
ar
X

iv
:1

50
4.

05
53

8v
2 

 [c
s.

IT
]  

23
 J

un
 2

01
5

Joint Source-Channel Secrecy Using Hybrid Coding
Eva C. Song Paul Cuff H. Vincent Poor

Dept. of Electrical Eng., Princeton University, NJ 08544
{csong, cuff, poor}@princeton.edu

Abstract—The secrecy performance of a source-channel model
is studied in the context of lossy source compression over a
noisy broadcast channel. The source is causally revealed tothe
eavesdropper during decoding. The fidelity of the transmission
to the legitimate receiver and the secrecy performance at the
eavesdropper are both measured by a distortion metric. Two
achievability schemes using the technique of hybrid codingare
analyzed and compared with an operationally separate source-
channel coding scheme. A numerical example is provided and
the comparison results show that the hybrid coding schemes
outperform the operationally separate scheme.

Index Terms—hybrid coding, likelihood encoder, joint source-
channel coding, secrecy, wiretap channel

I. I NTRODUCTION

The secrecy properties of the wiretap channel have been
studied under a variety of formulations. Shannon [1] con-
sidered the model of a noiseless wiretap channel where the
transmitter and the legitimate receiver share a secret key.Other
works [2] [3] consider the case of a noisy wiretap channel
where the physical structure of the channel is exploited instead
of using a secret key.

The most frequently adopted measure for information theo-
retic secrecy in the literature by far is equivocation, or normal-
ized equivocation to be more precise. Wyner [2] introduced the
notion of (normalized) equivocation for the study of secrecy
capacity of a wiretap channel. This secrecy metric uses the
conditional entropy of the source given what the eavesdropper
observesH(S|E), whereE here can be a noisy channel output
or an ciphered text protected by a secret key depending on
the setup. When the source is a sequence, this quantity is
typically normalized over the blocklength,1

n
H(Sn|E). Such

a metric can be intuitively interpreted as the average statistical
independence between the source and what the eavesdropper
observes.

Inspired by [4], other works [5] [6] [7] [8] [9] have taken a
rate-distortion approach to secrecy in communication systems.
Instead of using equivocation, the secrecy is measured by the
average distortion between the source and the eavesdropper’s
reconstruction of the source by allowing the eavesdropper to
optimize its estimation. There the goal is to design an encoding
and decoding scheme such that the source can be delivered
reliably (lossless or lossy) to the legitimate receiver while a
high distortion can be forced on the eavesdropper.

It may not have been straightforward to draw any connection
between these two secrecy metrics until recent work [10]
which has shown that equivocation is a special case of the
distortion secrecy metric if the source sequence realization
is causally disclosed to the eavesdropper during decoding.

Specifically, the distortion secrecy formulation with causal
source disclosure fully recovers the equivocation secrecyfor-
mulation by choosing the distortion function to be a log-loss
function.

In this work, we investigate the secrecy performance of a
source-channel communication system composed of an inde-
pendent and identically distributed (i.i.d.) source sequence and
a noisy memoryless wiretap channel. By causally disclosing
the source to the eavesdropper and using the distortion secrecy
metric, it grants us the freedom of considering the general
formulation of a secrecy problem, which can be particularized
to the equivocation formulation if needed. A variation of this
source-channel secrecy model was considered in [8] without
causal source disclosure. Despite an important game-theoretic
setting, such formulation does not render a strong enough
secrecy criterion.

Previous work [11] considers the same source-channel
model with causal source disclosure. However, only an oper-
ationally separate source-channel coding scheme was consid-
ered. Recent work on hybrid coding [12] and the likelihood
encoder [13] [14] suggests a new way of approaching this
problem.

II. PRELIMINARIES
A. Notation

A sequenceX1, ..., Xn is denoted byXn. Limits taken with
respect to “n→∞” are abbreviated as “→n”. Inequalities of
the formslim supn→∞ hn ≤ h and lim infn→∞ hn ≥ h are
abbreviated ashn ≤n h andhn ≥n h, respectively. WhenX
denotes a random variable,x is used to denote a realization,
andX is used to denote the support of that random variable. A
Markov relation is denoted by the symbol−. We useEP , PP ,
andIP (X ;Y ) to indicate expectation, probability, and mutual
information taken with respect to a distributionP ; however,
when the distribution is clear from the context, the subscript
will be omitted. We use a bold capital letterP to denote that
a distributionP is random.

For a distortion measured : X × Y 7→ R
+, we use

E [d(X,Y )] to measure the distortion ofX incurred by re-
constructing it asY . The maximum distortion is defined as

dmax = max
(x,y)∈X×Y

d(x, y).

