
62	 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

RESEARCH FEATURE

Architectural Aspects of
Self-Aware and Self-
Expressive Computing
Systems: From Psychology
to Engineering

A dvanced computing sys-
tems generally contain
many heterogeneous sub-
systems, each with a local

perspective and goal set, which inter-
connect in changing network topol-
ogies. The subsystems must interact
with each other and with humans in
ways that are difficult to understand
and predict while robustly maintaining
performance, reliability, and security
even with unforeseen dynamics, such
as system failures or changing goals.

To meet these stringent require-
ments, computational systems—
ranging from robot swarms and personal music devices
to Web services and sensor networks—must achieve
sophisticated autonomous behavior by adapting them-
selves at runtime and through learning processes that
enable ongoing self-​change. Managing tradeoffs among
conflicting local and global goals at runtime requires
considerable awareness of both the system’s current
state and its environment. Yet researchers have only
recently begun to understand the implications of self-​
awareness principles and how to translate them into

system engineering. Consequently, there is no general
methodology for architecting self-​aware systems or for
comparing their self-​awareness capabilities.

To address this need, we examined how human self-​
awareness can serve as a source of inspiration for a new
notion of computational self-​awareness and associated
self-​expression, and we developed a general framework
for describing a computing system’s self-​awareness prop-
erties. As part of this work, we created a reference archi-
tecture, which we used to derive architectural patterns for

Peter R. Lewis, Aston University

Arjun Chandra, Studix AS

Funmilade Faniyi, University of Birmingham

Kyrre Glette, University of Oslo

Tao Chen, University of Birmingham

Rami Bahsoon, University of Birmingham

Jim Torresen, University of Oslo

Xin Yao, University of Birmingham

Work on human self-​awareness is the basis

for a framework to develop computational

systems that can adaptively manage complex

dynamic tradeoffs at runtime. An architectural

case study in cloud computing illustrates

the framework’s potential benefits.

RESEARCH FEATURE

	 A U G U S T 2 0 1 5 � 63

determining whether, how, and to what
extent system engineers can build self-​
awareness capabilities into a system.

As the sidebar “Multidisciplinary
Work on Self-​Aware Systems” describes,
various disciplines have devoted efforts
to interpreting these self-​awareness
capabilities. Self-​awareness concepts
from psychology, for example, are inspir-
ing new approaches for engineering com-
puting systems that operate in complex,
dynamic environments. Our framework
builds on these ideas to understand the
role of self-​awareness in computing and

to identify the potential system benefits
of increased self-​awareness.

Our psychology-​grounded approach
focuses on architectural aspects that
are common to a variety of possible
self-​aware systems, building on lay-
ered control loops, which are typical-
ly part of self-​adaptive, self-​managing,
and self-​organizing systems. Exam-
ples include the monitor-​analyze-​plan-​
execute (MAPE) loop, which is often
augmented with knowledge to form
MAPE-​K;1 an observer/controller;2
and a three-​layer architecture for self-​

adaptive software systems3 inspired by
efforts in robotics and multiagent sys-
tems. Our framework differs from these
architectures in two important ways:

›› We translate concepts from psy-
chology to engineering, present-
ing a reference architecture and
derived architectural patterns
that explicitly consider different
self-​awareness levels.

›› Our framework does not pre-
suppose that self-​awareness is
bolted on through an additional

MULTIDISCIPLINARY WORK ON SELF-AWARE SYSTEMS

A self-aware system has knowledge of itself
and its experiences, permitting reasoning and

intelligent decision making to support effective,
autonomous adaptive behavior. Several research
efforts relate self-awareness to computing, but
reviews of this work1–3 have clustered contribu-
tions either by community or theme to highlight
implied meanings of the term.

AI AND ROBOTICS
AI researchers are concerned with metacognition—
how a system can reason about its own reasoning
and select a reasoning method appropriate to the
situation at hand.4 Researchers in autonomous
robotics have argued that self-awareness is essen-
tial for safety and ethics.3 Self-awareness is not
only a property that is observable at an individual
level, but is also something that can arise collec-
tively. For example, a group of robots with simple
behavioral rules and local interactions might arrive
at an emergent awareness of a global state distrib-
uted across the individual units.5

SYSTEMS ENGINEERING
More practical efforts examine how to engineer
systems that explicitly consider knowledge about
themselves. One group argues that self-awareness
can avoid or reduce the need to consider resource
availability and constraints at design time.6
However, proposed solutions are only in a specific
application context, not a general framework.

