detailed 3D model of the scene.



TABLE II. LIST OF OPTIMISATIONS IN IMPLEMENTATION ORDER.
EACH OPTIMISATION STEP INCLUDES THE PREVIOUS ONES.

Label Description
OCL-Initial Porting of integrate kernel (Integration stage)
OCL-SharedMem Use shared memory (no data copies)
OCL-Raycast Porting of raycast kernel (Integration stage)
OCL-Track Porting of track kernel (Tracking stage)
OCL-OpenMP Porting of CPU-side code to OpenMP (Preprocessing and

Rendering stage)
OCL-Barriers Removed barriers and unnecessary memory mappings (In-

tegration stage)
OCL-Bilateral Porting of bilateral filter kernel (Preprocessing stage)

We ported a C++ version of KinectFusion, that we refer
to as original version, to run on a mobile processor, the
Samsung Exynos 5250 SoC (see Section IV for more details).
We profiled the code and identified the time spent on each
of the six stages to process each frame [7]. Table I shows
the results. Integration accounts for almost 50% of the total
execution time, while preprocessing and rendering account
for 41%. Therefore, these stages are the main target of our
optimisations.

Based on this profile, we ported a set of code sections,
referred to as kernels, to run on the GPU using OpenCL,
and parallelised some other parts of the application using
OpenMP to run on the multiple CPUs on the chip. We also
applied optimisations to avoid memory copies of kernel data
between the CPU and the GPU, and reduced the amount of
synchronizations in between kernel executions.

Unlike heterogeneous systems with discrete GPUs, the
Samsung Exynos 5250 has a unified memory shared between
the CPU and the GPU. The implementation of our first KF
kernel in OpenCL used memory copies between the CPU and
the GPU for simplicity. This implies to create memory objects
before calling the kernel by allocating a buffer on the GPU of
the same size of the data to be copied from the CPU (therefore,
it uses double the memory than necessary) and copying the
data to the GPU before the kernel call and back to the CPU
after kernel completion.

In the case of shared memory, we can allocate the data
in the CPU using clCreateBuffer, instead of malloc, with a
parameter (CL MEM ALLOC HOST PTR) that allows the
memory to be created and accessed by both CPUs and GPUs.
In OpenCL, if you create a buffer, it cannot be accessed from
the CPU unless it is mapped to the CPU using clEnqueueMap-
Buffer. Also, before calling the GPU kernel, the buffer must
be mapped to the GPU using clEnqueueUnmapMemObject.
Therefore, to use shared memory in our KF OpenCL version,
we first allocate the data in the CPU using clCreateBuffer and
immediately map it to the CPU to initialise it. Then, before
calling the kernel for execution on the GPU, we map the data
to the GPU so the kernel can access it, and whenever the kernel
completes, it is mapped back to the CPU.

As we ported kernels to OpenCL, we identified several
points were CPU synchronisation between kernels was not
necessary. Some kernels execute back-to-back on the GPU, so
the mapping of the data structures from/to the GPU in between
them is not necessary. The data generated by a kernel to be
used by a following kernel does not need to be mapped to
the CPU after the first kernel finishes and back to the GPU
before the second one starts, if the CPU is not going to process

TABLE III. CHARACTERISTICS OF THE ARNDALE BOARD AND THE
ODROID-XU3 DEVELOPMENT KITS.

Arndale Board Odroid-XU3
Chip Samsung Exynos 5250 Samsung Exynos 5422
CPU 2⇥ARM Cortex-A15@1.7GHz 4⇥ARM Cortex-A15@2GHz

4⇥ARM Cortex-A7@1.3GHz
L1 Cache 32KB(I)+32KB(D) 32KB(I)+32KB(D)
L2 Cache 1MB unified 2MB + 512KB
GPU ARM Mali-T604 ARM Mali-T628
Memory 2GB 32-bit 800MHz LDDR3 2GB 32-bit 933MHz LDDR3
Storage 16GB uSD 16GB eMMC v.03
OS Ubuntu 12.04 Ubuntu 14.04

that data in between. Then, the data can remain mapped to the
GPU from the start of the first kernel until the finalisation of
the second one.

