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Abstract—Recently, graph convolutional networks (GCNs)
have been developed to explore spatial relationship between pix-
els, achieving better classification performance of hyperspectral
images (HSIs). However, these methods fail to sufficiently leverage
the relationship between spectral bands in HSI data. As such,
we propose an adaptive cross-attention-driven spatial-spectral
graph convolutional network (ACSS-GCN), which is composed
of a spatial GCN (Sa-GCN) subnetwork, a spectral GCN (Se-
GCN) subnetwork, and a graph cross-attention fusion module
(GCAFM). Specifically, Sa-GCN and Se-GCN are proposed to
extract the spatial and spectral features by modeling correlations
between spatial pixels and between spectral bands, respectively.
Then, by integrating attention mechanism into information aggre-
gation of graph, the GCAFM, including three parts, i.e., spatial
graph attention block, spectral graph attention block, and fusion
block, is designed to fuse the spatial and spectral features and
suppress noise interference in Sa-GCN and Se-GCN. Moreover,
the idea of the adaptive graph is introduced to explore an optimal
graph through back propagation during the training process.
Experiments on two HSI data sets show that the proposed method
achieves better performance than other classification methods.

Index Terms—Hyperspectral image classification, graph con-
volutional networks, feature extraction, attention mechanism.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) are the 3-D data recording
the spatial-spectral information of land covers. HSI

classification, as an active research area, has received extensive
attentions in many fields. Recently, deep learning methods
exhibit good classification performance in HSIs [1], [2].

Graph theory is an effective manner to represent the similar
relationship of HSI data for revealing their intrinsic geometric
properties. Specifically, graph embedding methods have been
used to learn graph representation in the low-dimensional
space for reducing the redundant information of HSI data
[3], [4]. Inspired by the success of deep learning [5], Kipf
et al. [6] proposed a graph convolutional network (GCN) to
aggregate and transform the node feature with the neighbor-
hood structure of graph data. Moreover, aiming at the case
of limited labeled samples, a spectral-spatial GCN [7] was
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utilized to construct a semisupervised framework for HSI
classification. Subsequently, Wan et al. proposed a multiscale
dynamic GCN (MDGCN) [8] and a dual interactive GCN
(DIGCN) [9] to capture the spatial information at different
scales. A minibatch GCN model was developed to reduce the
complexity of training [10]. Recently, the graph topological
consistent was utilized to learn the underlying spatial context
information of HSIs [11].

In [12], GCN was applied to model the temporal correlation
between different frames in video. Similar to the temporal
relation, the spectral correlation exists in HSI data, which
has been applied for HSI classification [13]. Moreover, to
produce high-resolution HSI, the spectral structures in low-
spatial-resolution HSI and high-spatial-resolution multispectral
images were inherited according to the construction of spectral
graph along spectral dimension [14]. Therefore, graph learning
or GCN might be one of the methods to capture the spectral
correlation in the spectral domain.

In recent years, with the development of attention mecha-
nism in deep learning, it has been gradually applied for GCNs,
which enables them more learnable with stronger generaliza-
tion capability. Pu et al. [15] designed a multiscale attention
mechanism by distinguishing the importances of different
spectral bands. Moreover, by allocating weights jointly in the
horizontal and vertical directions, the effectiveness of cross
attention was demonstrated in [16].

Nevertheless, there are still some issues in the GCN-based
models for HSI classification. Firstly, the initial adjacent
matrix may fail to reveal the effective spatial relationship.
Secondly, the relationship of spectral bands is underused.
Thirdly, existing GCNs usually utilize the addition, multiplica-
tion, or concatenation operations to fuse features, which fail to
explore the complementary between features. As such, in this
letter, an adaptive cross-attention-driven spatial-spectral graph
convolutional network (ACSS-GCN) is proposed to jointly
extract the spatial-spectral features for HSI classification. The
contributions are summarized as follows.

(1) Considering the spatial-spectral characteristic of HSI
data, a dual-branch GCN-based spatial-spectral structure
is proposed, containing the spatial GCN (Sa-GCN) and
spectral GCN (Se-GCN) subnetworks to extract the
spatial and spectral features by exploring correlations
from the spatial and spectral dimensions, respectively.