AUTONOMIC COMPUTING
Autonomic computing targets the challenge
of managing increasingly complex computing
systems. Self-management solutions rely on the

self-awareness property7 and explicitly combine
autonomic managers with a knowledge repository.

ORGANIC COMPUTING
Self-awareness is also a concept in organic com-
puting, which aims to more deeply understand the
emergent dynamics of large autonomous sys-
tems.8 An important goal is to manage the behav-
ior of such complex systems, leading to the concept
of systems under observation and control.

References
1.	 P.R. Lewis et al., “A Survey of Self-Awareness and Its Ap-

plication in Computing Systems,” Proc. 5th IEEE Int’l Conf.

Self-Adaptive and Self-Organizing Systems Workshops

(SASOW 11), 2011, pp. 102–107.

2.	 J. Schaumeier, J. Pitt, and G. Cabri, “A Tripartite Analytic

Framework for Characterizing Awareness and Self-Awareness

in Autonomic Systems Research,” Proc. 6th IEEE Int’l Conf.

Self-Adaptive and Self-Organizing Systems Workshops

(SASOW 12), 2012, pp. 157–162.

	 3.	 J. Pitt, ed., The Computer after Me: Awareness and

Self-Awareness in Autonomic Systems, Imperial College

Press, 2014.

	 4.	 M. Cox, “Metacognition in Computation: A Selected Re-

search Review,” Artificial Intelligence, vol. 169, no. 2, 2005,

pp. 104–141.

	 5.	 M. Mitchell, “Self-Awareness and Control in Decentralized

Systems,” Proc. AAAI Spring Symp. Metacognition in Compu-

tation, 2005; www.cs.pdx.edu/~mm/self-awareness.pdf.

	 6.	 A. Agarwal et al., Self-Aware Computing, tech. report AFRL-RI-

RS-TR-2009-161, MIT, 2009.

	 7.	 J.O. Kephart and D.M. Chess, “The Vision of Autonomic Com-

puting,” Computer, vol. 36, no. 1, pp. 41–50.

	 8.	 C. Müller-Schloer, H. Schmeck, and T. Ungerer, Organic Com-

puting: A Paradigm Shift for Complex Systems, Springer, 2011.

64	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

RESEARCH FEATURE

management or control layer.
Rather, it recognizes that engineers
must consider the entire system
and its environment when provid-
ing self-​awareness capabilities.

We recently applied our reference
architecture and self-​awareness pat-
terns, which we documented in a hand-
book,4 to a range of applications, includ-
ing active music devices, heterogeneous
multicore systems, smart camera net-
works, and cloud computing systems.
All of these share the characteristics
of being large, decentralized, dynamic,
uncertain, and heterogeneous, and all
have benefited from the explicit con-
sideration of self-​awareness properties.
Our cloud computing study, which uses
one of our derived patterns, considers
several of these properties.

HUMAN SELF-​AWARENESS
Alain Morin defines self-​awareness as
“the capacity to become the object of
one’s own attention,” which translates
to your ability to consider yourself as
an object.5 Through this objective or
explicit self-​awareness, you focus atten-
tion on yourself as an entity within the
world, observing and considering your
own behavior and acquiring a pub-
lic self-​awareness—how the rest of the
world might view that behavior.

Another facet of self-​awareness is
subjective or implicit. The self in this
view is the subject (the “I”) of experiences.
You are aware of your experiences within
the world and that these are subjective
and unique experiences, private to you
and typically not externally observable.

This distinction between public
and private self-​awareness is one of
the three foundational principles we
transfer to an engineering perspective

in computational self-​awareness. The
public–private distinction underlines
the need for systems to be concerned not
only with knowledge of their internal
aspects (state, capabilities, and so on),
but also of their external experiences
and their impact on and role within their
physical and social environments.

A second foundational principle is
the existence of various self-​awareness
levels—from basic stimulus awareness
to meta–self-​awareness, or an individ-
ual’s awareness that it is self-​aware.5 Of
the various psychological descriptions,
Ulric Neisser’s self-​awareness levels cap-
ture the broadest range of human self-​
awareness.6 This range is important, as
the complexity of self-​aware computing
systems can vary considerably.

The third foundational principle is
that self-​awareness can be a property of
collective systems, even when no sin-
gle component has global awareness
of the entire system.7 In some cases,
self-​awareness might be considered an
emergent property. Melanie Mitchell
proposes that examples of this form of
self-​awareness include the brain, the
immune system, and ant colonies.7 In
these systems, knowledge about global
state is collected and maintained in
a decentralized way, building up in a
statistical fashion. This knowledge
then feeds back to drive the adaptation
of lower-​level components. From an
architectural perspective, this view of
self-​awareness as collective and emer-
gent means that a self-​aware system
need not possess a global omniscient
component.

