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Abstract

This paper introduces a fault-tolerant group communi-
cation protocol that is aimed at grid and wide area environ-
ments. The protocol has two layers. The lower layer pro-
vides a total order of messages in one group, while the up-
per layer provides an ordering of messages accross groups.
The protocol can be used to implement sequential consis-
tency. To prove the correctness of our protocol we have used
a combination of model checking and mathematical proofs.
The paper also presents the behavior of our implementation
of the protocol in a simulated environment.

1. Introduction

Distributed systems, historically, have proved to be both
difficult to implement and difficult to reason about. In par-
ticular, it is not easy to develop systems that simultaneously
have good usability, scalablility, reliability/fault-tolerance,
and performance characteristics. Since these properties of-
ten tend to work in opposing directions, many current sys-
tems choose to sacrifice one in favor of another.

The focus of this paper is on the implementation of a
distributed group communication protocol [13] for GRID
environments. This protocol has two layers: the first layer
provides atomic multicast within a group of nodes; the sec-
ond layer, sitting on top of it, guarantees the causal ordering
of messages sent in overlapping groups.

We designed this protocol as part of our effort to im-
plement a distributed objects system for GRID environ-
ments. In order to maintain the consistency of objects in
the presence of data replication and concurrent accesses we
required an efficient protocol to enforce an order on the op-
erations performed on the shared objects. Furthermore, we
wanted to provide a natural semantics for these accesses in
order to facilitate reasoning about the integrity of the data.

One compromise that designers of distributed systems
consistently make in order to improve performance is the
adoption of relaxed consistency models. Unfortunately, the

use of such relaxed semantics often requires the user to have
a deep understanding of the underlying system in order to
write correct applications. The alternative is to adopt a
strict consistency model, such as sequential consistency [8],
which preserves the order of accesses specified by the pro-
grams. It is widely accepted that this is the simplest pro-
gramming model for data consistency. In practice, the se-
quential consistency model has been reluctantly adopted
due to concerns about its performance. However, recent
work in compilers for parallel languages [7] has shown that
sequential consistency is a feasible alternative. Our work
introduces a communication infrastructure that enables the
implementation of the sequential consistency model in a
distributed environment.

Consensus protocols play an important role in maintain-
ing consistency of replicated data and in solving the prob-
lem of concurrent accesses to shared resources in the GRID.
Atomic multicast is a useful tool for implementing consen-
sus protocols in such environments, as it is a natural model
for providing fault-tolerant communication.

The issue of reliability is another critical factor in the de-
velopment of distributed systems. While the main concern
in designing such systems is coping with external failures
it is often the case that programming bugs and unpredicted
corner cases generate many of the problems. In order to
combat this issue, we make use of formal verification mech-
anisms to guarantee the correctness of our protocol.

The major contributions of this paper are: the design and
implementation of a totally distributed (no central point of
failure) group communication protocol with guarantees for
a total order of messages, and the use of formal methods to
show the correctness of the implementation.

The paper is organized as follows. First, we introduce
the protocol we designed. Next, we present the two model
checkers we use and their contributions with respect to the
correctness of our protocol. Finally, we present preliminary
experimental results using our prototype implementation
and conclude the paper by discusing differences between
our approach and other group communication libraries.
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2. Protocol description

This section presents the two layers of our protocol. We
have shown the correctness of the upper layer of our pro-
tocol and proved the guarantees that it makes in a previous
work [13]. In this paper we focus on the correctness of the
lower layer and present how its distributed approach makes
it robust in the presence of failures.

Although our protocol was designed to be abstract and
applicable in many situations, one of the main goals of the
project was to develop a communication infrastructure for
GRID services and to use it to build a distributed shared
objects system.

2.1. Overview

The system is composed of a set of processes. Processes
have a unique identifier that is persistent across failures. We
define a group to be a set of processes. A view of a group is
defined as a subset of the group membership.

