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Architectural Aspects of 
Self-Aware and Self-
Expressive Computing 
Systems: From Psychology 
to Engineering

A dvanced computing sys-
tems generally contain 
many heterogeneous sub-
systems, each with a local 

perspective and goal set, which inter-
connect in changing network topol-
ogies. The subsystems must interact 
with each other and with humans in 
ways that are difficult to understand 
and predict while robustly maintaining 
performance, reliability, and security 
even with unforeseen dynamics, such 
as system failures or changing goals. 

To meet these stringent require-
ments, computational systems—
ranging from robot swarms and personal music devices 
to Web services and sensor networks—must achieve 
sophisticated autonomous behavior by adapting them-
selves at runtime and through learning processes that 
enable ongoing self-​change. Managing tradeoffs among 
conflicting local and global goals at runtime requires 
considerable awareness of both the system’s current 
state and its environment. Yet researchers have only 
recently begun to understand the implications of self-​
awareness principles and how to translate them into 

system engineering. Consequently, there is no general 
methodology for architecting self-​aware systems or for 
comparing their self-​awareness capabilities. 

To address this need, we examined how human self-​
awareness can serve as a source of inspiration for a new 
notion of computational self-​awareness and associated 
self-​expression, and we developed a general framework 
for describing a computing system’s self-​awareness prop-
erties. As part of this work, we created a reference archi-
tecture, which we used to derive architectural patterns for 
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determining whether, how, and to what 
extent system engineers can build self-​
awareness capabilities into a system. 

As the sidebar “Multidisciplinary 
Work on Self-​Aware Systems” describes, 
various disciplines have devoted efforts 
to interpreting these self-​awareness 
capabilities. Self-​awareness concepts 
from psychology, for example, are inspir-
ing new approaches for engineering com-
puting systems that operate in complex, 
dynamic environments. Our framework 
builds on these ideas to understand the 
role of self-​awareness in computing and 

to identify the potential system benefits 
of increased self-​awareness. 

Our psychology-​grounded approach 
focuses on architectural aspects that 
are common to a variety of possible 
self-​aware systems, building on lay-
ered control loops, which are typical-
ly part of self-​adaptive, self-​managing, 
and self-​organizing systems. Exam-
ples include the monitor-​analyze-​plan-​
execute (MAPE) loop, which is often 
augmented with knowledge to form 
MAPE-​K;1 an observer/controller;2 
and a three-​layer architecture for self-​

adaptive software systems3 inspired by 
efforts in robotics and multiagent sys-
tems. Our framework differs from these 
architectures in two important ways:

›› We translate concepts from psy-
chology to engineering, present-
ing a reference architecture and 
derived architectural patterns 
that explicitly consider different 
self-​awareness levels.

›› Our framework does not pre-
suppose that self-​awareness is 
bolted on through an additional 

MULTIDISCIPLINARY WORK ON SELF-AWARE SYSTEMS

A self-aware system has knowledge of itself 
and its experiences, permitting reasoning and 

intelligent decision making to support effective, 
autonomous adaptive behavior. Several research 
efforts relate self-awareness to computing, but 
reviews of this work1–3 have clustered contribu-
tions either by community or theme to highlight 
implied meanings of the term.

AI AND ROBOTICS
AI researchers are concerned with metacognition—
how a system can reason about its own reasoning 
and select a reasoning method appropriate to the 
situation at hand.4 Researchers in autonomous 
robotics have argued that self-awareness is essen-
tial for safety and ethics.3 Self-awareness is not 
only a property that is observable at an individual 
level, but is also something that can arise collec-
tively. For example, a group of robots with simple 
behavioral rules and local interactions might arrive 
at an emergent awareness of a global state distrib-
uted across the individual units.5

SYSTEMS ENGINEERING
More practical efforts examine how to engineer 
systems that explicitly consider knowledge about 
themselves. One group argues that self-awareness 
can avoid or reduce the need to consider resource 
availability and constraints at design time.6 
However, proposed solutions are only in a specific 
application context, not a general framework.