(2) A novel graph-based cross-attention fusion module
(GCAFM) with a spatial graph attention block (SAGB)
and a spectral graph attention block (SEGB) is devel-
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Fig. 1. The framework of the proposed ACSS-GCN model. (a) Data preprocessing. (b) Spatial graph convolutional network (Sa-GCN). (c) Spectral graph
convolutional network (Se-GCN). (d) Graph-based cross-attention fusion module (GCAFM). (e) Classification result. Particularly, ⊕ and ⊗ are addition and
multiplication operations, respectively. represents the spatial graph convolution layer. is the spectral graph convolution layer.

oped by integrating attention mechanism into informa-
tion aggregation over graph-structured data to explore
the complementary information of Sa-GCN and Se-
GCN.

(3) With the idea of the adaptive graph, a novel ACSS-GCN
framework is constructed for the spatial-spectral feature
extraction and classification of HSIs.

Experimental results demonstrate the superiority of the
proposed method over existing GCNs in HSI classification.

II. METHODOLOGY

The overall architecture of our ACSS-GCN framework is
depicted in Fig. 1. Fig. 1(a) shows data preprocessing on the
original HSI data. The backbone of the proposed framework is
composed of Sa-GCN and Se-GCN, as shown in Fig. 1(b)-(c),
which can capture the spatial and spectral information from
HSI data. Moreover, Fig. 1(d) displays the GCAFM, followed
by the classification result in Fig. 1(e).

A. Data Preprocessing

Simple linear iterative clustering [8] and principal compo-
nent analysis (PCA) are imposed on the original HSI data
to reduce the computational complexity, shown in Fig. 1(a).
The feature x of each superpixel is defined by the average
of its all pixels, and the features of all superpixels in the
HSI data are denoted by X= {x1, x2, ..., xn} ∈ Rn×s, where
n and s are the number of superpixels and spectral bands,
respectively. A set of superpixels for the ith spectral band is
represented as ZSai = {x1i, x2i, . . . , xni} for i = 1, 2, . . . , s,
while a set of spectral bands for the jth superpixel is denoted
as ZSej = {xj1, xj2, . . . , xjs} for j = 1, 2, . . . , n.

B. Spatial-Spectral Feature Extraction

From Fig. 1, for our ACSS-GCN framework, a dual-
branch GCN-based spatial-spectral structure forms its back-
bone, which is composed of Sa-GCN and Se-GCN to model
the correlations between spatial pixels and between spectral
bands. Specifically, Sa-GCN extracts spatial features by ex-
ploring the spatial relationship, while Se-GCN learns spectral
information by modeling the spectral correlation.

1) Sa-GCN
The relationship of pixels is distinctive in multiple spectral

bands. As shown in Fig. 1(b), a spatial graph corresponding
to each spectral band is constructed individually to explore
the suitable spatial relationship. For convenience, a set of
spatial graphs is written as {GSa1 , GSa2 , . . . , GSas}. The
spatial graph GSai of the ith spectral band is defined as
(VSai , ESai , ASai), where each superpixel is treated as a graph
node, VSai is a set of graph nodes, and ESai is a set of edges.
ASai is the adjacent matrix, indicating whether each pair of

superpixels is connected. The Gaussian distance is employed
to measure the pairwise similarity between these superpixels.
The weight of graph nodes xmi and xhi in ASai is written as

ASaimh
=

{
e−γ‖xmi−xhi‖2 , if xmi ∈ N (xhi)

0, otherwise
, (1)

where N (xhi) is the set of neighbors of xhi, which includes
all superpixels directly connected to xhi. The value of γ is
empirically set as 0.5 in the experiments.

After that, the Sa-GCN individually processes each spectral
band by the corresponding spatial graph, which has two graph
convolutional layers with the ReLU function. Thus, for the
ith band, the spatial information is learned by

H l+1
Sai

= ReLU(LSaiH
l
SaiW

l
Sai), (2)

where LSai = D̃
− 1

2

Sai
ÃSaiD̃

− 1
2

Sai
with D̃Sai being the diagonal

degree matrix of ÃSai = ASai + I . H l
Sai
∈ RN×Fl

s denotes
the spatial information of the ith band in the lth layer with
H0
Sai

= ZSai and F l is the dimension of feature in l layer.
W l
Sai

represents the trainable weight for the ith band in the
lth layer, and ReLU (·) is the activation function.

