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Abstract—Knowledge Graphs (KGs) have become ever-more
important for modelling biomedical information, as their intrin-
sic graph structure matches the structure of many biological
interaction networks. Together with KGs, Knowledge Graph
Embeddings (KGEs) have shown immense potential to learn
biological data and predict new, in-band facts about the data the
KG describes. However, recent literature has suggested several
major deficits to KGEs: that they have an extremely short
‘receptive field’ of data they use to make predictions and that
their learning is guided by memorising graph structure, not
learning latent semantics. Moreover, while several studies have
suggested that graph structure and KGE model choice affect
optimal hyperparameters, the exact relationship of hyperparam-
eters to learning remains unknown and is instead solved using a
computationally intensive hyperparameter search.

In this paper we introduce TWIG (Topologically-Weighted
Intelligence Generation), a novel, embedding-free paradigm for
simulating the output of KGEs that uses a tiny fraction of the
parameters. TWIG learns weights from inputs that consist of
topological features of the graph data, with no coding for latent
representations of entities or edges. Our experiments on the
UMLS dataset show that a single TWIG neural network can
predict the results of state-of-the-art ComplEx-N3 KGE model
nearly exactly on across all hyperparameter configurations.
To do this it uses a total of 2590 learnable parameters, but
accurately predicts the results of 1215 different hyperparameter
combinations with a combined cost of 29,322,000 parameters.
Based on these results, we make two claims: 1) that KGEs
do not learn latent semantics, but only latent representations
of structural patterns; 2) that hyperparameter choice in KGEs
is a deterministic function of the KGE model and graph
structure. We further hypothesise that, as TWIG can simulate
KGEs without embeddings, that node and edge embeddings are
not needed to learn to accurately predict new facts in KGs.
Finally, we formulate all of our findings under the umbrella
of the “Structural Generalisation Hypothesis”, which suggests
that “twiggy” embedding-free / data-structure-based learning
methods can allow a single neural network to simulate KGE
performance, and perhaps solve the Link Prediction task, across
many KGs from diverse domains and with different semantics.
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I. INTRODUCTION

Knowledge Graphs (KGs) are graph-based data stores in
which all data is expressed as a series of labelled nodes
connected by a set of labelled edges; every set of a “subject”
(or head) node s, a “predicate” edge p, and an “object” (or tail)
node o is called an (s, p, 0) triple [9]]. The ability to represent
data as triples in a graphical form has become particularly
useful in the domains of bioinformatics and computational
biology, where massive biological and biomedical datasets can
be directly and intuitively represented as a network of relations
and interactions [2], [5], [10], (11, (18], [22, [250, [28].
However, despite the power of this graph-based format, much
of the data far exceeds the size that can be easily analysed by
humans without the use of computational tools. The domain
of Knowledge Graph Embeddings aims to address this gap by
producing low-dimension embeddings of nodes and edges in
a graph that can be used to both summarise the graph data
and predict new links [7[], [9], [20], [26].

Specifically, all KGE models are trained to solve the Link
Prediction (LP) Task, which consists of answering queries in
the form (s,p,?) or (?,p,0), where ? represents the subject
or object to be predicted [7], [9], [20], [26]. It does this by
learning embeddings for each node and edge that can be used
to assign a plausibility score to every statement (s,p, o) that
should be high if (s,p,0) occurs in the KG, and low if it
does not [1], [7, (9], [20], [26]. In other words, KGEs are
trained to summarise the information contained in a KG in
low-dimensional latent space in a way that distinguishes true
facts from false statements [7]], [9], [20], [26].

The literature around KGE models generally attributes “la-
tent semantics” to the learned embeddings — it assumes that



the learned features represent a higher level of conceptual
knowledge about the graph [7]], [20], [26]. The underlying
assumption in this presentation of KGE methods, which has
remained largely unquestioned, is the assumption that KGEs
have learned a higher-order semantic representation of the
knowledge graph that necessarily extends beyond what could
be learned by simply memorising common graph structures to
replicate [7], [20], [26].