AUTONOMIC COMPUTING
Autonomic computing targets the challenge 
of managing increasingly complex computing 
systems. Self-management solutions rely on the 

self-awareness property7 and explicitly combine 
autonomic managers with a knowledge repository.

ORGANIC COMPUTING
Self-awareness is also a concept in organic com-
puting, which aims to more deeply understand the 
emergent dynamics of large autonomous sys-
tems.8 An important goal is to manage the behav-
ior of such complex systems, leading to the concept 
of systems under observation and control.
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management or control layer. 
Rather, it recognizes that engineers 
must consider the entire system 
and its environment when provid-
ing self-​awareness capabilities.

We recently applied our reference 
architecture and self-​awareness pat-
terns, which we documented in a hand-
book,4 to a range of applications, includ-
ing active music devices, heterogeneous 
multicore systems, smart camera net-
works, and cloud computing systems. 
All of these share the characteristics 
of being large, decentralized, dynamic, 
uncertain, and heterogeneous, and all 
have benefited from the explicit con-
sideration of self-​awareness properties. 
Our cloud computing study, which uses 
one of our derived patterns, considers 
several of these properties.

HUMAN SELF-​AWARENESS
Alain Morin defines self-​awareness as 
“the capacity to become the object of 
one’s own attention,” which translates 
to your ability to consider yourself as 
an object.5 Through this objective or 
explicit self-​awareness, you focus atten-
tion on yourself as an entity within the 
world, observing and considering your 
own behavior and acquiring a pub-
lic self-​awareness—how the rest of the 
world might view that behavior. 

Another facet of self-​awareness is 
subjective or implicit. The self in this 
view is the subject (the “I”) of experiences. 
You are aware of your experiences within 
the world and that these are subjective 
and unique experiences, private to you 
and typically not externally observable. 

This distinction between public 
and private self-​awareness is one of 
the three foundational principles we 
transfer to an engineering perspective 

in computational self-​awareness. The 
public–private distinction underlines 
the need for systems to be concerned not 
only with knowledge of their internal 
aspects (state, capabilities, and so on), 
but also of their external experiences 
and their impact on and role within their 
physical and social environments.

A second foundational principle is 
the existence of various self-​awareness 
levels—from basic stimulus awareness 
to meta–self-​awareness, or an individ-
ual’s awareness that it is self-​aware.5 Of 
the various psychological descriptions, 
Ulric Neisser’s self-​awareness levels cap-
ture the broadest range of human self-​
awareness.6 This range is important, as 
the complexity of self-​aware computing 
systems can vary considerably.

The third foundational principle is 
that self-​awareness can be a property of 
collective systems, even when no sin-
gle component has global awareness 
of the entire system.7 In some cases, 
self-​awareness might be considered an 
emergent property. Melanie Mitchell 
proposes that examples of this form of 
self-​awareness include the brain, the 
immune system, and ant colonies.7 In 
these systems, knowledge about global 
state is collected and maintained in 
a decentralized way, building up in a 
statistical fashion. This knowledge 
then feeds back to drive the adaptation 
of lower-​level components. From an 
architectural perspective, this view of 
self-​awareness as collective and emer-
gent means that a self-​aware system 
need not possess a global omniscient 
component.

COMPUTATIONAL 
SELF-​AWARENESS
Our reference architecture captures 
the core aspects of computational 

self-​awareness, providing a common, 
principled basis on which researchers 
and practitioners can structure their 
work. These core aspects are rooted in 
psychological foundations that might 
stimulate a range of ideas for engineers 
to consider in designing future com-
puting systems. They serve as a tem-
plate for identifying ways to implement 
self-​awareness capabilities or the basis 
for comparing and evaluating architec-
tures with the same capability.

Public and private self-​awareness
Public and private self-​awareness 
translates to a computing context in a 
fairly straightforward manner. Private 
self-​awareness is the system’s ability 
to obtain knowledge based on inter-
nal phenomena and requires internal 
sensors. Public self-​awareness is the 
system’s ability to obtain knowledge 
based on external phenomena. Such 
knowledge depends on how the sys-
tem senses, observes, and measures 
its environmental aspects, including 
knowledge of its situation and context 
and its potential impact on and role 
within its environment.