Processes can belong to several groups at the same time.
The upper layer of the protocol relies on the existence of a
total order of messages sent within each group that is pro-
vided by the lower layer of the protocol. Additionally, it re-
quires that messages sent by one process to different groups
become part of the total order in each group in the same se-
quence in which the messages were issued. For example, if
a process were to send two messages, 1m1 and M., to groups
g1 and go respectively, then message m; must become part
of the order in group g; before mo becomes part of the or-
der in group go. It is important to notice that we do not
require that m; is delivered before we can send mg; rather,
we simply require that m; obtains a sequence number be-
fore mo does. While there is a penalty for implementing
this restriction we do minimize it by separating the tagging
of messages with sequence numbers from the actual mes-
sage delivery.

Each group can have several views and the views can
overlap. Views are local to processes and represent their
image of the membership of the group. In each group we
implement the Virtual Synchrony [3] model. When a re-
quest to join a group is received by a process or when a
process leaves or is detected to have failed a view change is
triggered in the group. The view change is a synchroniza-
tion point for the processes that survive it. It guarantees that
membership changes within a process group are observed
in the same order by all the group members that remain in
the view. Moreover, view changes are totally ordered with
respect to all regular messages that are sent in the system.
This means that every two processes that observe the same
two consecutive view changes, receive the same set of regu-
lar messages between the two view changes. Each message
sent in a view is characterized by an epoch corresponding
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Figure 1. The view change event.

to the view in which the message was sent, and by a group
sequence number. The epochs and the group sequence num-
bers are monotonically increasing during the life of a pro-
cess, but they are not persistent across failures.

Each process that wants to join a group starts as a single-
ton view. It then contacts a directory service that provides
hints on the current membership of the group. These hints
are used by the process to join other processes that belong
to the same group. At this layer of the protocol we do not
discriminate between different views of a group. It is only
at the upper layers that we treat separate views of the same
group differently based on criteria that we deem appropri-
ate. For example, we might want to allow only the members
of a given view (like the one with heighest cardinality) of a
group to send or receive messages.

2.2. The View Change

A view change is triggered by one of two events: a join
request or a leave. A join request is sent by the member of
one view to members of another view of the same group in
an effort to merge the two views. We do not allow views to
split at will. If a process wants to leave a group it sends a
leave request to the members of its current view. If a process
is detected to have failed, then one or more members of the
view initiate a view change and try to exclude the process
from the view.

Upon receiving a join or a leave request a process ini-
tiates the view change procedure. We employ a resolution
mechanism for concurrent view changes in the same group
involving an overlapping set of processes. This resolution
mechanism allows only one of the initiators to succesfully
complete the view change. However, we do permit con-
current view changes in disjoint views to evolve in paral-
lel. One major advantage of our protocol is that it allows
changes in view membership to include, at the same time,
multiple processes joining and leaving the view. For exam-
ple, Figure 1 illustrates how, in one step, three views merge
and certain nodes from each view will be excluded as they
fail during the view change process.

The view change is done in several stages: the expand-
ing stage, followed by the contracting stage, the consensus
stage and finally the commit stage. Figure 2 illustrates the
states that a process can be in during the view change pro-
cess, along with the events that trigger the transitions from
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Figure 2. The state machine for our protocol.

one state to another. The initial state is the In View state. On
detecting a membership change (MC) a process becomes an
initiator of a view change and initiates the expanding stage
(IE). The other nodes involved in the view change would be
participants in the expanding stage (PE). If the stage ends
succesfully the initiator becomes the initiator of a new view
as part of the contracting stage (IC), while the other nodes
become participants in the new view during the contract-
ing stage (PC). The consensus stage is represented by two
states, depending on the previous state of the process (C(I)
and C(P)); the participants then wait for the final commit
stage. Each stage is detailed below.

The purpose of the first stage of the view change process
is to collect suggestions from the current members of the
view and, from these suggestions, ascertain what the new
membership of the view should be. This stage is repeated
until a fixed point is reached (nodes are only added to the
membership with each round of suggestions). In the exam-
ple presented in Figure 1 this is shown in the top drawing.
At the end of the expanding stage, the expanded view con-
tains all the members of the initial three views.