Similarly, with the partial exception of some recent works
targeted at specific parts of KGE model construction (see [14],
[19], [24]), established KGE literature assumes that hyper-
parameter searching is necessary to determine at least some
optimal model settings [1]]. Moreover, there is no established
hypothesis that optimal hyperparameters can be predicted in
a pre-hoc manner before running a full search [7], [9], [20],
[26]. This means, that, to date, essentially all hyperparameter
selection is performed using some manner of hyperparameter
search over a large range of possible combinations.

We summarise the above as three core assumptions that
existing KGE literature makes:

1) The Embedding Assumption: that embeddings are
necessary to solve, or at least best suited to solving,
the Link Prediction task,

2) The Latent Semantics Assumption: that KGE models
learn embedding semantics representing higher order
conceptual knowledge, which they then apply to make
predictions on KG data,

3) The Hyperparameter Stochasticity Assumption: that
hyperparameters must be explicitly searched for, and
particularly that optimal hyperparameters cannot be pre-
dicted in a pre-hoc manner.

We highlight that no study known to the authors, save
[23]] alone, has specifically questioned the validity of these
assumptions on modern KGE models and KG learning ap-
proaches. Reference [23]] is notable for explicitly questioning
Hyperparameter Stochasticity Assumption, and hypothesising
that optimal hyperparameters are a deterministic function of
global KG structure.

In this work, we produce a new analytic paradigm to
analyse all three of these core assumptions in the context of
KG learning. The core contribution of our work is a novel
Neural Network (NN) called TWIG (Topologically-Weighted
Intelligence Generation) that is able to:

1) simulate the output of KGE models in terms of both
the ranked list predictions and the overall predictive
performance,

2) perform this prediction using only graph structure and
hyperparameter settings as input features; notably using
no node or edge embeddings of any form,

3) perform these predictions over the entire grid of searched
hyperparameters with a single TWIG model, thereby
achieving dramatic reduction in parameter use and com-
putational and memory cost.

We perform all of our experiments on the state-of-the-art
ComplEx-N3 model [15] and the biological UMLS dataset

[18], a dataset that despite its small size sees consistent and
important use in the biomedical domain [ 1]]. While our analysis
at the moment is limited by the use of a single model and
dataset for our analysis, our novel TWIG model shows remark-
ably strong results in simulating the output of KGEs across
all hyperparameter settings. We therefore postulate that further
work in this area will be of immediate and direct benefit. We
expect that such further work will deepen our understanding of
the mechanisms by which KGEs work, expand our knowledge
of KG structure-hyperparameter relations, and enable dramatic
reductions in parameter use.

Furthermore, the existence of a high-performance neural
network such as TWIG that can replicate the results of KGEs
while only using global features consisting of hyperparameter
configurations and graph structure provides strong initial evi-
dence of three core hypotheses, which are the major theoretical
results of this work. These hypotheses are as follows:

1) The Structural Learning Hypothesis: That KGEs do not
learn latent semantics in embeddings, but rather only
learn to implicitly summarize graph structure,

2) The Hyperparameter Determinism Hypothesis: That op-
timal hyperparameter choice is a deterministic function
of graph structure and the KGE model being used.

3) The TWIG Hypothesis: That node / relationship embed-
dings are not necessarily needed to solve the Link Pre-
diction (LP) task, but instead that learnable parameters
could all be part of a single NN.

We are able to provide initial evidence for all of these
hypotheses for the ComplEx-N3 model and the UMLS dataset,
and we propose that they will hold across other KGE models
and KG datasets. We note, however, that while TWIG can
simulate the output of KGE:s, it is not currently able to solve
the Link Prediction Task; as a result, there is less direct
evidence for the TWIG Hypothesis as compared to the Struc-
tural Learning and Hyperparameter Determinism Hypotheses.
Further exploration of these hypotheses is left to future work.

We further use the above hypotheses, and the graph-agnostic
properties of TWIG, to propose The Structural Generalisa-
tion Hypothesis. This hypothesis states that since simulated
learning methods such as TWIG allow prediction of the
outputs of KGEs without using embeddings, that these simu-
lated learning methods can be extended to allow generalised
learning of graphs across KGs. While we are unable to fully
test and evaluate this hypothesis in this work, existing literature
taken in tandem with our empirical results provides strong
initial support at the theoretical level.