Also, to ensure correctness, the CPU waits using a barrier
primitive (clFinish) to block until a kernel (or set of kernels)
finishes, before calling other kernels that require the output
of the previous ones. We removed this barrier synchronisation
by using a single command queue for all kernels. When a
CPU enqueues a kernel execution in a command queue, these
kernels will be executed in the GPU keeping the order in which
they were enqueued. This way, by enqueuing the kernels in
program order, we ensure that sequential order is maintained
and there are no data races, and therefore, no need for barrier
synchronisations.

Table II shows the list of kernel portings and optimisations
in implementation order, and the label used in the results
to refer to them. All optimisation steps include the previous
optimisations. All kernels ported after OCL-SharedMem use
shared memory (no data copies).

IV. EXPERIMENTAL SETUP

Our hardware testbed for evaluating performance, power
and temperature is the Arndale board development kit that
features the Samsung Exynos 5250 SoC. This SoC includes
two ARM Cortex-A15 cores, an ARM Mali-T604 GPU and
2GB of main memory. We repeated our experiments in a
second development kit, the Odroid-XU3 [15], to assess the
performance portability of our code. This board features the
Samsung Exynos 5422 SoC with a big.LITTLE architecture
including four ARM Cortex-A15, four ARM Cortex-A7 cores,
an ARM Mali-T628 and 2GB of main memory. Full specifi-
cations of both boards are shown in Table III.

We executed the KF application with four different video
input files in raw format as benchmarks. The four benchmarks
are: chairs, desktop, person and weird, named after the objects
appearing in each video. These videos were recorded by
moving a camera around the objects to capture as many
different angles as possible. This way, the application can
recognise the depth from the camera to the object and use
it to create the 3D model. The execution of the benchmarks
take between 15 and 45 minutes in the original C++ version.

Figure 1 shows a frame of the output video for an execution
of the chairs benchmark. The KF application outputs a video
with three images. The left image is the depth map showing
a color depending on the distance to the camera; the middle
one is the tracking showing the status of the recognition for
each pixel; and the right one is a raycast of the constructed
3D volume.



Fig. 1. Images of the output video obtained by executing KF with the chairs benchmark.

A. Performance Measurement

To measure the impact on execution time of each optimi-
sation, we profiled the application at each optimisation step.
All the executions were done in exclusive mode: no other
applications running at the same time. The profiling was done
with clock gettime() between the six different stages of the KF
algorithm for each frame: acquisition, preprocessing, tracking,
integration, rendering and drawing.

The metrics are the execution time in seconds of each
computation stage, and frames per second (FPS) as a measure
of whole application performance. The results are the average
from 5 executions.

The application binaries for each optimisation step are gen-
erated by compiling the sources with the following CPU flags:
-O3 -mcpu=cortex-a15 -mtune=cortex-a15 -mfloat-abi=hard
-mfpu=neon-vfpv4; and the GPU flags: -cl-fast-relaxed-math
-cl-mad-enable -cl-no-signed-zeros -cl-denorms-are-zero -cl-
single-precision-constant. The frequency governor of the chip
is set to performance.

B. Temperature Measurement

We measured temperature using the available sensors in
the chip. The sensors command of the lm-sensors package
outputs the temperature of the chip measured by the hardware
sensors in Celsius degrees. We measured temperature every
two seconds. This interval is a good compromise to let
enough time for temperature changes while avoiding missing
temperature peaks.

We measured chip temperature for the original KF version
without cooling, with heat sink, and with heat sink and fan.
After that, all measurements are done with heat sink plus fan
for stability except the last one. As mobile devices do not
have space to include cooling solutions such as heat sinks and
fans, we did the final comparison without any cooling to get
a real insight of the performance that can be achieved by both
original and optimised versions in a real device.

C. Power Measurement

We measured the power consumption of the board using
a Yokogawa WT230 power meter [16]. Figure 2 shows the
connection scheme. The meter is connected to act as a bridge
between the power socket and the board, and it measures the
power of the entire platform, including the power supply and
the fan. The power meter has a sampling frequency of 10Hz
and 0.1% precision. There is no measurement overhead, as
all readings are captured in the laptop through the serial port

Fig. 2. Power meter connection scheme.

without affecting the execution on the board. The start and end
of the readings is triggered by the running script in the board
that connects through SSH to the laptop.