During the contracting stage, processes that have failed
or that want to leave the group are removed from the maxi-
mal fixed point view reached during the previous stage. The
goal of this stage is to reduce the membership of the view
to the current set of active processes. It is important to note
that between a process’s interest in joining a group and the
commit of the view change that process could fail or there
might be a network partition, in which case more than one
process might need to be excluded from the view. In Fig-
ure 1 the new view illustrates the membership after the con-
tracting stage, where failed nodes have been evicted from
the view.

The consensus stage is critical for preserving the prop-
erties of the Virtual Synchrony model. During this stage
processes that have survived so far agree on what messages
they need to deliver to the application layer to guarantee that
all members of the view that survive the view change have

delivered the same set of messages in the previous view.
The consensus stage is illustrated by the arrows in the sec-
ond drawing of Figure 1, where each surviving process syn-
chronizes with all the other processes in its previous view.

In the last stage, the new view to be installed is broad-
cast to all of its members and is locally installed by each
member. The view change initiator sets the epoch of the
new view to be larger than the largest epoch involved in the
view change. Also, the sequence number is reset to 0 and a
ViewChange message with the new epoch and the new se-
quence number is broadcast to all members of the new view.
Upon receiving the ViewChange message each process de-
livers it to the application (the upper layer running on top of
the group communication).

2.2.1 Surviving failures

To detect network or process failures we introduce a set of
failure detection mechanisms that dynamically adapt to the
environment. We expect acknowledgements for the mes-
sages sent in each group and we use heartbeat messages to
detect failures during times of network inactivity. Our fail-
ure detectors can be dynamically changed to report on what
is considered to be an acceptable latency or a tolerated loss
rate before the processes composing the system are evicted
from views.

On the failure of a process the appropriate action is taken
by the process that detects the failure. This depends on the
current state of the detector process. Figure 2 shows in red
(light color) the actions triggered by our failure detection
mechanism. When a critical node fails during the various
stages of a view change it prompt a process to initiate a new
view change. Generic node failures are reported during the
contracting stage.

2.2.2 Providing sequential consistency

The existence of shared data and of concurrent processes
that can access it prompts the need for using a data consis-
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tency model. Using our two-layered group communication
protocol, we can easily provide sequential access to shared
data. We organize processes in groups based on the shared
data they are interested in accessing. Thus, each group will
be associated with a piece of shared data. For simplicity,
we call this shared data an object. We map the “opening”
and “closing” operations on objects to the join and the leave
operations in the corresponding group. Thus, to access the
information of a shared object, processes dispatch read and
write messages to the appropriate group. One of the key
features of our protocol is the presence of explicit read mes-
sages. The read messages act as synchronization points for
the objects and guarantee that when they are processed all
previous changes to the object have been seen. Mathemati-
cal proofs that show that our protocol guarantees sequential
consistency can be found in [13].

3. Formal Verification

Despite the complexity of the protocol, the approach we
took in the design phase allowed us to formally verify the
correctness of the protocol and reason about its overall be-
havior. As such, the protocol we have presented is the result
of a systematic approach. We started by designing the pro-
tocol on paper. Then we moved to creating models with
different levels of abstraction. And, at the end of the pro-
cess, we translated the model into a real implementation.
This section discusses the modeling and translation phases.

3.1. Model Checking

While it is common practice to study algorithms and pro-
tocols for a distributed environment by formally describing
them in a mathematical framework and proving properties
about the resulting models by hand, this approach is often
not feasible to apply to systems of any real size and/or com-
plexity (especially when failures are to be considered) as the
process is highly labor-intensive.