The remainder of this paper is structured as follows. Section
2 provides an overview of related works in the literature.
Section 3 provides basic preliminaries and formal hypothesis
formulations needed to robustly present our methods and
results. Section 4 presents the methods for all of our experi-
ments, and forms the bulk of our paper. Section 5 presents our
results and discusses them in the context of the existing state-
of-the-art. Finally, Section 6 concludes the paper, discusses
the limitations of this work, and outlines the major future
directions that remain open.



All code and datasets needed to reproduce the experiments
in this paper are included at the link https://github.com/
Jeffrey-Sardina/TWIG-release- 1.0.gitl

II. RELATED WORKS

To the extent of the knowledge of the authors, no techniques
currently exist that allow embedding-free learning of Knowl-
edge Graphs nor embedding-free simulation of KGE models.
Knowledge Graph Embeddings are by definition embedding-
based [7]], [9ll, [20], [26]; existing GNN approaches such as
GCN, GraphSage, CensNet, IDGL, and many others all create
embedding vectors for nodes / edges [6]], [13]], [29]]. Similarly,
only one work known to the authors ( [23]]) has attempted
to explicitly and methodologically question the Hyperparame-
ter Stochasticity Assumption, suggesting that hyperparameter
choice is in fact a deterministic function of graph structure.
No work known to the authors questions either the Embedding
Assumption or the Latent Semantics Assumption.

Some work has been done in creating sub-node embeddings
for KGEs, which results in a significant reduction of mem-
ory needed to run KGEs. This is exemplified in the recent
NodePiece model, which uses anchor nodes and edges to
tokenise embeddings for all other nodes and edges [8]. How-
ever, NodePiece remains an embedding-based method, with
explicit embeddings for all anchors and implicit (tokenised)
embeddings for all non-anchor nodes and edges [8].

There has been some previous work in determining the
relationship between optimal hyperparameters, KGE model
choice, and graph structure [If], [14], [19], [21]], [24]. In
particular, [[14] analysed optimal negative sampler choice for
KGE models in terms of KGE model choice and graph
structure. Reference [[19]] found similar relations for optimal
loss function choice, and [21] analysed optimal KGE model
choice for a given dataset. Two substantially broader studies
[1], [24] documented overall KGE model performance on a
large variety of datasets; however, neither of these specifically
analysed the impact of individual hyperparameters as a func-
tion of graph structure.

III. PRELIMINARIES

A. Literature Definitions

Knowledge Graphs. A Knowledge Graph, G = {E, R} is
set of entities £ and a set of directed, labelled relations R
[9]. Each statement in a Knowledge Graph is the 3-element
triple consisting of a subject, a predicate, and an object; this
is written (s, p,0), where s € E,p € R,0 € E.

Knowledge Graph Embedding. Knowledge Graph Embed-
ding (KGE) models convert a KG’s nodes and edges to vector
embeddings [7], [9], [20], [26]]. Formally, this process can be
defined as (s,p,0) — (es, ep.€,) Where s, p, and o represent
the subject, predicate, and object in a triples and e, ¢, and ¢,
their respective embeddings; g and e, are defined analogously
in the case that named graphs are embedded.

Link Prediction Task. The Link Prediction (LP) Task is
to answer queries (7,p,o0) and/or (s,p,?) where s € E,p €
R,0 € FE and 7 is the entity being predicted to complete

the query triple [7[], [O, [20], [26]. KGE models solve this
by learning to maximise the difference between the scores of
‘positive’ triples observed in training and randomly generated
(‘negative’) triples not in the training dataset, according to a
model-specific scoring function [7]], [14], [20], [26].

KGE model. A KGE model is an embedding-based model
that solves the Link Prediction task. The output of these
models is a rank-ordered list g of all nodes E that could
answer the LP query (?,p,0) or (s,p,?). lg is ordered such
that nodes with the lowest rank (i.e. the rank closest to 1) are
considered the best answers, and nodes with higher rank are
considered less probable answers. As such, KGE models can
be described as embedding based models that learn to rank.