Finally, the spatial features in all bands are concatenated as

HSa = [HSa1 , HSa2 , . . . ,HSas ]. (3)

2) Se-GCN
Considering the spectral characteristic of HSIs, a Se-GCN

subnetwork is further designed. Similar to [14], a set of
initial spectral graphs {GSe1 , GSe2 , . . . , GSen} is built to
model the spectral relation by using s-nearest neighbor strat-
egy in Fig. 1(c). Different from the spatial graph, GSej =
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(VSej , ESej , ASej ) is the spectral graph of the jth superpixel.
The construction of ASej is similar to (1), however, the
similarity calculation is implemented between each pair of
bands in the jth superpixel.

Then, the Se-GCN is built by stacking two convolutional
layers with the ReLU function, in which each superpixel is
separately processed to learn spectral information. The output
for the jth superpixel is expressed as follows

H l+1
Sej

= ReLU(LSejH
l
SejW

l
Se), (4)

where LSej = D̃
− 1

2

Sej
ÃSej D̃

− 1
2

Sej
, H l

Sej
∈ R1×F l

is the spec-
tral information of the jth superpixel in the lth layer with
H0
Sej

= ZSej , and the dimension in lth layer of Se-GCN and
Sa-GCN is the same. W l

Se is the trainable weight in the lth
layer shared by all superpixels, which alleviates the overfitting
of the proposed network to a certain extent. Finally, similar
to (3), by cascading the outputs of all superpixels, spectral
features HSe ∈ RN×F 2

are extracted in Se-GCN.

C. GCAFM

Based on the above analysis, Sa-GCN and Se-GCN can
extract different and complementary features by modeling the
spatial and spectral correlations of HSIs, respectively. As such,
a novel GCAFM is designed by introducing attention mech-
anism into graph node to fully exploit this complementary
information, whose backbone contains an SAGB, an SEGB,
and a fusion block, as illustrated in Fig. 1(d).

1) SAGB
From Fig. 1(c), Se-GCN only uses the spectral information

such that the spatial correlation of HSI data is not effectively
explored. Therefore, an SAGB module with a spatial graph
convolutional layer and two fully connected (FC) layers is
designed in Fig. 1(d). Therefore, spatial attention weights are
generated from the first spectral graph convolutional layer
of the Se-GCN to promote the induction of effective spatial
feature extraction from Sa-GCN. Specifically, spatial graph
convolutional layer is applied to learn spatial information, and
two FC layers are utilized to acquire more representational
information. The feature from the second FC layer is denoted
by ISa ∈ RN×F 2

, which is further fed into a softmax function
to generate the normalized spatial attention map. The spatial-
enhanced features H1 ∈ RN×F 2

can be computed as

ISa = fFC(fFC(ReLU(LSaH
1
SeWSa)))

H1 = HSa�softmax(ISa),
(5)

where H1
Se ∈ RN×F 1

is output of the first layer in Se-GCN.
fFC(.) is the FC layer, � is the element-wise multiplication
operation, and softmax (·) function is used for normalization.

2) SEGB
The special structure of Sa-GCN makes it contain the

primary spectral relationship. Therefore, an SEGB module is
built to generate spectral weight coefficients for adaptively
selecting the important spectral features from the Se-GCN.
From Fig. 1(d), the SEGB contains a spectral graph convo-
lutional layer, two FC layers, and a softmax function, which,
however, calculates the spectral attention map along with the

spectral dimension from the output of the first spatial graph
convolutional layer in Sa-GCN. In addition, the output of the
second FC layer is expressed as ISe ∈ RN×F 2

. Therefore, the
spectral-enhanced features H2 ∈ RN×F 2

are written as

ISe = fFC(fFC(ReLU(LSeH
1
SaWSe)))

H2 = HSe�softmax(ISe).
(6)

where H1
Sa ∈ RN×F 1

is the features from the first layer in
Sa-GCN.