A more automated alternative to writing formal proofs
on paper is to use a model checking tool. In model check-
ing, one develops a model of some algorithm of interestin a
model checking language and the resulting code can be run
through the associated model checking tool. This model
checking tool then investigates all reachable states of a sys-
tem and is able to verify safety and liveness properties ac-
cording to some user-defined specification.

This approach provides a high level of confidence in the
correctness of the algorithm if the right model is employed
(i.e. a model where it is feasible for the tool to visit all or
most of the reachable states). Furthermore, the automated
nature of model checking makes this method of verifica-
tion easy to use and, since model checking languages of-
ten resemble conventional programming languages, model

1: inline initiate_view_change (id, view, joined, left) {
2 become_member(inside_vc, id);

3 become_member(initiated_vc, id);

4 remove_member(ivc_failed, id);

5: ivc_acks[id]=0;

6: temp._view = diff_views(view,left);

7 sent_view[id] = merge_views(temp_view, joined);
8 increment_lseqn(id);

9 /* Initiate a view change */

1 bcast_msg(Initiate_vc, sent_view[id], Iseqn[id]);
1

Figure 3. lllustrating the Spin model.

1: InitiateViewChange(i, view, joined, left) 2

2: A InsideViewChange' =
[InsideViewChange EXCEPT ![i] = TRUE]
3: A InitiateViewChangeAcks’ =
[InitiateViewChangeAcks EXCEPT ![i] = {}]
4: A HasInitiateViewChangeFailed’ =
[HasIVCFailed EXCEPT ![i] = FALSE]
5: ALET newView = (view \ left) U joined
6: msg = [PID i,
Iseq +— LocalSequenceNumber|i],
type — InitiateViewChangeMsg,
data — newView]
7 IN A BroadcastMessageTo(msg, newView)
8: A InitiatedViewChange’ =
[InitiatedViewChange EXCEPT
I[i] = newView]

Figure 4. Process ’i’ initates a view change

where it wants to add nodes in ’joined’ and
exclude nodes in ’left’. TLA Model.

checking provides a representation of the system that can
closely mirror an actual implementation.

In order to verify our protocol we decided to use two
different model-checkers: Spin and TLC. The reason for
combining the two is that each has certain limitations that
are better addressed by the other. Thus, by combining the
use of the two model checkers we were able to get a more
extensive verification of the models we developed.

3.2. Spin

Spin [6] is a model checker that uses a C-like specifi-
cation language, called Promela. Promela is a nondeter-
ministic language based on Disjkstra’s guarded command
language notation. It supports primitives like buffered and
un-buffered communication channels, thus making it a good
choice for desigining models that are close to an actual im-
plementation.
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let initiate_view_change gdesc view =
gdesc.vc.inside_view_change «— true;
gdesc.vc.acks «+— ProcSet.empty;
gdesc.vc.has_stage_failed «— false;
(* calculate new view *)
let new_view = ProcSet.union
(ProcSet.diff view gdesc.vc.leave_nodes)
gdesc.ve.join_nodes in
let ve_msg = ControlMsg(Initiate_vc (new_view)) in
0: send_msg_to_group vc_msg new_view gdesc

SPRRDIN RN

Figure 5. OCAML code for the actions taken
to initiate a view change

3.3. TLA/TLC

TLC stands for “The TLA+ Model Checker”. It
is a model checker for specifications written in TLA+.
TLA [9](Temporal Logic of Actions) is a logic for specify-
ing and reasoning about concurrent systems that was devel-
oped by Leslie Lamport, and it is the basis for TLA+ [10].

The TLA+ specification language uses a mathematical
syntax resembling that of logical formulae. The advantage
to this is that, in many cases, an algorithm can be specified
clearly and concisely without the need to worry unneces-
sarily about low-level implementation details that are not
critical to the algorithm’s operation.

3.4. Implementation

Using the two model checking tools we were able to ver-
ify some properties of our protocol, such as: in the absence
of failures, a set of nodes belonging to views that are at-
tempting to merge will eventually form a single view con-
sisting of all of these nodes; and that, even in the presence
of failures, a view change will not take infinite time.