We also calculated energy-to-solution [17] to evaluate how
our optimisations affect battery life.

V. RESULTS

In this section, we present the results of our temperature,
performance and power evaluation of KF running on mobile
processors. First, we show the impact of different cooling
solutions on the original C++ version, second, the impact
on performance and power of our optimisations, third, the
comparison of the original and optimised versions without
any cooling, and, finally, the evaluation of the performance
portability of our code.

A. Original Version Evaluation

In this section we present the results of the original C++
version in terms of temperature, performance and power.

1) Temperature: We decided to measure chip temperature
because we were experiencing a large variation for different
executions. We found that thermal throttling caused frequency
downscaling that varied from run to run. In an attempt to
achieve consistent performance results, we evaluated different
cooling solutions: without cooling, with a heat sink, and a heat
sink plus a fan.

Figure 3.a shows the temperature of the chip throughout
time during the execution of the person benchmark. To avoid
chip damage due to overheating, the operating system monitors
temperature and when it reaches 85�C, the maximum allowed,
it downscales frequency to lower temperature to 75�C. Then,
frequency is increased back and temperature increases again to
85�C because it is still running a compute-intensive workload.
This up-and-down frequency scaling degrades performance
due to the overhead of periodically changing frequency and
due to the reduced amount of time working at maximum speed.

Figure 3.b shows the same measurements after covering
the chip with a heat sink. There is still thermal throttling



(a) Original version without cooling

(b) Original version with heat sink

(c) Original version with heat sink and fan

Fig. 3. Temperature in Celsius degrees over time of the original version
(person benchmark). Without cooling (a) there is intense thermal throttling
activity; adding a heat sink (b) reduces the frequency of thermal throttling;
and adding a fan (c) completely avoids overheating and thermal throttling
disappears.

but it happens less frequently. The time to reach 85�C is
longer, and it consequently lowers the number of times that
it is necessary to change the frequency. In the same time the
frequency changed ten times without cooling, it changes two
times with the heat sink. This way, the chip works more time
at higher speed and the overhead of changing frequency is paid
less times.

Figure 3.c shows the same measurements after adding a fan
on the top of the heat sink. This finally avoids thermal throt-
tling: the temperature never reaches the maximum and stays
almost constant. This way, the chip works at the maximum
frequency all the time so there is no overhead associated to
frequency scaling.

2) Performance: Figure 4 shows the FPS rate of the four
different benchmarks of the original version with the three
cooling setups. Thermal throttling has a clear impact in per-
formance that leads the heat-sink-only version to outperform
the execution without cooling by 11%. The setup with heat
sink and fan experiences a 12% speed-up compared to the
execution with heat sink and is 24% better than the execution
without cooling.

Fig. 4. Performance in FPS of the original version for the different
benchmarks and cooling configurations.

Fig. 5. Average power consumption in Watts comparing the original version
(for all benchmarks) without cooling, with heat sink and with fan.

3) Power: Figure 5 shows the static and dynamic power
of the original version for the different cooling setups and
benchmarks. We consider the static power as the idle power.
The static power consumption is the same for the original and
heat sink setups (6W), but dynamic power is higher with heat
sink. This is because there are fewer changes of frequency so
it remains more time at the highest frequency. The setup with
fan consumes more power for two reasons: the fan adds extra
power so static power is higher (9W); and dynamic power is
also higher because it runs at maximum frequency during the
whole execution. The dynamic power increase of setup with
fan over the setup with heat sink is 23% for chairs; 20% for
desktop; 4% for person; and 8 for weird.

Including a heat sink and a fan into a mobile device
is not feasible and the performance improvement in these
experiments is approximately the same as the power increase.
Nevertheless, we perform our optimisations evaluation using
the heat sink and fan so we avoid the interference of thermal
throttling from reasoning about the effect of each optimisation,
and also to have a lower variability in our results.

B. Optimisation Results

In this section we present the performance and power
results of the multiple optimisation steps listed in Table II.