Mean Reciprocal Rank. Given a ranked list of true triples
versus all possible generated negatives (formed by randomly
corrupting the subject or object) the Mean Reciprocal Rank
(MRR) metric takes the mean of the reciprocal of all the
ranks of the known true triples as a performance score. It
is necessarily bounded on (0, 1], with higher values indicating
better performance.

B. Problem Specification

KGE models learn to minimise the rank of known-true
triples and maximise that of all other triples [7], [[14], [20],
[26]. The result of this is graph-specific embeddings — the
embedding found using one KGE model for one dataset cannot
be applied directly to any other dataset [7]], [Oll, [20], [26].

While this approach has been successful — being the univer-
sal foundation for all KGE methods known to the authors to-
date [1], [7], 191, [20[, [24], [26]] — we propose an embedding-
free learning paradigm that simulates the output of the link
prediction task by learning to predict all ranks output by an
existing KGE method. In doing this, we restrict our inputs to
two types: local structural features of the query triple being
predicted, and hyperparameters used by the original KGE
model to learn that triple.

As such, this approach necessarily is about replicating KGE
model behaviour using only structure and model settings, not
latent features or any sort of graph semantics or logic. In
other words, this is a simulation procedure, and we refer to it
as “Learning to Simulate”. Similarly, we refer to the task of
learning to simulate KGEs as the “KGE Simulation Task”, to
distinguish it from the Link Prediction Task.

We note that successfully solving this task would provide
strong initial evidence for our three core hypotheses; i.e. the
Structural Learning Hypothesis, the Hyperparameter Deter-
minism Hypothesis, and the TWIG Hypothesis.

IV. METHODS
A. Dataset Choice

For our study, we chose UMLS, a standard biomedical
KG commonly used both in biological applications and as a
benchmark dataset for KGEs [[1]], [18]. In particular, we chose
UMLS over the more standard FB15K-237 and WNI18RR
KGs for two reasons. First, it is directly applicable to the
biomedical domain. Second, it is substantially smaller than
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Structural Feature \ Value

Num. nodes 135

Num. relations 46

Num. triples 6,529

Min. degree 4

Median degree 71

Max. degree 382
TABLE I

OVERALL STRUCTURE FEATURES OF THE UMLS DATASET

Values Searched

Basic, Bernoulli, Pseudo-Typed

5, 25, 125

Margin Ranking, Binary Cross Entropy (wth
Logits), Cross Entropy

Hyperparameter
Negative Sampler
#Negatives per Positive
Loss Function

Margin (if applicable) 05,1,2
Learning Rate le-2, le-4, le-6
Embedding dimension 50, 100, 250
Regularisation Coefficient le-2, le-4, le-6
TABLE 11

THE GRID OF HYPERPARAMETERS USED IN THE EXPERIMENTS

either FB15K-237 or WN18RR, which allowed us to perform
multiple replicated experiments on a large hyperparameter
grid, something that would be computationally difficult on
the other datasets even using powerful modern computational
hardware [1], [18]].

The overall structure of the UMLS dataset is given in Table
Note that degree refers to total degree; i.e. the number of
edges incident on a particular node, regardless of whether the
relationship is an incoming edge or an outgoing edge.

B. Model Space Search

Given that ComplEx-N3 (the ComplEx KGE model using
the L3 regulariser) is established as the de-facto state-of-
the-art KGE model for many applications [15], as well as
remaining one of the strongest overall KGE models [1]], [12],
we performed all of our experiments on the ComplEx-N3
model. We trained different ComplEx-N3 models under a
broad grid of hyperparameter values to determine relative
performance in each case; the grid used is shown in Table
A technical description of all of these hyperparamters and
their definitions can be found in [1].

All training was done on the training set, and evaluations of
hyperparameter performance were done on the validation set.
All experiments were run using the Adam optimiser for 100
epochs.

For all hyperparameter settings, we recorded two outputs:
the Mean Reciprocal Rank (MRR) score of the KGE model
overall, as well as the ranked-list predictions for every triple
in the validation set against its corruptions.

We repeated this procedure 4 times, to produce 4 sets of
size-1215 grids of results. One of these grids was separated
as a hold-out test-set; the remaining 3 were used as training
sets, as described below.