COMPUTATIONAL
SELF-​AWARENESS
Our reference architecture captures
the core aspects of computational

self-​awareness, providing a common,
principled basis on which researchers
and practitioners can structure their
work. These core aspects are rooted in
psychological foundations that might
stimulate a range of ideas for engineers
to consider in designing future com-
puting systems. They serve as a tem-
plate for identifying ways to implement
self-​awareness capabilities or the basis
for comparing and evaluating architec-
tures with the same capability.

Public and private self-​awareness
Public and private self-​awareness
translates to a computing context in a
fairly straightforward manner. Private
self-​awareness is the system’s ability
to obtain knowledge based on inter-
nal phenomena and requires internal
sensors. Public self-​awareness is the
system’s ability to obtain knowledge
based on external phenomena. Such
knowledge depends on how the sys-
tem senses, observes, and measures
its environmental aspects, including
knowledge of its situation and context
and its potential impact on and role
within its environment.

Some work in self-​aware computing
considers only private self-​awareness,
but producing integrated conceptual
models requires accounting for public
aspects as well. The distinction, inclu-
sion, and synthesis of public and private
self-​awareness facilitate the engineer-
ing of self-​aware computing systems.

Self-​awareness levels
Unlike public and private self-
awareness, Neisser’s human self-​aware-
ness levels require some mapping to
align with an engineering perspective.
Table 1 shows how our five levels of com-
putational self-​awareness correspond to

	 A U G U S T 2 0 1 5 � 65

Neisser’s five human self-​awareness lev-
els (http://the-​mouse-​trap.com/2009/11
/01/five-​kinds-​of-​selfself-​knowledge).
Our levels recognize that although self-​
knowledge is important to achieving
computational self-​awareness, the abil-
ity of the system to obtain this knowl-
edge throughout its lifetime is the true
self-​awareness enabler. Thus, a system
with knowledge but no way to update
or add to it is not computationally self-​
aware, but rather the product of a do-
main expert’s programming.

Some translations from Neisser’s
levels are straightforward; others are
aimed at capturing the spirit of Neiss-
er’s definitions in terms that are more
suitable for computing systems engi-
neering. Translating concepts to the
computing domain gives designers a
common language for evaluating the
need for self-​awareness capabilities. In
some cases, a system might have all five
levels with several processes responsi-
ble for one or more levels; in others, one
or two levels might be more appropriate.

Stimulus awareness. A stimulus-​
aware system knows of the stimuli

acting on it and can use that knowl-
edge to respond to events. At this
level, the system has no knowledge of
past or future stimuli—only current
stimuli. Because stimuli can originate
both internally and externally, stimu-
lus awareness can be private, public,
or both.

Interaction awareness. An interaction-​
aware system can learn that stimuli
and its own actions constitute interac-
tions with other systems and the envi-
ronment. Through feedback loops, the
system learns that its actions can pro-
voke or cause specific reactions from its
social or physical environments. Sim-
ple interaction awareness enables a sys-
tem to reason about individual interac-
tions, while a more advanced capability
might involve obtaining knowledge of
social structures, such as communities
or networks.

Typically, interaction awareness is
based on external phenomena, so it is
a form of public self-​awareness. How-
ever, a system that learns about causal-
ity in interactions with itself exhibits
private self-​awareness.

Time awareness. A time-​aware system
can obtain knowledge of historical and
likely future phenomena. Implement-
ing time awareness might involve hav-
ing the system use explicit memory,
time-​series modeling, or anticipation.
Because time awareness can apply to
both internal and external phenom-
ena, it can be private, public, or both.

Goal awareness. A goal-​aware system
can obtain knowledge of current goals,
objectives, preferences, and constraints.
Providing goal awareness is more than
having implicit system design goals;
rather, it is ensuring that the system has
access to its goals and can reason about
or manipulate them. Goal awareness can
be achieved through a range of goal mod-
els, including state-​based goal models—
the system knows what might (or might
not) be a goal state; or utility-​based goal
models—the system can learn a utility
or objective function. A goal-​aware sys-
tem can adapt to goal changes, and if it
is also interaction-​ and time-​aware, the
system might learn of others’ goals or
reason about likely future goals. Because
goals can be private to the system or exist

TABLE 1. Our framework’s computational self-awareness levels versus Neisser’s human self-awareness levels.