1) Performance: Figure 6 shows the execution time for all
benchmarks and optimisations decomposed for the different
program stages. The first three optimisations, OCL-Initial,



Fig. 6. Execution time breakdown of each stage in seconds of all the
optimisations for the different benchmarks.

OCL-SharedMem, OCL-Raycast, affect the Integration stage.
Even though OCL-Initial executes faster the integrate kernel on
the GPU, the overhead of the copies cancels that benefit and get
the same performance as the Original version. Removing data
copies, OCL-SharedMem, avoid that overhead and represents
a 45% execution time reduction of the Integration stage.
OCL-Raycast get a further 71% over OCL-SharedMem. Both
together reduce execution time of the Integration stage by 84%.
This reduces overall execution time by 30%.

The porting of another function (track), in OCL-Track,
reduces the execution time of the Rendering stage by 9%.
Parallelising some parts of the application to use the multiple
cores in the chip with OpenCL, optimisation OCL-OpenMP,
represents a further overall execution time reduction of 14%
versus OCL-Track. The reduction of synchronisations in OCL-
Barriers has a negligible impact. It appears the synchronisa-
tions we removed were having little or not overhead. This
optimisation would probably be more important for discrete
GPUs without shared memory, where the overhead of these
calls is larger.

Last, porting the bilateral filter, OCL-Bilateral, dramati-
cally reduces the execution time of the Preprocessing stage
by 96%. This represented an execution time reduction of 46%
versus OCL-Barriers.

Comparing the original version to the last version with all
optimisations, we achieved a 74% execution time reduction,
which translates to a speed-up of 3.93⇥. This translates to an
improvement in the FPS rate.

Figure 7 shows the achieved FPS for each version. From the
original 0.6–0.7 FPS, combining all optimisations we achieved
between 2.2–3.1 FPS.

2) Power: Figure 8 compares the power consumption for
each optimisation. The power consumption of the first four
versions is similar. It seems the additional power of running
on the GPU is compensated by the power saved by keeping
the core idle meanwhile.

The first optimisation with a significant impact on power
is OCL-OpenMP. This is because not only the GPU is used
extensively, but also both cores in the CPU side are working
in parallel. Then, OCL-Bilateral also implies an increase in
power consumption, but in a much lower proportion than the
reduction in execution time of almost half mentioned before.

Fig. 7. Performance in FPS of all the optimisations for the different
benchmarks.

Fig. 8. Average power consumption in Watts comparing all optimisations
and benchmarks.

Comparing the original version with the last optimisation
(OCL-Bilateral), power consumption increased in 38%. If we
compare the power consumption increase with the performance
increase, we see a clear benefit: power increased by 38%
while performance grew by 293%. This large difference is
mainly due to the large portion of static power, which is paid
regardless of the performance achieved.

In terms of energy-to-solution for all benchmarks, we get
that the original version consumes 58409 J and the optimised
version 19850 J, which represents a 66% reduction in energy.
For other metrics such as energy-delay (ED) and energy-delay-
square (ED2) products, the optimised version reduces them in
91% and 98%, respectively. This means 3⇥ better energy-to-
solution, 11⇥ better ED and 44⇥ better ED2.

C. Final Results

Considering only the optimisations in the Integration stage,
the speed-up for that stage is 7.13⇥. For the whole applica-
tion, this means a speed-up of 1.60⇥. We calculated, using
Amdahl’s law, the maximum theoretical speed-up assuming
infinite resources and the result was 1.99⇥. With our optimi-
sations and considering the limited resources of an embedded
platform, achieving 1.60⇥ over 1.99⇥ is a very good result.

Overall, comparing the setups with fan (original and op-
timised), the speed-up is 4⇥. Since having these cooling
solutions in a mobile device is not feasible, we also ran our
optimised version in the board without any cooling to get a



Fig. 9. Performance comparison in FPS of the original version and the
optimised version for the different benchmarks and cooling configurations.