The distortion between two sequences is defined to be the
per-letter average distortion

d(xn, yn) =
1

n

n
∑

t=1

d(xt, yt).
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B. Total Variation Distance

The total variation distance between two probability mea-
suresP andQ on the sameσ-algebraF of subsets of the
sample spaceX is defined as

‖P −Q‖TV , sup
A∈F
|P (A) −Q(A)|.

Some basic properties of total variation distance are given
as Property 2 in [15].
C. Soft-covering Lemma

We now introduce the soft-covering lemma, which will be
used in the achievability proof of the joint source-channel
coding scheme.

Lemma 1. (Soft-covering, [16]) Given a joint distribution
PUXZ , let C(n) be a random codebook of sequencesUn(m),
with m = 1, ..., 2nR, each drawn independently and i.i.d.
according toPU . Let

PMXnZk(m,xn, zk)

,
1

2nR

n
∏

t=1

PX|U (xt|Ut(m))

k
∏

t=1

PZ|XU (zt|xt, Ut(m))(1)

and
PXnZk ,

n
∏

t=1

PX(xt)

k
∏

t=1

PZ|X(zt|xt). (2)

If R > I(X ;U), then

ECn

[∥

∥PXnZk − PXnZk

∥

∥

TV

]

≤ exp(−γn)→n 0,

for anyβ < R−I(X;U)
I(Z;U|X) , k ≤ βn, whereγ > 0 depends on the

gap R−I(X;U)
I(Z;U|X) − β.

III. PROBLEM SETUP AND PREVIOUS WORK

A. Problem Setup

Given a memoryless source and broadcast channel, we
want to maximize the distortion forced on the eavesdropper
(for estimating the source) while communicating the source
reliably within a distortion constraint to the legitimate receiver.
The input of the system is an i.i.d. source sequenceSn

distributed according to
∏n

t=1 PS(st) and the channel is a
memoryless broadcast channel

∏n

t=1 P Y Z|X(yt, zt|xt). The
source realization is causally disclosed to the eavesdropper
during decoding. The source-channel coding model satisfies
the following constraints:

• Encoderfn : Sn 7→ Xn (possibly stochastic);
• Legitimate receiver decodergn : Yn 7→ Ŝn (possibly

stochastic);
• Eavesdropper decoders{PŠt|ZnSt−1}nt=1.

The system performance is measured by a distortion metric
d(·, ·) as follows:

• Average distortion for the legitimate receiver:

E

[

d(Sn, Ŝn)
]

≤n Db

• Minimum average distortion for the eavesdropper:

min
{P

Št|Z
nSt−1}n

t=1

E[d(Sn, Šn)] ≥n De

Definition 1. A distortion pair(Db, De) is achievable if there
exists a sequence of source-channel encoders and decoders
(fn, gn) such that

E[d(Sn, Ŝn)] ≤n Db

and
min

{P
Št|Z

nSt−1}n

t=1

E[d(Sn, Šn)] ≥n De.

The above mathematical formulation is illustrated in Fig. 1.

Encoderfn PY Z|X

Decodergn

Eve

t = 1, . . . , n

Sn Xn
Y n

Zn

Ŝt

Št

St−1

Fig. 1: Joint source-channel secrecy system setup with causal source
disclosure at the eavesdropper

B. Previous Result

Before introducing the new joint source-channel coding
schemes, we first review the achievability result from previous
work [11] of the same problem formulation with an opera-
tionally separate source-channel coding scheme. Althoughthe
problem was only studied for the case of lossless reconstruc-
tion at the legitimate receiver in [11], the result can be readily
generalized to the case of lossy compression as was formulated
in Section III-A.

Theorem 1. (Generalized Theorem 2 of [11]) A distortion
pair (Db, De) is achievable if

I(S;U1) < I(U2;Y ) (3)

I(S; Ŝ|U1) < I(V2;Y |U2)− I(V2;Z|U2) (4)

Db ≥ E

[

d(S, Ŝ)
]

(5)

De ≤ ηmin
a∈Ŝ

E[d(S, a)] + (1− η) min
t(u1)

E[d(S, t(U1))] (6)

for some distributionPSP Ŝ|SPU1|Ŝ
PU2PV2|U2

PX|V2
P Y Z|X ,

where

η =
[I(U2;Y )− I(U2;Z)]

+

I(S;U1)
. (7)

Since the source coding and channel coding parts of the
above scheme are almost independent (with some technical
details), we refer to it as the operationally separate source-
channel coding scheme – Scheme O.