Our framework’s levels Our definition Neisser’s levels Neisser’s definition and example

Stimulus awareness The system knows of the stimuli acting
on it and can use that knowledge to
respond to events.

Ecological self Self as perceived with respect to the physical
environment: I am the person in this place, engaged in
this particular activity.

Interaction awareness The system can learn that stimuli, and its
own actions, constitute interactions with
other systems and the environment.

Interpersonal self Species-specific signals of emotional rapport and
communication: I am the person who is engaged in
this particular human interchange.

Time awareness The system can obtain knowledge of
historical and likely future phenomena.

Extended self Based primarily on personal memories and
anticipations: I am the person who had certain specific
experiences, who regularly engages in certain specific
and familiar routines.

Goal awareness The system can obtain knowledge of
current goals, objectives, preferences,
and constraints.

Private self Appears when an individual first notices that some
experiences are not directly shared with others: I am,
in principle, the only person who can feel this unique
and particular pain.

Meta–self-awareness The system can obtain knowledge of its
own awareness levels and how they are
exercised.

Conceptual self Also referred to as self-concept, draws its meaning
from the network of assumptions and theories in
which it is embedded. Some theories concern social
roles (husband, father), some postulate internal
entities (soul, mental energy, brain), and some
establish socially significant dimensions of difference
(intelligence, attractiveness, wealth).

66	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

RESEARCH FEATURE

collectively as a shared or externally
imposed goal, goal awareness can be pri-
vate, public, or both.

Meta–self-​awareness. A meta–self-aware
system can obtain knowledge of its own
awareness levels and how they are exer-
cised. Such awareness permits metacog-
nitive processes to reason about the ben-
efits and costs of maintaining a certain
awareness level. A meta–​self-​aware sys-
tem can adapt the way in which it real-
izes a self-​awareness level, for example,
by changing algorithms for realizing
that level or by deciding whether or
not to employ that level at all. Because
meta–self-​awareness is concerned only
with internal process knowledge, it is a
form of private self-​awareness.

Collective and emergent
self-​awareness
Systems within a collective that interact
with each other locally as part of a bigger
system might not individually possess
knowledge about the system as a whole.
Although global knowledge is distrib-
uted, each system within the collective
can work with other systems , giving rise
to the collective itself obtaining a sense
of its own state and thus being self-​aware
at one or more of the five self-​awareness

levels. For example, a decentralized sys-
tem in which individual components
learn about subgoals relevant to their
own system role might exhibit a broader
goal awareness at the global level. An
example is recent work on distributed
smart camera networks.8 There is no
global network view, yet self-​awareness
capabilities at the camera level give rise
to a collective self-​awareness that allows
the effective and efficient management
of tradeoffs across the network.

REFERENCE ARCHITECTURE
As these computational self-​awareness
principles highlight, self-​awareness can
be a property of an autonomous agent
that can obtain and represent knowledge
about itself and its experiences. Indeed,
much of the literature on autonomous
and intelligent agents is concerned with
techniques for agent learning, knowl-
edge acquisition and representation, and
supporting architectures. Self-​awareness
can also be collective, so a self-​aware
entity is not limited to a single agent.

Our reference architecture unites
these two ideas, underlining the notion
that computational self-​awareness is
a process or set of processes concerned
not only with the system knowledge
captured in models, but also with the

ways in which the system continually
updates that knowledge, for exam-
ple, through online learning. The sys-
tem’s goal knowledge also drives its
self-​expression—behavior based on
self-​awareness—and empowers it to
use learned models in a variety of deci-
sions. Such self-​expressive systems can
use various decision-​making mecha-
nisms for a given knowledge base.

Figure 1 shows our reference archi-
tecture’s building blocks: internal and
external sensors, internal and external
actuators, and mechanisms to realize
self-​awareness and self-​expression.

Internal and external sensors
Private and public self-​awareness rely
on continuous datastreams from sen-
sors that observe phenomena on which
to base self-​awareness. Internal sensors
measure aspects inside the system, such
as temperature, battery sensors, or pro-
prioceptive sensors attached to a robot’s
limbs. External sensors might include
light sensors, cameras, and microphones.

Internal and external actuators
An interaction-​aware system has priv-
ileged internal access to knowledge
of its own actions. Internal actuators
exercise a system’s actions on itself,
although sensors might need to observe
the eventual outcome of those actions.
For example, internal actuators could
affect the system’s energy consumption
by throttling CPU speed or adjusting a
camera’s zoom level. External actuators
exercise actions between the system
and its environment, such as through
radio transmitters or loudspeakers.