In Figures 3, 4, and 5, we demonstrate the straight-
forward nature of the translation from the models to our
OCaml implementation. The code snippets presented show
the actions taken by a process in order to initiate a view
change; the code for the models matches almost line-by-line
with the implementation. This easy mapping of the formal
models into a running implementation increases confidence
in the correctness of our implementation as this close corre-
spondence suggests that properties that hold for the models
will also hold for the implementation.

4. Experimental results

This section presents a set of preliminary experimental
results that focus on the lower layer of the group commu-
nication protocol. We have run our protocol in an emulated

Individual View Change History - 64 Nodes
70 : : T : ‘

Node ID

View Change #
Figure 6. The membership of the view
changes from the perspective of one node
during the deployment of 64 nodes.

environment where we started 64 identical processes. We
monitored the processes as they were trying to form one
single view of the same group. Figure 6 shows the number
of view changes that occured from the perspective of one
of the processes and the membership of each of the view.
This graph shows us that while this node was taking part
in view changes there were parallel view changes involv-
ing other nodes that eventually merge into a single view.
The second graph, presented in Figure 7, shows the num-
ber of view changes occuring in each one-second interval
from when the first process was started until the final view
change, comprised of all processes, was installed. It is im-
portant to keep in mind that our emulation environment had
a few shortcomings. For example, it restricts the parallelism
of the execution due to limited shared resources and it de-
lays the start of a few of the processes until near the end of
the experiment.

5. Related work

The idea of using formal methods to prove the correct-
ness of distributed protocols is not new. Ensemble [5],
and its predecessor Horus [11], used the PRL [12] theo-
rem prover to show the correctness of the group communi-
cation protocols provided by it. The long and tedious pro-
cess of formalizing the protocols also required a formaliza-
tion of a significant subset of the language used to imple-
ment it, ML [4]. While this mechanism worked for Ensem-
ble, where the high level of modularity in the system and
the choice of the implementation language played a large
role, this would not easily apply to protocols implemented
in languages such as C or Java. Furthermore, more com-
plex systems would be even harder to formalize. Also, our
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Figure 7. The number of view changes occur-
ing in each 1s interval during the deployment
of 64 nodes.

group communication protocol has taken on a few of the
challenges neglected by Ensemble, like handling multiple
join and leave events simultaneously and allowing merges
of overlaping views.

Spread [1], another group communication system, tries
to address the problem of communication in the context
of wide area networks. While Spread is a popular toolkit,
its implementation is not very close to the abstract formal
model discussed in the design paper. Over time, this has led
to some degree of confusion.

Newtop [2] provides a solid mathematical model for
proving the correctness of the group communication proto-
col that it uses. However, implementations have been slow
to be developed.

Finally, we want to mention the Message Passing In-
terface (MPI), the “de-facto” standard for communication
APIs in GRID systems. One of the problems of MPI stands
in that the specification of the behavior and API of the sys-
tem is too loose, which has led to various interpretations that
mapped into sometimes incompatible implementations.

6. Conclusion and future work

We introduced a new fault-tolerant group communica-
tion protocol that uses adaptive failure detection mecha-
nisms to run over both LANs and WANSs, making it a good
match for applications in GRID environments. The protocol
uses a two layer architecture. The lower layer guarantees
the total order of messages in single groups, while the up-
per layer guarantees the inter-group ordering of messages.
We used model checking and formal proofs in the design
phase of our protocol to develop an algorithm that we were
able to prove correct.

Based on our experience with desigining this protocol
using model checkers we are interested in building collec-
tions of components that can be used in designing other pro-
tocols, without having to re-invent the wheel. Furthermore,
we plan on implementing a distributed shared object sys-
tem which guarantees sequential consistency of concurrent
accesses to objects based on our group communication pro-
tocol. We also want to use the protocol to implement the
communication layer of a distributed system that uses spec-
ulative execution to improve the performance of distributed
applications.
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