(a) Original version

(b) Optimised version

Fig. 10. Temperature over time in Celsius degrees (person benchmark)
without cooling. In the original version (a) there is intense thermal throttling
activity, but with our optimisations (b), it is less frequent. Execution time is
shorter thanks to the better exploitation of parallelism of our optimisations
and also due to the lower thermal throttling activity resulting from a reduced
CPU activity.

sense of what would be the improvement on a real device.
Figure 9 shows the FPS rate of both original and optimised
(OCL-Bilateral), for the setups without cooling and with heat
sink plus fan. The average speed-up of the optimised without
cooling compared to the original without cooling is 3⇥.

Figure 10(a) shows the temperature for the original version,
and Figure 10(b) shows the temperature for the optimised one.
With our optimisations, not only we improved performance,
but also we reduced the frequency of thermal throttling. In
the optimised version, the GPU is active for long periods of
time leading the CPU to be idle waiting the GPU to finish.
Our hypothesis is that the heating produced by the CPU is
lower in the optimised version than in the original due to its
lower activity. Although the GPU is active in the optimised
version and not in the original, it seems that this activity does

Fig. 11. Average power consumption in Watts comparing the original and
optimised versions without cooling.

Fig. 12. Execution time breakdown of each stage in seconds of the
original and optimised versions on the Arndale board without cooling, and
the optimised version on the Odroid-XU3.

not generate an amount of heat that compensates the lower
utilisation of the CPU. This would result in overall lower
heating in the optimised version and therefore explain the
lower thermal throttling activity.

Figure 11 shows that the power consumption of the original
and optimised versions without cooling is practically the same.
So, for the same power, we achieve better performance and
more stable results as the frequency of thermal throttling is
lower. This shows the benefits of the better energy efficiency
of the GPU.

D. Performance portability

We also evaluated our optimised code with a different
development board, the Odroid-XU3. This board integrates a
more powerful SoC featuring the next generation of the GPU.

Figure 12 shows the execution time breakdown of our op-
timised version on the Odroid-XU3 compared to the execution
of the original and optimised versions on the Arndale board.
The main differences between the optimised versions are the
Rendering and Tracking stages, all other stages take a similar
time to execute. We executed the program in the Odroid-XU3
with two CPUs that are exactly the same as the ones in the
Arndale board but running at a higher speed. In the optimised
version, the track kernel from the Tracking stage runs in the
GPU and the Rendering stage is completely executed on the



Fig. 13. Performance comparison in FPS of the original and the optimised
versions on Arndale and Odroid-XU3 for the different benchmark.

CPUs. So, the stages that run mostly on the GPU take similar
time on both platforms. However, the stages that run mostly
or completely on the CPU run faster on the Odroid because
the CPUs run at a higher frequency.

Figure 13 shows the comparison of the performance
achieved by the Arndale board and the Odroid-XU3. The
optimised version runs at a speed between 1.6 and 1.9 FPS.
This is 2.87⇥ speed-up compared to the original run on the
Odroid-XU3 and 1.2⇥ faster than the optimised in the Arndale
board. The speed-up of the optimised versus the original
in the Arndale board was 2.95⇥. This similar performance
improvement demonstrates the performance portability of our
optimisations.

VI. CONCLUSION

Mobile devices are truly heterogeneous SoCs with spe-
cialised processing elements or accelerators for faster and
more energy-efficient computation. Initially, GPUs were used
only to accelerate graphics. Nowadays, the performance of
embedded GPUs, and mobile SoCs in general, is improving,
and embedded GPUs are becoming general purpose GPUs.
This context and the many sensors mobile devices have, creates
the perfect environment for CV on mobile devices.

CV applications consist of applying several computations
on a large amount of data, commonly to a matrix of pixels.
These algorithms are parallel by their input files and its own
nature. GPUs are very useful for speeding up graphics but also
for speeding up this kind of computer vision applications.

We optimised the KF application, representative for other
state-of-the-art CV applications, for an specific SoC commonly
found in mobile devices using the Arndale development board.
The main optimisations consisted on porting parts of the appli-
cation to the GPU on which they execute faster and requiring
less energy thanks to the higher energy efficiency compared to
the CPU for compute-intensive operations. We also executed
our optimised version on a newer and more powerful platform,
the Odroid-XU3 development board. Just by recompiling and
rerunning the optimised code, we achieved better performance,
which demonstrates the performance portability of our optimi-
sations. The optimised version resulting from our work serves
as a base code that can be easily adapted to other platforms
with embedded GPUs.