Self-​awareness mechanisms
The computational process that realizes
each self-​awareness capability analyzes

Internal
sensors

External
sensors

External
actuators

Internal
actuators

Meta-
self-awareness

Design-time goals

Runtime goals

Self-expression

Stimulus awareness

Interaction awareness

Time awareness

Goal awareness

Learned
models

Self-awareness

Private Public

Physical-social
environment

Data

Control

FIGURE 1. Reference architecture for self-​aware and self-​expressive computing systems.
The architecture clarifies that computational self-​awareness is a process or set of processes
concerned not just with models of system knowledge but also with the ways in which the
system updates that knowledge, such as through online learning.

	 A U G U S T 2 0 1 5 � 67

sensor data to produce subjective mod-
els of the internal or external phenom-
ena that the system must consider.
With goal awareness, a system can
obtain both design and runtime goals,
which various self-​awareness levels use
to construct models that further affect
system actions.

At the stimulus-​awareness level, the
system might receive input from neigh-
boring systems. At the interaction-​
awareness level, a process could build
a neighborhood map. Incorporating
time awareness could add communica-
tion history to this map, which could be
used for future communication deci-
sions. The goal-​awareness level could,
for example, monitor a goal of sensory
coverage based on sensing and network
topography. A meta–self-​awareness
process could monitor the performance
of the model-​building algorithms in
the current environment, performing
algorithm selection to switch between
sensing strategies.

Meta–self-​awareness plays a key role
in managing the set of goals a system
works with during its lifetime. Different
operational environments or internal
states can require the system to change
focus from one goal to another. The
meta–self-​awareness component enables
the system to perceive the tradeoff
between various goals, given feedback
from the environments and states that
stem from the system’s actions. This
allows a system to continuously monitor
its behavior in terms of these goals.

Self-​expression mechanisms
A system uses the knowledge obtained
through self-​awareness processes,
including knowledge about goals, when
deciding to take a particular action.
The results of the self-​expression

processes are commands for the inter-
nal or external actuators. Because the
self-​expression component involves
decision-​making processes, a clear sep-
aration between this component and
self-​awareness can help designers eval-
uate process possibilities.

A self-​expression process builds on
knowledge from self-​awareness processes,
and could, for example, choose to increase
sensor range on the basis of knowledge
about progress toward some goal.

DESIGN PATTERNS
Developing a system with computa-
tional self-​awareness requires architec-
tural and design guidelines. To meet
this need, we have developed a hand-
book of eight architectural patterns for
self-​aware systems, each with a different
set of capabilities.4 Figures 2 through 4

show three of these patterns. The same
handbook also provides a systematic
pattern-​selection method that uses a set
of questions to help designers identify
the problem-​specific requirements rela-
tive to each self-​awareness level.

In addition to the physical connec-
tors from the reference architecture, we
use logical connectors in the patterns to
express intracapability interactions and
intercapability interactions—those of
the same capability across different self-​
aware nodes. These logical connectors do
not require direct physical interaction.
For example, self-​expression processes
across several self-​aware systems might
logically reach consensus, but such inter-
action is physically realized through sen-
sors, actuators, and interaction aware-
ness. An additional physical connector
(red arrows in Figures 3 and 4) makes

Internal
sensors

External
sensors

External
actuators

Internal
actuators Self-expression

Physical-social
environment

+ Self-awareness

1 1

+

+ +

Stimulus
awareness

Self-awareness
capability

Physical connector (data)
Physical connector (control)

FIGURE 2. Basic architectural pattern. The operator next to the sensor and actuator boxes
indicates the permitted number of such capabilities in an interaction: + is one or more and 1
is exactly one.

Internal
sensors

External
sensors

External
actuators

Internal
actuators

Self-expression

Physical-social
environment

+

+ ++

+ +

+
1

1 1

1
1

1
1

1

*
*

*

Stimulus
awareness

Interaction
awareness

Self-awareness

+ +

Mul_Op Mul_Op

Self-awareness
capability

Physical connector (data)
Physical connector (control)
Physical connector
 (control or data for different
 awareness levels)
Logical connector

FIGURE 3. Coordinated decision-​making pattern, which adds interaction awareness to
the basic pattern. The operator next to the self-​awareness capability and logical connector
(Mul_Op) indicates the permitted number of such capabilities in an interaction: * is zero or
more, + is one or more, and 1 is exactly one.