C. Data Modelling

1) Feature Selection: The result of running the model space
search was a grid of 1215 distinct hyperparameter combina-
tions, as well as the individual ranked-list results and Mean

Reciprocal Rank (MRR) scores for all those combinations.
As our goal was to simulate the task of Knowledge Graph
embedding, we framed our problem of constructing TWIG as
predicting the rank that would be assigned to each individual
triple in the UMLS validation set used to evaluate the KGEs.

In order to provide a valid test of our hypoth-
esis, TWIG must take the form of a function
f (structure, hyperparameters) — rankedlist. We present
this as a regression problem where the hyperparameter
features are the values of the hyperparamters used for each
experiments. For structure, we represented this as local
structure about the triple whose score is being predicted.
Noting that existing KGE literature demonstrates that KGEs
only learn how to make predictions for a triple from the 1
or 2-hop distance around that triple [3], [4], [16], [17], [27],
we limit the local structural features that are included to
those that can be mined in the local 2-hop distance about the
triple being predicted. Note that when computing structural
values, we compute them only as seen in the train set of the
UMLS KG so that there is no data leakage from the graph’s
validation or test sets.

Overall, the full set of structural and hyperparameter fea-
tures included are given in Table We note that the valida-
tion set used in our evaluation contains 1304 queries in total.

2) Determination of Signal: Once our features were pre-
pared, we then performed an analysis of what sources of signal
we could use to learn on this data and simulate KGE using
a single neural network. In particular, we found two critical
sources of signal that could be very readily learned, and very
easily distinguished from noise. These were:

1) near-1 correlation of MRRs from KGE models run on
the same hyperparameters but with different random
seeds

2) near-0 KL Divergence of the distribution of values in
output ranked lists from KGE models run on the same
hyperparameters but with different random seeds

We will discuss both of these choices in turn. With respect to
mining the high correlation of MRR across experiments run on
the same hyperparameters but with different random seeds, we
observed that the correlation of MRR values between our four
rounds of hyperparameter validation were greater than 0.99 in
all cases. This is shown in Table Since correlation itself is
not a loss function, we instead follow the protocol common in
most regression systems and used Mean Squared Error (MSE)
loss between the predicted and true MRR values as a proxy
metric to mine the extremely high correlation between MRRs.

We could not use correlation between ranked lists as a
source of signal, however, because the correlation between
ranked lists was exceedingly low, often near 0, indicating that
it would not be useful as signal during learning. Figure[T|shows
the distribution of Pearson-correlated values for all combina-
tions of ranked lists that used the same hyperparameters but
different random seeds. Due to the tendency of these to be
centred near zero, we concluded that they were not a reliable
source of signal for learning.



Feature

Meaning

Hyperparameter Features
Negative Sampler
#Negatives per Positive

Loss Function
Margin (if applicable)

Learning Rate
Embedding dimension
Regularisation Coefficient
Structural Features
is_head

s_deg

o_deg

p_freq

s_p_cofreq

o_p_cofreq

s_o_cofreq

s min deg neighbnour
s max deg neighbnour
s mean deg neighbnour
o min deg neighbnour
o max deg neighbnour
o mean deg neighbnour
s num neighbnours

o num neighbnours

s min freq rel

s max freq rel

s min freq rel
o min freq rel

o min freq rel

o min freq rel
s num rels

o num rels

A SUMMARY OF ALL INPUT FEATURES USED, AND THEIR DEFINITIONS, IN
THE TWIG MODEL

The negative sampling strategy used

The number of negatives samples for each
positive triples during training

The loss function used

The margin used in the loss function (if
applicable)

The learning rate for the Adam optimiser
The dimension of KGE model embeddings
The coefficient multiplies to the regulariser

Whether the part of the triple being cor-
rupted is the head (i.e. (2,p,0)) or the tail
(i.e. (s,p,7)

The degree of the subject node in the train-
ing set

The degree of the object node in the training
set

The frequency of the predicate in the train-
ing set

The number of times the given subject and
predicate co-occur in the training set

The number of times the given subject and
predicate co-occur in the training set

The number of times the given subject and
object co-occur in the training set

The degree of the lowest-degree neighbour
of the subject node in the training set

The degree of the highest-degree neighbour
of the subject node in the training set