IV. M AIN RESULTS

This section is organized as follows. We first introduce the
idea of secure hybrid coding. We then state the result of using
basic hybrid coding (Scheme I) followed by its proof. We next
state and briefly discuss the result using superposition hybrid
coding (Scheme II). Finally, we analytically compare Scheme
O, I and II, and give a trivial outer bound for completeness.



A. Secure Hybrid Coding

Hybrid coding is a joint source-channel coding technique
[12] where 1) the encoder generates a digital codeword from
the analog source and selects the channel input as a symbol-
by-symbol function of the codeword and the source; and 2)
the decoder recovers the digital codeword from the analog
channel output and selects the source estimate as a symbol-
by-symbol function of the codeword and the channel output.
It has been shown that this joint source-channel code is
at least optimal for point-to-point communication. For the
purpose of achieving secrecy, the symbol-by-symbol mapping
(deterministic) to the channel input in the encoding stage is
modified to be stochastic.
B. Scheme I – Basic Hybrid Coding

An achievability region using basic secure hybrid coding is
given in the following theorem.

Theorem 2. A distortion pair (Db, De) is achievable if

I(U ;S) < I(U ;Y ) (8)

Db ≥ E[d(S, φ(U, Y ))] (9)

De ≤ β min
ψ0(z)

E[d(S, ψ0(Z))]

+(1− β) min
ψ1(u,z)

E[d(S, ψ1(U,Z))] (10)

where

β = min

{

[I(U ;Y )− I(U ;Z)]+

I(S;U |Z)
, 1

}

(11)

for some distributionPSPU|SPX|SUP Y Z|X and function
φ(·, ·).

The proof of Theorem 2 to be presented next uses hybrid
coding combined with the likelihood encoder. The general
idea is that under our choice of the encoder and decoder,
the system induced distributionP is close in total variation
distance to an idealized distributionQ by our construction.
Therefore, by properties of total variation, we can approximate
the performance of the system underP by that underQ.

C. Proof Outline of Scheme I

The source and channel distributionsPS and P Y Z|X are
given by the problem statement. Fix a joint distribution
PSPU|SPX|SUP Y Z|X . We will usePSn to denote

∏n

t=1 PS .
Codebook generation: We independently generate2nR

sequences inUn according to
∏n

t=1 PU (ut) and index by
m ∈ [1 : 2nR]. We useC(n) to denote this random codebook.

Encoder: Encoding has two steps. In the first step, a likeli-
hood encoderPLE(m|sn) is used. It choosesM stochastically
according to the following probability:

PLE(m|s
n) =

L(m|sn)
∑

m̄∈M L(m̄|s
n)

(12)

whereM = [1 : 2nR], and

L(m|sn) = PSn|Un(sn|un(m)). (13)

In the second step, the encoder produces the chan-
nel input through a random transformation given by
∏n

t=1 PX|SU (xt|st, Ut(m)).

Decoder: Decoding also has two steps. In the first step, let
PD1(m̂|y

n) be a good channel decoder with respect to the
codebook{un(a)}a and memoryless channelP Y |U . In the
second step, fix a functionφ(·, ·). Defineφn(un, yn) as the
concatenation{φ(ut, yt)}nt=1 and set the decoderPD2 to be
the deterministic function

PD2(ŝ
n|m̂, yn) , 1{ŝn = φn(un(m̂), yn)}. (14)

Analysis: We can write the system induced distribution in
the following form:

P
MUnSnXnY nZnM̂Ŝn(m,u

n, sn, xn, yn, zn, m̂, ŝn)

, PSn(sn)PLE(m|s
n)1{un = Un(m)}

n
∏

t=1

PX|SU (xt|st, ut)
n
∏

t=1

P Y Z|X(yt, zt|xt)

PD1(m̂|y
n)PD2(ŝ

n|m̂, yn). (15)

An idealized distributionQ is defined as follows to help
with the analysis:

QMUnSnXnY nZn(m,un, sn, xn, yn, zn)

,
1

2nR
1{un = Un(m)}

n
∏

t=1

PS|U (st|ut)

n
∏

t=1

PX|SU (xt|st, ut)

n
∏

t=1

P Y Z|X(yt, zt|xt). (16)

1) Distortion analysis at the legitimate receiver:Applying
Lemma 1 and properties of total variation distance, if