68	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

RESEARCH FEATURE

intercapability interactions within a
node explicit and identifies physical
interactions among awareness levels.

Capabilities are conceptual and need
not map strictly to components, so we
use a multiplicity operator (Mul_Op)
to represent the number of capabilities
involved in the interaction.

Basic
Figure 2 shows the basic pattern, which
contains only the stimulus-​awareness
capability. Actions can be triggered
on the basis of the detected stimu-
lus type. This is the simplest pattern
and enables minimal computational
self-​awareness.

Coordinated decision making
Figure 3 shows the coordinated
decision-making pattern, which
enables the coordination of multiple
self-​aware nodes. With the addition of
interaction awareness to the basic pat-
tern, a node’s peers can share knowl-
edge of their interactions, including
causality and social relationship mod-
els. Thus, the nodes can independently
adapt their actions to common knowl-
edge and link self-​expressive processes
so they can agree on which actions to
take and coordinate them.

Fully self-​aware
The fully self-​aware pattern, shown in

Figure 4, adds goal, time, and meta–self-​
awareness to the coordinated decision-​
making pattern. Goal awareness enables
the representation of changing runtime
goals, so a node can share its knowledge
with other goal-​aware nodes and the
system can adapt to the changed goals.
Time awareness allows the representa-
tion of temporal knowledge about goal
and interaction awareness, enabling
capabilities such as forecasting.

This pattern also adds meta–self-​
awareness, enabling the system to
manage the tradeoffs associated with
exercising various self-​awareness lev-
els and thereby allowing it to modify
goals at runtime. An example of this
runtime metareasoning is the dynamic
selection of the most appropriate learn-
ing algorithm for a particular context.

CASE STUDY
To evaluate the benefits of architec-
tural patterns for creating self-​aware
systems, we conducted a case study in
cloud computing to assess the ability
of one of our derived design patterns to
address the services-​selection problem.

Services selection
Service-​based applications are com-
posed of abstract services that
concrete services with functional
equivalence instantiate at run-
time. Applications must satisfy their

quality-​of-​service (QoS) requirements,
which typically differ widely across
applications. Each application has only
a local perspective of its goal, which
can change over time, for example,
because of the need to respect new ser-
vice-​level agreements (SLAs). Applica-
tions share a cloud services pool, offer-
ing various QoS levels at fluctuating
prices. Applications compete for ser-
vices in a shared infrastructure and
often interfere with one another.

Each application must manage its
resources on the basis of its knowl-
edge of changing goals, workload, and
service availability. Computational
self-​awareness provides primitives for
modeling this knowledge through a
multilevel approach that enables a sep-
aration of concerns and simplifies run-
time tradeoff analyses.

Goal sharing with time awareness
After following the pattern-​selection
process in our handbook,4 we identified
the goal sharing with time awareness
pattern as the most suitable for a system
that could address the services-​selection
problem. The pattern combines stimu-
lus, interaction, time, and goal aware-
ness, and provides self-​expression:

›› Stimulus awareness. Sensors
directly observe user requests
categorized in SLA classes (low,
medium, high).

›› Time awareness. A local perfor-
mance repository stores service
ratings of how well the service
met the promised QoS.

›› Interaction awareness. The perfor-
mance repository also captures
knowledge about the interaction
between services and users clus-
tered in different SLA classes.

Mul_Op Mul_Op

Self-awareness
capability

Physical connector (data)
Physical connector (control)
Physical connector
 (control or data for different
 awareness levels)
Logical connector

External
sensors

Physical-social
environment

Runtime goals

Design-time
goals

Self-awareness

*

*

*

*

11
1

1

1

1

1

1

1

1

+Internal
sensors

+
Stimulus

awareness

Interaction
awareness

Goal
awareness

Meta–self-
awareness

Time
awareness

External
actuators

Internal
actuators

Self-expression
+

+

+

+

*
*

*
*

*
* + +

+ *

+ *

+ *

1

FIGURE 4. The fully self-​aware pattern, which adds goal, time, and meta–self-​awareness
to the coordinated decision-​making pattern. The multiplicity operator (Mul_Op) next to the
self-​awareness capability indicates the permitted number of such capabilities in an interac-
tion: * is zero or more, + is one or more, and 1 is exactly one.

	 A U G U S T 2 0 1 5 � 69

›› Goal awareness. Given a particular
QoS, a utility function deduces
the candidate services likely to
provide the best quality.

›› Self-​expression. Service-​selection
decisions are based on allocation
strategies.