Some work in self-​aware computing 
considers only private self-​awareness, 
but producing integrated conceptual 
models requires accounting for public 
aspects as well. The distinction, inclu-
sion, and synthesis of public and private 
self-​awareness facilitate the engineer-
ing of self-​aware computing systems.

Self-​awareness levels
Unlike public and private self-
awareness, Neisser’s human self-​aware-
ness levels require some mapping to 
align with an engineering perspective. 
Table 1 shows how our five levels of com-
putational self-​awareness correspond to 
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Neisser’s five human self-​awareness lev-
els (http://the-​mouse-​trap.com/2009/11 
/01/five-​kinds-​of-​selfself-​knowledge). 
Our levels recognize that although self-​
knowledge is important to achieving 
computational self-​awareness, the abil-
ity of the system to obtain this knowl-
edge throughout its lifetime is the true 
self-​awareness enabler. Thus, a system 
with knowledge but no way to update 
or add to it is not computationally self-​
aware, but rather the product of a do-
main expert’s programming. 

Some translations from Neisser’s 
levels are straightforward; others are 
aimed at capturing the spirit of Neiss-
er’s definitions in terms that are more 
suitable for computing systems engi-
neering. Translating concepts to the 
computing domain gives designers a 
common language for evaluating the 
need for self-​awareness capabilities. In 
some cases, a system might have all five 
levels with several processes responsi-
ble for one or more levels; in others, one 
or two levels might be more appropriate. 

Stimulus awareness. A stimulus-​
aware system knows of the stimuli 

acting on it and can use that knowl-
edge to respond to events. At this 
level, the system has no knowledge of 
past or future stimuli—only current 
stimuli. Because stimuli can originate 
both internally and externally, stimu-
lus awareness can be private, public, 
or both.

Interaction awareness. An interaction-​
aware system can learn that stimuli 
and its own actions constitute interac-
tions with other systems and the envi-
ronment. Through feedback loops, the 
system learns that its actions can pro-
voke or cause specific reactions from its 
social or physical environments. Sim-
ple interaction awareness enables a sys-
tem to reason about individual interac-
tions, while a more advanced capability 
might involve obtaining knowledge of 
social structures, such as communities 
or networks. 

Typically, interaction awareness is 
based on external phenomena, so it is 
a form of public self-​awareness. How-
ever, a system that learns about causal-
ity in interactions with itself exhibits 
private self-​awareness.

Time awareness. A time-​aware system 
can obtain knowledge of historical and 
likely future phenomena. Implement-
ing time awareness might involve hav-
ing the system use explicit memory, 
time-​series modeling, or anticipation. 
Because time awareness can apply to 
both internal and external phenom-
ena, it can be private, public, or both. 

Goal awareness. A goal-​aware system 
can obtain knowledge of current goals, 
objectives, preferences, and constraints. 
Providing goal awareness is more than 
having implicit system design goals; 
rather, it is ensuring that the system has 
access to its goals and can reason about 
or manipulate them. Goal awareness can 
be achieved through a range of goal mod-
els, including state-​based goal models—
the system knows what might (or might 
not) be a goal state; or utility-​based goal 
models—the system can learn a utility 
or objective function. A goal-​aware sys-
tem can adapt to goal changes, and if it 
is also interaction-​ and time-​aware, the 
system might learn of others’ goals or 
reason about likely future goals. Because 
goals can be private to the system or exist 

TABLE 1. Our framework’s computational self-awareness levels versus Neisser’s human self-awareness levels.

Our framework’s levels Our definition Neisser’s levels Neisser’s definition and example

Stimulus awareness The system knows of the stimuli acting 
on it and can use that knowledge to 
respond to events.

Ecological self Self as perceived with respect to the physical 
environment: I am the person in this place, engaged in 
this particular activity.

Interaction awareness The system can learn that stimuli, and its 
own actions, constitute interactions with 
other systems and the environment.

Interpersonal self Species-specific signals of emotional rapport and 
communication: I am the person who is engaged in 
this particular human interchange.

Time awareness The system can obtain knowledge of 
historical and likely future phenomena.