R > I(U ;S), (17)

then

EC(n) [‖P−Q‖TV ] ≤ exp(−γ1n) , ǫ1n →n 0, (18)

where the distributions are over the random variables
MUnSnXnY nZn,

Using the same steps as was given in [14] for the analysis
of the Wyner-Ziv setting, it can be verified that the following
holds:

EC(n)

[

EP

[

d(Sn, Ŝn)
]]

≤ EP [d(S, φ(U, Y ))] + dmax(ǫ1n + δn), (19)

if

R ≤ I(U ;Y ), (20)

whereδn →n 0.
2) Distortion analysis at the eavesdropper:On the eaves-

dropper side, we make the following observation. Define an
auxiliary distribution

Q̌
(i)
SiZn(s

i, zn) ,

n
∏

t=1

PZ(zt)

i
∏

j=1

PS|Z(sj |zj). (21)

UnderQ̌(i),

Si − Zi − Z
nSi−1. (22)



Recall that

QMZnSi(m, zn, si)

=
1

2nR

n
∏

t=1

PZ|U (zt|Ut(m))

i
∏

j=1

PS|ZU (sj |zj, Uj(m)) (23)

and underQ, the following Markov relation holds:

Si − ZiUi(M)− ZnSi−1M. (24)

Applying Lemma 1, we have

EC(n)

[∥

∥

∥
Q̌

(i)

ZnSi −QZnSi

∥

∥

∥

TV

]

≤ exp(−γ2n) (25)

if

R > I(Z;U) (26)

where i here can go up toβn, for any β <
R−I(U ;Z)
I(S;U|Z) .

Consequently,

EC(n)

[
∥

∥

∥
Q̌

(i)

ZnSi −PZnSi

∥

∥

∥

TV

]

≤ exp(−γ1n) + exp(−γ2n). (27)

Note that(26) is a degenerate statement ifR > I(Z;U).
Also note that sinceR > 0, we have

EC(n)

[
∥

∥Qui(M) − PU
∥

∥

TV

]

≤ exp(−γ3n). (28)

Therefore, combining(18), (27), (28), and(19), there exists
a codebookC(n) such that

n
∑

i=1

‖PMZnSi −QMZnSi‖TV ≤ ǫn (29)

n
∑

i=1

∥

∥

∥
PZnSi − Q̌

(i)
ZnSi

∥

∥

∥

TV
≤ ǫn (30)

n
∑

i=1

∥

∥Qui(M) − PU
∥

∥

TV
≤ ǫn (31)

EP

[

d(Sn, Ŝn)
]

≤ EP

[

d(Sn, Ŝn)
]

+ ǫn (32)

where ǫn = n (2 exp(−nγ1) + exp(−nγ2) + exp(−nγ3)) +
dmax(ǫ1n + δn)→n 0.

Now we can bound the distortion at the eavesdropper by
breaking it down into two sections. The distortion after the
time transitionβn can be lower bounded by the following:

min
{ψ1i(s

i−1,zn)}
EP

[

1

k

n
∑

i=j

d(Si, ψ1i(S
i−1

, Z
n))

]

=
1

k

n
∑

i=j

min
ψ1i(s

i−1,zn)
EP

[

d(Si, ψ1i(S
i−1

, Z
n))

]

(33)

≥
1

k

n
∑

i=j

min
ψ1i(s

i−1,zn,m)
EP

[

d(Si, ψ1i(S
i−1

, Z
n
,M))

]

(34)

≥
1

k

n
∑

i=j

min
ψ1i(s

i−1,zn,m)
EQ

[

d(Si, ψ1i(S
i−1

, Z
n
,M))

]

−ǫndmax (35)

=
1

k

n
∑

i=j

min
ψ1(u,z)

EQ [d(Si, ψ1(ui(M), Zi))]− ǫndmax (36)

≥
1

k

n
∑

i=j

min
ψ1(u,z)

EP [d(S, ψ1(U,Z))]− 2ǫndmax (37)

wherek = (1−β)n, j = βn+1, (35) is from (29), (36) uses
the Markov relation given in(24), and(37) uses(31) and the
fact that

QZiSi|Ui
(zi, si|ui) = PZ|U (zi|ui)PS|ZU (si|zi, ui).

Similarly, by repeating the above process by replacingQ

with Q̌ using (30), the Markov relation given in(22), and
the definition ofQ̌ given in (21), we can lower bound the
distortion before timeβn as

min
{ψ0i

(si−1,zn)}i

EP

[

1

k

k
∑

i=1

d(Si, ψ0i(S
i−1, Zn))

]

≥
1

k

k
∑

i=1

min
ψ0(z)

EP [d(S, ψ0(Z))]− ǫndmax, (38)

wherek = βn. Collecting(17), (20), and(32) and taking the
average of the distortion at the eavesdropper over the entire
blocklengthn from (37) and (38) finishes the proof.