Finally, in the fusion block, the addition and concatenation
operations are applied to fuse the spatial and spectral attention
features of Sa-GCN and Se-GCN. Inspired by the residual
learning, two fusion methods can be written as

Hadd = (H1⊕HSa)⊕(H2⊕HSe)

Hcon = [H1⊕HSa, H2⊕HSe] ,
(7)

where ⊕ is the element-wise addition. Hadd ∈ RN×F 2

and
Hcon ∈ RN×2F 2

mean the extracted spatial-spectral features
by these two methods.

D. Adaptive Graph Refinement

The performance of graph convolution operation mainly
depends on the quality of graph structure, which is important
to explore the optimal graph for HSI classification. Due to the
effects of the noise and complex scenes on HSI data, the spatial
and spectral graphs initially constructed in (1) are not accurate,
which are not completely suitable for HSI classification. As
such, the adaptive matrix Wp is designed to dynamically refine
these two graphs, and these corresponding adjacency matrices
can be updated as

Ao = Ain + βWpAin, (8)

where Ain = ASai or Ain = ASej , and β is a tuning
parameter. Specifically, each spatial graph with its own Wp

makes the model more flexible, while all spectral graphs
share the same Wp to avoid the overfitting, all of which are
randomly initialized. Similar to [8], by optimizing the cross-
entropy loss function with full-batch gradient descent, all Wp

together with other trainable parameters of ACSS-GCN can
be updated during training, thus producing the refined spatial
and spectral graphs and extracting the more effective spatial-
spectral features for HSI classification.

III. EXPERIMENTAL RESULTS

In this Section, the performance of the ACSS-GCN is
validated on two public HSI data sets, i.e., Indian Pines and
University of Pavia. The Indian Pines data set recorded north-
western Indiana with the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor in 1992, which is made up of
145×145 pixels with 200 bands. The University of Pavia data
were captured in the Pavia University in Italy by the Reflective
Optics System Imaging Spectrometer (ROSIS) sensor in 2001,
consisting of 610×340 pixels and 103 spectral bands. In the
experiments, 30 pixels of each class are selected as the training
set, while 15 pixels will be extracted for the class where the
number of samples dose not reach 30. In addition, overall
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accuracy (OA), average accuracy (AA), and kappa coefficient
(κ) are used to study the performance of all methods.

To evaluate the performance of our proposed method, seven
methods, i.e, SVM [17], 2-D CNN [1], GCN [6], FuNet [10],
AMDPCN [15], MDGCN [8], and DIGCN [9], are utilized for
comparison. Moreover, our ACSS-GCN model with two fusion
strategies (i.e., addition and concatenation) are represented as
ACSS-GCN-A and ACSS-GCN-C, respectively.

A. Parameter Settings

In the experiments, the spectral dimension after PCA is set
to 20. In addition, dropout = 0.5 for each graph convolutional
layer to alleviate the overfitting. For Sa-GCN and Se-GCN,
the dimensions of two graph convolutional layers are set as
40 and 20, respectively. The output dimensions of the graph
convolutional layer and two FC layers in the SEGB and SAGB
modules are set to 40, 25, and 20. Moreover, a FC layer and a
softmax function are applied to classify the HSI samples. To
eliminate the deviation caused by random initialization, the
average value after 5 repetitions is given for each quantitative
metric. The epoch is set to 3000. The adaptive momentum
optimizer with a learning rate of 0.005 is used to optimize the
loss function of cross entropy for the proposed model.

TABLE I
SENSITIVITY ANALYSIS UNDER DIFFERENT VALUES OF PARAMETER β

β 0 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1
Indian Pines 64.40 85.78 92.90 94.06 95.02 94.19 94.64 94.59

University of Pavia 69.97 91.93 95.77 96.50 96.38 94.40 93.41 93.63

Besides, we further investigate the effect of the tuning
parameter β on the classification performance of HSIs. Table
I reports the OA results for different β, from which we can
observe that the proposed model can obtain the quasi-optimal
performance when β is set to 0.005 and 0.001 for these two
HSI data sets, respectively.