Extended self Based primarily on personal memories and 
anticipations: I am the person who had certain specific 
experiences, who regularly engages in certain specific 
and familiar routines.

Goal awareness The system can obtain knowledge of 
current goals, objectives, preferences, 
and constraints.

Private self Appears when an individual first notices that some 
experiences are not directly shared with others: I am, 
in principle, the only person who can feel this unique 
and particular pain.

Meta–self-awareness The system can obtain knowledge of its 
own awareness levels and how they are 
exercised.

Conceptual self Also referred to as self-concept, draws its meaning 
from the network of assumptions and theories in 
which it is embedded. Some theories concern social 
roles (husband, father), some postulate internal 
entities (soul, mental energy, brain), and some 
establish socially significant dimensions of difference 
(intelligence, attractiveness, wealth).
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collectively as a shared or externally 
imposed goal, goal awareness can be pri-
vate, public, or both. 

Meta–self-​awareness. A meta–self-aware 
system can obtain knowledge of its own 
awareness levels and how they are exer-
cised. Such awareness permits metacog-
nitive processes to reason about the ben-
efits and costs of maintaining a certain 
awareness level. A meta–​self-​aware sys-
tem can adapt the way in which it real-
izes a self-​awareness level, for example, 
by changing algorithms for realizing 
that level or by deciding whether or 
not to employ that level at all. Because 
meta–self-​awareness is concerned only 
with internal process knowledge, it is a 
form of private self-​awareness.

Collective and emergent 
self-​awareness
Systems within a collective that interact 
with each other locally as part of a bigger 
system might not individually possess 
knowledge about the system as a whole. 
Although global knowledge is distrib-
uted, each system within the collective 
can work with other systems , giving rise 
to the collective itself obtaining a sense 
of its own state and thus being self-​aware 
at one or more of the five self-​awareness 

levels. For example, a decentralized sys-
tem in which individual components 
learn about subgoals relevant to their 
own system role might exhibit a broader 
goal awareness at the global level. An 
example is recent work on distributed 
smart camera networks.8 There is no 
global network view, yet self-​awareness 
capabilities at the camera level give rise 
to a collective self-​awareness that allows 
the effective and efficient management 
of tradeoffs across the network.

REFERENCE ARCHITECTURE
As these computational self-​awareness 
principles highlight, self-​awareness can 
be a property of an autonomous agent 
that can obtain and represent knowledge 
about itself and its experiences. Indeed, 
much of the literature on autonomous 
and intelligent agents is concerned with 
techniques for agent learning, knowl-
edge acquisition and representation, and 
supporting architectures. Self-​awareness 
can also be collective, so a self-​aware 
entity is not limited to a single agent.

Our reference architecture unites 
these two ideas, underlining the notion 
that computational self-​awareness is 
a process or set of processes concerned 
not only with the system knowledge 
captured in models, but also with the 

ways in which the system continually 
updates that knowledge, for exam-
ple, through online learning. The sys-
tem’s goal knowledge also drives its 
self-​expression—behavior based on 
self-​awareness—and empowers it to 
use learned models in a variety of deci-
sions. Such self-​expressive systems can 
use various decision-​making mecha-
nisms for a given knowledge base. 

Figure 1 shows our reference archi-
tecture’s building blocks: internal and 
external sensors, internal and external 
actuators, and mechanisms to realize 
self-​awareness and self-​expression.

Internal and external sensors
Private and public self-​awareness rely 
on continuous datastreams from sen-
sors that observe phenomena on which 
to base self-​awareness. Internal sensors 
measure aspects inside the system, such 
as temperature, battery sensors, or pro-
prioceptive sensors attached to a robot’s 
limbs. External sensors might include 
light sensors, cameras, and microphones. 

Internal and external actuators
An interaction-​aware system has priv-
ileged internal access to knowledge 
of its own actions. Internal actuators 
exercise a system’s actions on itself, 
although sensors might need to observe 
the eventual outcome of those actions. 
For example, internal actuators could 
affect the system’s energy consumption 
by throttling CPU speed or adjusting a 
camera’s zoom level. External actuators 
exercise actions between the system 
and its environment, such as through 
radio transmitters or loudspeakers. 