D. Scheme II – Superposition Hybrid Coding

An achievability region using superposition secure hybrid
coding is given in the following theorem.

Theorem 3. A distortion pair(Db, De) is achievable if

I(V ;S) < I(UV ;Y ) (39)

Db ≥ E [d(S, φ(V, Y ))] (40)

De ≤ min{β, α} min
ψ0(z)

E [d(S, ψ0(Z))]

+ (α−min{β, α}) min
ψ1(u,z)

E [d(S, ψ1(U,Z))]

+(1− α) min
ψ2(v,z)

E [d(S, ψ2(V, Z))] (41)

where

β = min

{

[I(U ;Y )− I(U ;Z)]+

I(S;U |Z)
, 1

}

(42)

α = min

{

[rs − I(Z;V |U)]+

I(S;V |ZU)
, 1

}

(43)

rs = min{I(V ;Y |U), I(UV ;Y )− I(S;U)} (44)

for some distributionPSPV |SPU|V PX|SUV P Y Z|X and func-
tion φ(·, ·).

The proof of Theorem 3 follows the same line as the proof
of Theorem 2 with the modification of using a superposition
codebook and the superposition version of the soft-covering
lemma which was discussed in Corollary VII.8 of [16].

Under Scheme II, the distortion at the eavesdropper can
potentially experience two transitions atβn and αn due to
the superposition structure of the code.
E. Scheme Comparison

The relationships among Scheme O, I and II can be sum-
marized in the following corollaries.

Corollary 1. Scheme II generalizes Scheme I.

To see this, notice that we can letU = ∅ in Theorem 3. In
fact, Scheme II simplifies to Scheme I ifβ ≥ α.



Corollary 2. Scheme O is a special case of Scheme II.

This can be verified by using the following assignment of
random variables from Theorem 1 to 3:

U ← U1U2 andV ← ŜV2

to show that the inequalities(3) and(4) satisfy the inequality
(39), β = η, andα = 1. The equivalence of(5) and(6) to (40)
and(41) can be obtained by using the statistical independence
of SŜU1 andU2V2Y Z.

F. The Perfect Secrecy Outer Bound

Theorem 4. If (Db, De) is achievable, then

I(S;U) ≤ I(U ;Y ) (45)

Db ≥ E[d(S, φ(U, Y ))] (46)

De ≤ min
a∈Ŝ

E[d(S, a)] (47)

for some distributionPSPU|SPX|SUP Y Z|X and function
φ(·, ·).

This trivial outer bound can be verified by using the
optimality of hybrid coding for point-to-point communication
and the fact that the estimation by the eavesdropper cannot be
worse than the a-priori estimation of the source.

V. NUMERICAL EXAMPLE

We use the same example that was considered in [11].
The source is distributed i.i.d. according toBern(p) and
the channels are binary symmetric channels with crossover
probabilitiesp1 = 0 andp2 = 0.3. For simplicity, we require
lossless decoding at the legitimate receiver. Hamming distance
is considered for distortion at the eavesdropper.

A numerical comparison of Scheme I with Scheme O
is demonstrated in Fig. 2. The choice of auxiliary random
variableU in Scheme I isSX , which may not necessarily be
the optimum choice but is good enough to outperform Scheme
O. Scheme II is not numerically evaluated. However, because
of Corollary 1 and 2, we know analytically that Scheme II is
no worse than O or I.

0.0 0.1 0.2 0.3 0.4 0.5

p

0.0

0.1

0.2

0.3

0.4

0.5

D
e

Scheme O
Scheme I
No Encoding
Perfect Secrecy Outer Bound

Fig. 2: Distortion at the eavesdropper as a function of source
distributionp with p1 = 0, p2 = 0.3.

VI. CONCLUSION

This work has investigated secure joint source-channel cod-
ing under a general information-theoretic secrecy formulation.
By using hybrid coding, we achieve better performance than
a previously considered operationally separate source-channel
coding scheme (O). Although a simple numerical example
shows that a basic hybrid coding scheme (I) can potentially
outperform Scheme O, we have only managed to prove ana-
lytically a superposition hybrid coding scheme (II) can fully
generalize both Scheme O and I. The direct relation between
Scheme O and I, and whether Scheme II is strictly better than I
are still open for further investigation. Non-trivial outer bounds
are yet to be explored.
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