The degree of the mean-degree neighbour
of the subject node in the training set

The degree of the lowest-degree neighbour
of the object node in the training set

The degree of the highest-degree neighbour
of the object node in the training set

The degree of the mean-degree neighbour
of the object node in the training set

the total number of neighbours the subject
node has in the training set

the total number of neighbours the object
node has in the training set

The frequency of the lowest-degree neigh-
bour of the subject node in the training set
The frequency of the most-frequent-
occurring edge incident on the subject node
in the training set

The mean frequency of edges incident on
the subject node in the training set

The frequency of the lowest-degree neigh-
bour of the object node in the training set
The frequency of the most-frequent-
occurring edge incident on the object node
in the training set

The mean frequency of edges incident on
the object node in the training set

The total number of relations incident on
the subject node in the training set

The total number of relations incident on

the object node in the training set
TABLE III
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Fig. 1. Distribution of the Pearson correlation values between all ranked lists
using the same hyperparameter configurations.

We note that the KL Divergence of the distribution of values
in output ranked lists from KGE models run on the different
hyperparameters was substantially higher than those run on the
same hyperparameter under different initialisations; see Table
[V]for average KL Divergence values between experiments with
all matching hyperparamters (calculated as the KL Divergence
between histograms with 30 bins of the same width formed
from the values in the ranked list). In contrast to this, taking
the average KL Divergence using the same methods of all non-
identical sets of hyperparameters, the average KL Divergence
value was 0.3632 — substantially higher than those obtained
under the same hyperparameters. This indicates that KL Di-
vergence between ranked lists from experiments with the same
hyperparamters is much lower than that expected between
experiments with different hyperparameters, suggesting it is
a strong source of signal for learning. Since KL Divergence
itself is a loss function, we used KL Divergence between the
distributions of the values in the predicted and true ranked lists
as our second loss function during learning.

During training, we used the same manner of calculation for
the distribution of ranks in the ranked list: the KL Divergence
between histograms with 30 bins of the same width formed
from the values in the predicted and true ranked lists. How-
ever, since the exact counting-based binning operation is not
differentiable, we replaced it with a ”soft histogram” version
that assigns values into bins using the differentiable Sigmoid
function rather than the non-differentiable binary step function.
A reference implementation of this function is provided with
the rest of our code in our published codebase.

Finally, we found that both of these sources of signal (MSE
and KL Divergence) require a full ranked list, not a single
output value, to be computed. In other words, all elements of
the ranked list have to be predicted before loss is calculated.
As a result, even though our input features are vectors, we can
only calculate loss at the level of all aggregated predictions. To
do this, we construct batches for each unique hyperparameter
configuration (of 1215 total) and random seed (of 3 iterations



Exprunl Exprun2 Exprun3 Exprun 4
Exp run 1 1
Exp run 2 0.994 1
Exp run 3 0.994 0.995 1
Exp run 4 0.9939 0.9943 0.9951 1
TABLE IV

PAIRWISE CORRELATIONS OF THE MRR SCORES FOR ALL 1215
HYPERPARAMETER COMBINATIONS ACROSS 4 RUNS USING DIFFERENT
RANDOM SEEDS FOR FOR EACH RUN AND HYPERPARAMETER

COMBINATION
Exprunl Exprun2 Exprun3 Exprun4
Exp run 1 0
Exp run 2 0.0250 0
Exp run 3 0.0250 0.0245 0
Exp run 4 0.0248 0.0248 0.0247 0
TABLE V

AVERAGE KL DIVERGENCE VALUES OF THE DISTRIBUTIONS OF VALUES
IN OUTPUT RANKED LISTS FOR ALL 1215 HYPERPARAMETER
COMBINATIONS ACROSS 4 RUNS USING DIFFERENT RANDOM SEEDS FOR
FOR EACH RUN

total in the training set), resulting in 3645 batches in total. All
predictions for a batch are then aggregated, used to compute
the distribution of ranks and MRR, and then passed into our
loss functions during training.