Self-​awareness mechanisms
The computational process that realizes 
each self-​awareness capability analyzes 

Internal 
sensors

External 
sensors

External 
actuators

Internal 
actuators

Meta-
self-awareness

Design-time goals

Runtime goals

Self-expression

Stimulus awareness

Interaction awareness

Time awareness

Goal awareness

Learned 
models

Self-awareness

Private       Public

Physical-social 
environment

Data

Control

FIGURE 1. Reference architecture for self-​aware and self-​expressive computing systems. 
The architecture clarifies that computational self-​awareness is a process or set of processes 
concerned not just with models of system knowledge but also with the ways in which the 
system updates that knowledge, such as through online learning. 
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sensor data to produce subjective mod-
els of the internal or external phenom-
ena that the system must consider. 
With goal awareness, a system can 
obtain both design and runtime goals, 
which various self-​awareness levels use 
to construct models that further affect 
system actions.

At the stimulus-​awareness level, the 
system might receive input from neigh-
boring systems. At the interaction-​
awareness level, a process could build 
a neighborhood map. Incorporating 
time awareness could add communica-
tion history to this map, which could be 
used for future communication deci-
sions. The goal-​awareness level could, 
for example, monitor a goal of sensory 
coverage based on sensing and network 
topography. A meta–self-​awareness 
process could monitor the performance 
of the model-​building algorithms in 
the current environment, performing 
algorithm selection to switch between 
sensing strategies. 

Meta–self-​awareness plays a key role 
in managing the set of goals a system 
works with during its lifetime. Different 
operational environments or internal 
states can require the system to change 
focus from one goal to another. The 
meta–self-​awareness component enables 
the system to perceive the tradeoff 
between various goals, given feedback 
from the environments and states that 
stem from the system’s actions. This 
allows a system to continuously monitor 
its behavior in terms of these goals.

Self-​expression mechanisms
A system uses the knowledge obtained 
through self-​awareness processes, 
including knowledge about goals, when 
deciding to take a particular action. 
The results of the self-​expression 

processes are commands for the inter-
nal or external actuators. Because the 
self-​expression component involves 
decision-​making processes, a clear sep-
aration between this component and 
self-​awareness can help designers eval-
uate process possibilities.

A self-​expression process builds on 
knowledge from self-​awareness processes, 
and could, for example, choose to increase 
sensor range on the basis of knowledge 
about progress toward some goal.

DESIGN PATTERNS
Developing a system with computa-
tional self-​awareness requires architec-
tural and design guidelines. To meet 
this need, we have developed a hand-
book of eight architectural patterns for 
self-​aware systems, each with a different 
set of capabilities.4 Figures 2 through 4 

show three of these patterns. The same 
handbook also provides a systematic 
pattern-​selection method that uses a set 
of questions to help designers identify 
the problem-​specific requirements rela-
tive to each self-​awareness level.

In addition to the physical connec-
tors from the reference architecture, we 
use logical connectors in the patterns to 
express intracapability interactions and 
intercapability interactions—those of 
the same capability across different self-​
aware nodes. These logical connectors do 
not require direct physical interaction. 
For example, self-​expression processes 
across several self-​aware systems might 
logically reach consensus, but such inter-
action is physically realized through sen-
sors, actuators, and interaction aware-
ness. An additional physical connector 
(red arrows in Figures 3 and 4) makes 

Internal 
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actuators Self-expression
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+ Self-awareness
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awareness

Self-awareness
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Physical connector (data)
Physical connector (control)

FIGURE 2. Basic architectural pattern. The operator next to the sensor and actuator boxes 
indicates the permitted number of such capabilities in an interaction: + is one or more and 1 
is exactly one. 
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FIGURE 3. Coordinated decision-​making pattern, which adds interaction awareness to 
the basic pattern. The operator next to the self-​awareness capability and logical connector 
(Mul_Op) indicates the permitted number of such capabilities in an interaction: * is zero or 
more, + is one or more, and 1 is exactly one.
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intercapability interactions within a 
node explicit and identifies physical 
interactions among awareness levels. 