Performance results
and comparison
In our system analysis and comparison,
we used the architectural analysis and
tradeoff method (ATAM),9 a validated
scenario-​based evaluation method that
qualitatively evaluates software architec-
tures to reveal the risks associated with
architectural decisions. Using ATAM,
we compared the performance of our
system, designed with the goal ​sharing
with time ​awareness pattern, against the
performance of a system designed using
the three-​layer architecture.3 Although
comparing our system with the MAPE-​K
and observer/controller reference archi-
tectures might have been interesting, we
chose to focus on the three-​layer archi-
tecture as a point of comparison because,
like our framework, it separates knowl-
edge concerns and has key comparison
points such as explicit goal representa-
tion. The other two reference architec-
tures do not capture knowledge concerns
at a fine-​grained level.

Overall, our system more effectively
handled the dynamism and uncertainty
in application goals, workload, and ser-
vice availability.10 An important crite-
rion in architectural evaluation is the
identification of tradeoff points, which
makes design decisions about quality
attributes explicit. In our case study,
adaptability was a first-​class quality
attribute, as we believe it is central to
system scalability, availability, and per-
formance. Overall, we identified three

tradeoff points with this attribute:
communication load, scalability cost,
and service selection accuracy (versus
only two tradeoff points in the three-​
layer architecture). Failing to account
for these points would pose a risk to our
system’s ability to meet its quality attri-
bute goals.

Our evaluation further revealed
that explicitly considering interac-
tion among knowledge concerns (self-
awareness) potentially reduces the risks
that might otherwise arise. In contrast,
the three-​layer architecture simply
flagged the consequences of such inter-
actions as risks. We also found that com-
munication costs from data exchanges
between decentralized self-​aware nodes
might be higher in our system than
those in the three-​layer architecture,
which shares knowledge components.
However, our system’s adaptability
trades off well with communication cost
and adaptive decision accuracy.

For example, explicitly considering
computational self-​awareness through
the use of the architectural patterns
ensured that we considered a broad
range of possible self-​awareness capa-
bilities and included only relevant
capabilities justified by identified ben-
efits. Additionally, decomposing a self-​
aware system into self-​awareness, self-​
expression, and meta–self-​awareness
processes made implementation sub-
stantially easier and reduced the possi-
bility of introducing faults, thus facili-
tating fault detection.

In dealing with the complexities
of future computing systems—
size, decentralization, uncertainty,

dynamics, and heterogeneity—higher
self-​awareness levels will become

critical. Our notion of computational
self-​awareness and associated self-
expression can provide computing sys-
tems with advanced levels of auton-
omous behavior to enable runtime
self-​adaption and management of com-
plex tradeoffs in rapidly changing con-
ditions. Using Neisser’s broad set of
self-​awareness levels, designers can
explicitly account for a full spectrum of
existing and future systems and not be
concerned only with what is now con-
sidered highly advanced AI.

By providing a reference architecture
and architectural patterns for specific
systems, we have given designers a com-
mon way to communicate about self-​
awareness and self-expression capabil-
ities from an engineering perspective.
However, much is still unknown about
how to incorporate self-​awareness prop-
erties into computing systems. One
open problem, which we plan to address,
is how systems can learn and adapt to
changing conditions at runtime, mak-
ing decisions on the basis of knowledge
about tradeoffs among and between sys-
tem goals as well as the overhead from
the learning process.

Addressing other open problems
will require more than one view of self-​
awareness computing. Significant prog-
ress will require a multidisciplinary
effort, drawing not only from psychol-
ogy but also from philosophy, sociology,
economics, AI, and engineering.

ACKNOWLEDGMENTS
This work was partially supported by the
EU FP7 program as part of the EPiCS proj-
ect, under grant agreement 257906 (www
.epics-​project.eu).

REFERENCES
1.	 J.O. Kephart and D.M. Chess, “The

70	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

RESEARCH FEATURE

Vision of Autonomic Computing,”
Computer, vol. 36, no. 1, 2003,
pp. 41–50.

2.	 C. Müller-​Schloer, H. Schmeck, and
T. Ungerer, Organic Computing: A
Paradigm Shift for Complex Systems,
Springer, 2011.

3.	 J. Kramer and J. Magee, “Self-​Managed
Systems: An Architectural Chal-
lenge,” Proc. IEEE Conf. Future of Soft-
ware Eng. (FOSE 07), 2007, pp. 259–268.