B. Classification Performance

The classification results of all methods on these two HSI
data sets are reported in Tables II-III. We can find that the
proposed method outperforms other methods. On the one hand,
Sa-GCN and Se-GCN effectively learn the spatial and spectral
correlations of HSI data. On the other hand, GCAFM adap-
tively explores complementary information of the extracted
spatial and spectral features and suppresses noise interference
in Sa-GCN and Se-GCN. From Tables II-III, compared with
the second best classification performance achieved by DIGCN
or MDGCN, the OA results of ACSS-GCN-A on two data sets
are increased by 1.00% and 1.28%, respectively. In particular,
the comparison between two fusion strategies reveals that
ACSS-GCN-A can achieve the best classification results and
bring at least 0.45% increments in OA over the ACSS-GCN-
C. In addition, the total sum of the training and testing
computational time (seconds (s)) of all methods on two data
sets is summarized in the last row of Tables II-III, from which
compared with other GCN-based methods, the GCN method
[6] consumes more time owing to the participation of all pixels
in training step; however, our method only costs a little more

time to construct the spectral graph and run the GCAFM, but
achieves the best performance for HSI classification.

TABLE II
CLASSIFICATION RESULTS FOR THE INDIAN PINES DATA SET

Class SVM 2-D GCN FuNet AMD- MD- DI- ACSS- ACSS-
CNN PCN GCN GCN GCN-C GCN-A

1 100.00 100.00 97.82 100.00 100.00 100.00 93.75 100.00 100.00
2 55.22 58.58 48.67 60.52 52.79 78.68 89.63 92.03 89.49
3 80.50 85.00 64.10 66.75 57.87 94.88 94.88 95.86 96.38
4 99.52 100.00 91.98 90.34 95.65 96.14 96.16 100.00 99.61
5 77.04 85.43 89.86 91.83 88.18 90.73 98.45 92.49 96.29
6 76.86 71.57 95.75 98.29 96.78 97.86 97.43 97.57 96.11
7 100.00 100.00 92.85 100.00 100.00 100.00 69.23 100.00 90.76
8 95.76 96.42 89.96 99.78 97.66 100.00 100.00 100.00 99.77
9 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

10 56.47 59.76 69.75 71.23 72.13 94.16 89.92 83.97 90.02
11 59.09 64.12 61.22 56.53 72.64 96.58 92.21 94.22 94.49
12 74.78 76.38 53.29 70.52 54.71 90.76 84.55 90.94 91.79
13 98.86 98.86 97.56 100.00 99.42 97.71 97.14 97.14 100.00
14 87.61 86.48 85.30 84.21 86.07 99.68 99.76 99.83 99.66
15 94.94 93.54 46.63 77.81 75.84 99.44 98.03 98.60 98.82
16 100.00 100.00 96.77 100.00 100.00 100.00 98.41 100.00 99.68
OA 71.57 73.94 69.71 72.93 74.15 93.84 93.76 94.39 94.84
AA 84.79 86.00 80.10 85.49 84.38 96.04 93.72 96.41 96.43
κ 67.97 70.50 65.86 69.45 70.56 92.94 92.86 93.58 94.10

Time(s) 398.56 463.55 137.23 53.67 57.17 32.38 23.17 86.69 82.14

TABLE III
CLASSIFICATION RESULTS FOR THE UNIVERSITY OF PAVIA DATA SET

Class SVM 2-D GCN FuNet AMD- MD- DI- ACSS- ACSS-
CNN PCN GCN GCN GCN-C GCN-A

1 63.29 58.86 74.00 82.85 81.30 92.27 88.50 88.35 86.12
2 62.91 77.79 61.95 93.87 97.89 94.44 91.78 97.55 98.96
3 41.32 52.58 62.12 79.07 76.94 88.88 94.20 99.85 99.08
4 71.65 79.23 95.52 95.81 91.33 94.26 91.76 92.04 92.35
5 83.65 88.06 97.62 99.70 99.77 99.01 99.39 99.01 99.01
6 51.09 54.51 44.87 71.51 67.87 100.00 100.00 100.00 100.00
7 51.53 61.76 82.85 86.77 84.61 99.69 99.69 99.63 97.83
8 55.78 76.59 85.25 70.45 71.93 98.49 99.45 96.82 98.14
9 88.66 94.33 98.83 99.34 99.89 96.51 87.68 88.85 96.07

OA 61.39 71.07 68.81 87.02 87.76 95.17 93.40 95.99 96.45
AA 63.32 71.52 78.11 86.60 85.73 95.95 94.72 95.79 96.40
κ 51.13 61.22 58.38 82.76 60.77 93.65 91.38 94.69 95.30

Time(s) 163.16 1849.85 2093.78 61.63 62.00 164.31 49.70 271.26 266.06

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2. Classification maps for the Indian Pines Data Set. (a) Ground-
truth map. (b) SVM. (c) 2-D CNN. (d) GCN. (e) FuNet. (f) AMDPCN. (g)
MDGCN. (h) DIGCN. (i) ACSS-GCN-C. (j) ACSS-GCN-A.