Regarding hardware constraints, apart from the compute-
capable support, by the nature of the packaging of a mobile
device, it is difficult to dissipate heating. Current mobile chips
are not ready for sustained full utilisation because the chip
overheats and starts throttling, slowing down performance. Due
to experiencing large variation in the performance of different
executions, we decided to measure the temperature of the chip
and we realised that there was thermal throttling. We put a
heat sink to solve this issue but it just helped to reduce the
frequency of thermal throttling. Adding a fan removed thermal
throttling and kept temperature below the limit. Nevertheless,
these cooling elements cannot be integrated in a mobile device
as they do not fit. Also, the performance benefit of using the
fan was cancelled by the extra power the fan consumes.

Despite all our optimisations, we learnt that mobile devices
are not yet ready for demanding CV applications such as
KinectFusion. Combining all our optimisations using the GPU,
we obtained between 2.2 and 3.1 FPS which represented a 4⇥
speed-up compared to the original CPU version. Although this
is still far from an interactive rate (30 FPS), this work is one
step forward towards this target.

REFERENCES

[1] J. Rivera and R. van der Meulen, “Gartner Says Worldwide Traditional
PC, Tablet, Ultramobile and Mobile Phone Shipments to Grow 4.2
Percent in 2014.” http://www.gartner.com/newsroom/id/2791017, 2014.

[2] N. Trevett, “Accelerating mobile augmented reality.” Keynote at Insid-
eAR Conference, 2012.

[3] B. Smith et al., “More iPhone Cool Projects,” 2010.
[4] P. Hasper et al., “Remote Execution vs. Simplification for Mobile Real-

time Computer Vision,” in 9th International Conference on Computer
Vision Theory and Applications (VISAPP), 2014.

[5] “PAMELA project.” http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?
GrantRef=EP/K008730/1. Last accessed: Sep 2014.

[6] “Project Tango.” https://www.google.com/atap/projecttango/. Last ac-
cessed: May 2014.

[7] S. Izadi et al., “KinectFusion: real-time 3D reconstruction and interac-
tion using a moving depth camera,” in Proceedings of the 24th annual
ACM symposium on User interface software and technology, 2011.

[8] “Irida Labs.” http://www.iridalabs.gr. Last accessed: Oct 2014.
[9] “IKEA catalogue app.” http://www.ikea.com/gb/en/catalogue-2015/

index.html. Last accessed: Oct 2014.
[10] “Word Lens.” http://questvisual.com/. Last accessed: Oct 2014.
[11] “Movidius.” http://www.movidius.com. Last accessed: Oct 2014.
[12] D. Moloneya, B. Barry, R. Richmond, C. Brick, D. Donohoe, et al.,

“Myriad 2: Eye of the Computational Vision Storm.” HotChips 26: A
Symposium on High Performance Chips, 2014.

[13] K. Cheng and Y. Wang, “Using mobile GPU for general-purpose
computing–a case study of face recognition on smartphones,” in VLSI
Design, Automation and Test (VLSI-DAT), 2011 International Sympo-
sium on, pp. 1–4, IEEE, 2011.

[14] G. Wang et al., “Computer Vision Accelerators for Mobile Systems
Based on OpenCL GPGPU Co-Processing,” J. Signal Process. Syst.,
vol. 76, no. 3, pp. 283–299, 2014.

[15] “Odroid-XU3.” http://www.hardkernel.com/main/products/prdt info.
php?g code=G140448267127&tab idx=1. Last accessed: Jan 2015.

[16] Yokogawa, “Yokogawa WT210/WT230 Digital Power Meters.” Bulletin
7604-00E: http://tmi.yokogawa.com/files/uploaded/BU7604 00E 050
1.pdf.

[17] E. Padoin et al., “Time-to-solution and energy-to-solution: a comparison
between arm and xeon,” in Applications for Multi-Core Architectures
(WAMCA), Third Workshop on, pp. 48–53, IEEE, 2012.