4.	 T. Chen et al., The Handbook of Engi-
neering Self-​Aware and Self-​Expressive
Systems, tech. report, EPiCS EU FP7
Project Consortium, 2014; http://
arxiv.org/abs/1409.1793.

5.	 A. Morin, “Levels of Consciousness
and Self-​Awareness: A Comparison
and Integration of Various Neurocog-
nitive Views,” Consciousness and Cog-
nition, vol. 15, no. 2, 2006, pp. 358–71.

6.	 U. Neisser, “The Roots of Self-​Knowl-
edge: Perceiving Self, It, and Thou,”
Annals of the New York Academy of Sci-
ences, vol. 818, 1997, pp. 19–33.

7.	 M. Mitchell, “Self-​Awareness and Con-
trol in Decentralized Systems,” Proc.
AAAI Spring Symp. Metacognition in
Computation, 2005; www.cs.pdx
.edu/~mm/self-​awareness.pdf.

8.	 B. Rinner et al., “Self-​Aware and Self-​
Expressive Camera Networks,” Com-
puter, vol. 48, no. 7, pp. 21–28.

9.	 	R. Kazman et al., “Experience with
Performing Architecture Tradeoff
Analysis,” Proc. 21st ACM Int’l
Conf. Software Eng. (ICSE 99), 1999,
pp. 54–63.

10.	 	F. Faniyi et al., “Architecting Self-​
Aware Software Systems,” Proc. Work-
ing IEEE/IFIP Conf. Software Architec-
ture (WICSA 14), 2014, pp. 91–94.

ABOUT THE AUTHORS
PETER R. LEWIS is a lecturer in computer science at the Aston Laboratory for

Intelligent Collectives Engineering at Aston University, UK. His research inter-

ests include adaptation, online learning, and self-​organization in complex agent-​

based systems with a focus on nature-​inspired techniques, heterogeneity, and

self-​awareness. Lewis received a PhD in computer science from the University

of Birmingham, UK. He is a member of IEEE. Contact him at p.lewis@aston.ac.uk.

ARJUN CHANDRA is a researcher at Studix AS, Norway. His research interests

include orchestrating systemwide outcomes in computationally intelligent agent

collectives, including those engaging humans. Chandra received a PhD in com-

puter science from the University of Birmingham. Contact him at arjun@studix.com.

FUNMILADE FANIYI is a software engineering researcher at the University of Bir-

mingham. His research interests include designing enterprise software applications

for industrial stakeholders, software architectures for large-​scale self-​adaptive sys-

tems, and cloud computing. Faniyi received a PhD in computer science from the

University of Birmingham. Contact him at f.faniyi@gmail.com.

KYRRE GLETTE is an associate professor of computer science at the University

of Oslo, Norway. His research interests include intelligent, adaptive, and biolog-

ically inspired systems for embedded and runtime-​evolvable hardware systems

and evolutionary robotics. Glette received a PhD in computer science from the

University of Oslo. He is a member of IEEE. Contact him at kyrrehg@ifi.uio.no.

TAO CHEN is a doctoral candidate and researcher in the School of Computer Sci-

ence at the University of Birmingham. His research interests include performance

modeling and tuning, self-​adaptive systems, services computing, and cloud com-

puting. Chen received an MSc in computer science from the University of Bir-

mingham. He is a student member of IEEE. Contact him at txc919@cs.bham.ac.uk.

RAMI BAHSOON is a senior lecturer in software engineering and leads the

Software Engineering for/in the Cloud interest group in the School of Com-

puter Science at the University of Birmingham. His research interests include

self-​adaptive software architecture and service-​, cloud-​, and economics-​

driven software engineering. Bahsoon received a PhD in software engineering

from University College London, UK. He is a member of ACM. Contact him at

r.bahsoon@cs.bham.ac.uk.

JIM TORRESEN is a professor of computer science at the University of Oslo.

His research interests include applying nature-​inspired computing, adaptive sys-

tems, reconfigurable hardware, and robotics to complex real-​world applications.

Torresen received a Dr.Ing. from the Norwegian University of Science and Tech-

nology. He is a member of IEEE. Contact him at jimtoer@ifi.uio.no.

XIN YAO is a professor of computer science at the University of Birmingham. His

research interests include evolutionary computation, ensemble learning, self-​

adaptive systems, search-​based software engineering, and real-​world applica-

tions. Yao received a PhD in computer science from the University of Science and

Technology of China. He is an IEEE Fellow and president of the IEEE Computa-

tional Intelligence Society. Contact him at x.yao@cs.bham.ac.uk.