Capabilities are conceptual and need 
not map strictly to components, so we 
use a multiplicity operator (Mul_Op) 
to represent the number of capabilities 
involved in the interaction.

Basic
Figure 2 shows the basic pattern, which 
contains only the stimulus-​awareness 
capability. Actions can be triggered 
on the basis of the detected stimu-
lus type. This is the simplest pattern 
and enables minimal computational 
self-​awareness.

Coordinated decision making
Figure 3 shows the coordinated 
decision-making pattern, which 
enables the coordination of multiple 
self-​aware nodes. With the addition of 
interaction awareness to the basic pat-
tern, a node’s peers can share knowl-
edge of their interactions, including 
causality and social relationship mod-
els. Thus, the nodes can independently 
adapt their actions to common knowl-
edge and link self-​expressive processes 
so they can agree on which actions to 
take and coordinate them.

Fully self-​aware
The fully self-​aware pattern, shown in 

Figure 4, adds goal, time, and meta–self-​
awareness to the coordinated decision-​
making pattern. Goal awareness enables 
the representation of changing runtime 
goals, so a node can share its knowledge 
with other goal-​aware nodes and the 
system can adapt to the changed goals. 
Time awareness allows the representa-
tion of temporal knowledge about goal 
and interaction awareness, enabling 
capabilities such as forecasting.

This pattern also adds meta–self-​
awareness, enabling the system to 
manage the tradeoffs associated with 
exercising various self-​awareness lev-
els and thereby allowing it to modify 
goals at runtime. An example of this 
runtime metareasoning is the dynamic 
selection of the most appropriate learn-
ing algorithm for a particular context.

CASE STUDY
To evaluate the benefits of architec-
tural patterns for creating self-​aware 
systems, we conducted a case study in 
cloud computing to assess the ability 
of one of our derived design patterns to 
address the services-​selection problem. 

Services selection
Service-​based applications are com-
posed of abstract services that 
concrete services with functional 
equivalence instantiate at run-
time. Applications must satisfy their 

quality-​of-​service (QoS) requirements, 
which typically differ widely across 
applications. Each application has only 
a local perspective of its goal, which 
can change over time, for example, 
because of the need to respect new ser-
vice-​level agreements (SLAs). Applica-
tions share a cloud services pool, offer-
ing various QoS levels at fluctuating 
prices. Applications compete for ser-
vices in a shared infrastructure and 
often interfere with one another. 

Each application must manage its 
resources on the basis of its knowl-
edge of changing goals, workload, and 
service availability. Computational 
self-​awareness provides primitives for 
modeling this knowledge through a 
multilevel approach that enables a sep-
aration of concerns and simplifies run-
time tradeoff analyses.

Goal sharing with time awareness
After following the pattern-​selection 
process in our handbook,4 we identified 
the goal sharing with time awareness 
pattern as the most suitable for a system 
that could address the services-​selection 
problem. The pattern combines stimu-
lus, interaction, time, and goal aware-
ness, and provides self-​expression:

›› Stimulus awareness. Sensors 
directly observe user requests 
categorized in SLA classes (low, 
medium, high).

›› Time awareness. A local perfor-
mance repository stores service 
ratings of how well the service 
met the promised QoS.

›› Interaction awareness. The perfor-
mance repository also captures 
knowledge about the interaction 
between services and users clus-
tered in different SLA classes.
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Logical connector

External 
sensors

Physical-social 
environment  

Runtime goals

Design-time 
goals

Self-awareness

*

*

*

*

11
1

1

1

1

1

1

1

1

+Internal 
sensors

+
Stimulus

awareness

Interaction
awareness

Goal
awareness

Meta–self-
awareness

Time
awareness

External 
actuators

Internal 
actuators

Self-expression
+

+

+

+

*
*

*
*

*
* + +

+ *

+ *

+ *

1

FIGURE 4. The fully self-​aware pattern, which adds goal, time, and meta–self-​awareness 
to the coordinated decision-​making pattern. The multiplicity operator (Mul_Op) next to the 
self-​awareness capability indicates the permitted number of such capabilities in an interac-
tion: * is zero or more, + is one or more, and 1 is exactly one.
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›› Goal awareness. Given a particular 
QoS, a utility function deduces 
the candidate services likely to 
provide the best quality.