3) Interpretation of our Modelling Approach: Our choice
to model the atomic unit of learning as a batch of inputs
representing all triples being predicted has a few important
theoretical properties. All parameters are updated based not
on how a specific rank was predicted, but by how the list of
ranks as a whole was predicted as a broader scale. We note that
none of our loss terms enforce explicit order on this ranked
list. This means that which triple is assigned which rank is
left free under the condition that, at a global scale, the order-
less set of ranks assigned to the set of triples still matches the
expected distribution and has the expected MRR.

Another crucial property of the rank lists themselves is that
ranked lists run on the same hyperparamters, but with different
random seeds, correlate very poorly (see Figure [I). This
indicates that different parts of a graph are learned differently
based only on random initialisations, and that the same fact
could be learned well or not purely due to chance. However,
the near-1 correlation of MRRs with identical hyperparameters
but across different random seeds (see Table indicates
that overall learning is highly robust in th face of random
initialisations. This effect is theoretically critical both for KG
learning in general and for understanding the operation of
KGE models in deployment. It means that any attempt to
enforce an explicit hard order on ranked-list output would
likely decrease performance. Instead, either a soft / partial
order, or no explicit loss term to enforce ordering, are best
suited here. While we have taken the no-explicit-ordering
approach here, we leave analysis of a soft, partial-order based
system to future work.

D. Constructing TWIG

TWIG was constructed as a neural network made of exclu-
sively Dense Layers that form three key components. After

taking input (a vector of features describing hyperparameters
and KG structure around the triple being predicted, as given in
Table it splits this input into two parts: one describing the
hyperparameters and one describing the structural elements.
Both of these input feature sub-vectors are then passed through
their respective learning components to produce hidden rep-
resentations of the input data. These are the Hyperparameter
Learning Component (on the left, in green) and the Structure
Learning Component (on the right, in blue), respectively. The
output of each of these components is then concatenated and
passed into the third and final Integration Component (at
the bottom, in black) that produces a hidden representation
integrating the information learned from both the structural
data and the hyperparameter data. The output of TWIG is a
single value for each input vector, which represents the rank
assigned to the triples query represented by the input. Note
that the output is passed through the ReLU activation function
and incremented by 1 because the output, which represents a
predicted rank, is defined as a strictly positive value greater
than or equal to 1.

Figure [2| shows the neural architecture of TWIG in detail,
including the number of Dense Layers in each component
and the input and output sizes of each. ReLU is used as the
activation function between all Dense Layers in the network.

For training, we adopted a 2-tiered approach. We trained
TWIG for 50 epochs using only KL Divergence between
ranked lists as a loss function. After this, we froze the
parameters in all layers save the final layer, and trained for
another 100 epochs using both KL Divergence between ranked
lists and Mean Squared Error (MSE) loss between predicted
and true MRR scores as loss functions. As such, a total of 150
epochs were used for training.

V. RESULTS AND DISCUSSION

Our core result is this: The fully-trained TWIG model
achieves an R2 value of 86.18% for predicting MRR of a
hyperparameter combination, and does this by predicting the
entire ranked list using only localised graph features and
hyperparameter setting information. This R2 value means that
TWIG is able to explain 86.18% of the variation in MRR seen
across all different hyperparameter settings using KG structure
and model configuration only as input, and corresponds to
an overall correlation of 0.9371. While there are no existing
baselines known to the authors to which we can compare, we
can conclude that this outperforms the simplest average-MRR
baseline, as such a function is constant and therefore has an
R2 value of 0%. These results in themselves have huge impli-
cations, which we will address in turn: the Structural Learning
Hypothesis, the Hyperparameter Determinism Hypothesis, and
the TWIG Hypothesis,

The Structural Learning Hypothesis states that KGEs
do not learn latent semantics in embeddings, but rather only
learn to implicitly summarize graph structure. Our results here,
showing that TWIG can simulate the output of ComplEx-
N3 across hyperparameter settings, prove that using structure
only, without any latent semantics of the KG, is enough to
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Fig. 2. The TWIG neural architecture, based off of three core components
for learning hyperparameter representations (green), structure representations
(blue) and for integrating those representations to produce output (black).

replicate almost entirely the predictions of KGEs run on the
UMLS dataset. This indicates that KGEs on the UMLS dataset
are not performing any significant learning that cannot be
summarised by structure. We hypothesise that the Structural
Learning Hypothesis will hold across other KGE models and
datasets, but leave testing that hypothesis for future work.