To analyze the classification performance more intuitively,
the visualized results of all methods on the Indian Pines data
set are shown in Fig. 2, from which it can be observed that
the classification map of our proposed model is closest to
the ground-truth map, and there are least noise and misclas-
sifications. Particularly, for the GCN, FuNet, and ADMPCN
methods, the pepper-noise-like mistakes in certain regions can
be observed due to the loss of spatial context information,
leading to poor classification results. The above experimental
results further illustrate the superiority of ACSS-GCN.
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C. Sensitivity Comparison and Analysis under Small Samples
To further illustrate the classification performance under the

small number of training samples, 5, 10, 15, 20, 25, and
30 samples of each class are randomly selected from these
two HSI data sets for training. Fig. 4 shows the OA curves
with different numbers of training samples. As expected, the
performance of all methods is improved with the increase of
training samples. The ACSS-GCN method outperforms the
other methods, which verifies the advantages of our ACSS-
GCN method. It is noted that the ACSS-GCN-A is superior to
the ACSS-GCN-C model in most cases, which may be because
the concatenation operation generate more redundant features
than the addition operation affecting the final classification
performance. These experimental results also show that the
ACSS-GCN model is superior to other considered models.

(a) Indian Pines (b) University of Pavia

Fig. 3. OA (%) of all methods with different number of training samples for
two HSI data sets. (a) Indian Pines. (b) University of Pavia.

D. Ablation Study
To highlight the effectiveness of Se-GCN, Sa-GCN, and

GCAFM in our ACSS-GCN-A, detailed ablation studies are
conducted to see how they contribute to the classification
accuracy, where the ASS-GCN-A is a variant of ACSS-GCN-
A by replacing the GCAFM with the element-wise addition
operation. From Table IV, by directly adding the features of
Se-GCN and Sa-GCN, the ASS-GCN-A can extract the joint
spatial-spectral features for good classification performance of
HSIs. Furthermore, by introducing the idea of cross attention,
a GCAFM is designed to fully explore the complementary
information between Se-GCN and Sa-GCN. Compared with
the ASS-GCN-A, GCAFM can bring 0.76% and 0.49% gains
to the ACSS-GCN-A for these two data sets, respectively.
Experimental results show that the Se-GCN and Sa-GCN are
effective and complementary, and the joint learning of spatial-
spectral information can further improve the performance of
HSI classification. Besides, the GCAFM can be benefit for
improving the classification accuracy of the ACSS-GCN.

TABLE IV
ABLATION STUDIES OF ACSS-GCN ON THE INDIAN PINES AND

UNIVERSITY OF PAVIA DATA SETS

Methods
Indian Pines University of Pavia

Se- Sa- ASS- ACSS- Se- Sa- ASS- ACSS-
GCN GCN GCN-A GCN-A GCN GCN GCN-A GCN-A

OA 50.52 93.87 94.08 94.84 43.54 95.69 95.96 96.45
κ 44.82 92.98 93.23 94.10 33.52 94.29 94.64 95.30

IV. CONCLUSION

In this letter, a novel ACSS-GCN framework has been
proposed for HSI classification. Firstly, a dual-branch GCN-

based spatial-spectral structure is proposed as a backbone of
ACSS-GCN to jointly learn the spatial and spectral informa-
tion of HSI data. Then, the GCAFM is designed to explore
complementary information of Sa-GCN and Se-GCN for better
HSI classification. Finally, an adaptive graph is proposed to
dynamically update the spatial and spectral graphs during the
back propagation of the whole model. Experimental results
on two HSI data sets show that our method offers better
classification performance than other GCN-based methods.
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