›› Self-​expression. Service-​selection 
decisions are based on allocation 
strategies.

Performance results 
and comparison
In our system analysis and comparison, 
we used the architectural analysis and 
tradeoff method (ATAM),9 a validated 
scenario-​based evaluation method that 
qualitatively evaluates software architec-
tures to reveal the risks associated with 
architectural decisions. Using ATAM, 
we compared the performance of our 
system, designed with the goal ​sharing 
with time ​awareness pattern, against the 
performance of a system designed using 
the three-​layer architecture.3 Although 
comparing our system with the MAPE-​K 
and observer/controller reference archi-
tectures might have been interesting, we 
chose to focus on the three-​layer archi-
tecture as a point of comparison because, 
like our framework, it separates knowl-
edge concerns and has key comparison 
points such as explicit goal representa-
tion. The other two reference architec-
tures do not capture knowledge concerns 
at a fine-​grained level.

Overall, our system more effectively 
handled the dynamism and uncertainty 
in application goals, workload, and ser-
vice availability.10 An important crite-
rion in architectural evaluation is the 
identification of tradeoff points, which 
makes design decisions about quality 
attributes explicit. In our case study, 
adaptability was a first-​class quality 
attribute, as we believe it is central to 
system scalability, availability, and per-
formance. Overall, we identified three 

tradeoff points with this attribute: 
communication load, scalability cost, 
and service selection accuracy (versus 
only two tradeoff points in the three-​
layer architecture). Failing to account 
for these points would pose a risk to our 
system’s ability to meet its quality attri-
bute goals. 

Our evaluation further revealed 
that explicitly considering interac-
tion among knowledge concerns (self-
awareness) potentially reduces the risks 
that might otherwise arise. In contrast, 
the three-​layer architecture simply 
flagged the consequences of such inter-
actions as risks. We also found that com-
munication costs from data exchanges 
between decentralized self-​aware nodes 
might be higher in our system than 
those in the three-​layer architecture, 
which shares knowledge components. 
However, our system’s adaptability 
trades off well with communication cost 
and adaptive decision accuracy. 

For example, explicitly considering 
computational self-​awareness through 
the use of the architectural patterns 
ensured that we considered a broad 
range of possible self-​awareness capa-
bilities and included only relevant 
capabilities justified by identified ben-
efits. Additionally, decomposing a self-​
aware system into self-​awareness, self-​
expression, and meta–self-​awareness 
processes made implementation sub-
stantially easier and reduced the possi-
bility of introducing faults, thus facili-
tating fault detection. 

In dealing with the complexities 
of future computing systems—
size, decentralization, uncertainty, 

dynamics, and heterogeneity—higher 
self-​awareness levels will become 

critical. Our notion of computational 
self-​awareness and associated self-
expression can provide computing sys-
tems with advanced levels of auton-
omous behavior to enable runtime 
self-​adaption and management of com-
plex tradeoffs in rapidly changing con-
ditions. Using Neisser’s broad set of 
self-​awareness levels, designers can 
explicitly account for a full spectrum of 
existing and future systems and not be 
concerned only with what is now con-
sidered highly advanced AI.

By providing a reference architecture 
and architectural patterns for specific 
systems, we have given designers a com-
mon way to communicate about self-​
awareness and self-expression capabil-
ities from an engineering perspective. 
However, much is still unknown about 
how to incorporate self-​awareness prop-
erties into computing systems. One 
open problem, which we plan to address, 
is how systems can learn and adapt to 
changing conditions at runtime, mak-
ing decisions on the basis of knowledge 
about tradeoffs among and between sys-
tem goals as well as the overhead from 
the learning process.

Addressing other open problems 
will require more than one view of self-​
awareness computing. Significant prog-
ress will require a multidisciplinary 
effort, drawing not only from psychol-
ogy but also from philosophy, sociology, 
economics, AI, and engineering. 
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