The Hyperparameter Determinism Hypothesis states that
optimal hyperparameter choice is a deterministic function of
graph structure and the KGE model being used. Once again,
we show that this hypothesis holds for the ComplEx-N3 KGE
model and the UMLS dataset — the extremely high correlation
and R2 value seen indicate that the TWIG NN is such a
function that can deterministically map hyperparameters to
model performance. This means that, for the model and
dataset tested, optimal (and indeed all) hyperparameters are
necessarily a deterministic function of graph structure. We
hypothesise that the Hyperparameter Determinism Hypothesis
will hold across other KGE models and datasets, but leave
testing that hypothesis for future work.

The TWIG Hypothesis states that node / relationship
embeddings are not needed to solve the LP task. Since TWIG
is able to construct a ranked list from localised graph structure,
and since this ranked list has an MRR that matches with
very high precision that of the ground-truth MRR, our data
suggests that embeddings are not needed to simulate the output
of ComplEx-N3 trained on UMLS, and further suggests that
this simulation could feasibly extend to other KGE models
and datasets. However, whether embedding-free (“twiggy”)
methods can solve the Link Prediction Task in full, rather
than just simulate the output of KGEs, remains to be tested.
We hypothesise that twiggy, embedding-free LP is possible on
basis of the success of our TWIG model in simulating KGEs.
We further hypothesise that this will hold across KGE models
and datasets, but leave testing this as a future direction.

Overall, these results suggest that learning is driven not by
latent semantics, but by summarisation of data structure. All
1215 experiments in the test set had a combined parameter
cost of 29,322,000 parameters. TWIG, which uses only 2,590
parameters, recapitulated the results of all of those experiments
— in other words, it simulated their ranked list and MRR output
with high accuracy while using 0.008832% of the parameters
needed to originally produce the data. Thus, TWIG represents
the outputs of KGE models in a highly compact manner.

Finally, we propose The Structural Generalisation Hy-
pothesis. Given that that TWIG can lead to massive reduc-
tions in parameter use, and supposing that the above three
hypotheses hold, we propose that TWIG can generalise not
only over different hyperparameter settings, but also over
different Knowledge Graph datasets. Since all KGs can be
annotated by the same structural features, and since KG-
specific embeddings are no longer needed, TWIG would in
theory allow ranked-list and MRR computation on novel
datasets from their structure alone. This suggests that TWIG
could lead to a massive step forwards in the generalisability
of graph models and in graph learning. Moreover, if spe-
cific embeddings neither contain higher-order semantics (the
Structural Learning Hypothesis), then this method should be
expected to match the performance of existing state-of-the-art
KGE models, without the need for hyperparameter searching
or KG-specific learning. We note that existing literature has
already demonstrated that KGEs learn different regions of
graph differently based on degree [4], suggesting that the
Structural Generalisation Hypothesis has a theoretical basis
in existing literature as well.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose three novel hypothesis: the Struc-
tural Learning Hypothesis, the Hyperparameter Determinism
Hypothesis, and the TWIG Hypothesis. The core idea behind
all three of these hypothesis is that latent semantics are neither
needed, nor actually learned, in KGEs — that learning and
hyperparameter choice are instead driven entirely by graph
structure. Our new TWIG model is able to simulate the output
of KGE models across 1215 hyperparameter configuration



with high fidelity (R2 = 0.8618%) while using only 0.008832%
of the parameters.

Our work here is limited primarily by the scope of data
available — our analysis was limited to the state-of-the-art
ComplEx-N3 KGE model and the biomedical dataset UMLS.
More work is needed to assess the validity of our findings
on other KGE models and other datasets. However, non-
withstanding these notable limitations, our work is the first of
its kind known to the authors to take a ground-up, structure-
based analysis of KGs and KGE models, to suggest hyperpa-
rameter determinism rather than stochasticity, and to provide
evidence that embeddings may not be needed to solve the Link
Prediction Task. The authors intend to follow up on this work
with much more expansive studies to assess to what extent
these findings are general to KG learning.
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