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Abstract

Remote and wearable medical sensing has the potential to create very large and high dimensional 

datasets. Medical time series databases must be able to efficiently store, index, and mine these 

datasets to enable medical professionals to effectively analyze data collected from their patients. 

Conventional high dimensional indexing methods are a two stage process. First, a superset of the 

true matches is efficiently extracted from the database. Second, supersets are pruned by comparing 

each of their objects to the query object and rejecting any objects falling outside a predetermined 

radius. This pruning stage heavily dominates the computational complexity of most conventional 

search algorithms. Therefore, indexing algorithms can be significantly improved by reducing the 

amount of pruning.

This paper presents an online algorithm to aggregate biomedical times series data to significantly 

reduce the search space (index size) without compromising the quality of search results. This 

algorithm is built on the observation that biomedical time series signals are composed of cyclical 

and often similar patterns. This algorithm takes in a stream of segments and groups them to highly 

concentrated collections. Locality Sensitive Hashing (LSH) is used to reduce the overall 

complexity of the algorithm, allowing it to run online. The output of this aggregation is used to 

populate an index. The proposed algorithm yields logarithmic growth of the index (with respect to 

the total number of objects) while keeping sensitivity and specificity simultaneously above 98%. 

Both memory and runtime complexities of time series search are improved when using aggregated 

indexes. In addition, data mining tasks, such as clustering, exhibit runtimes that are orders of 

magnitudes faster when run on aggregated indexes.
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I. Introduction

Remote and wearable medical sensing can improve the quality of care for those with various 

ailments including congestive heart failure (CHF) [1][2], arrhythmias [3], diabetes [4], and 

mental illness [5]. Such systems rely on continuous patient monitoring by various types of 

sensors, such as accelerometers for activity monitoring; electrocardiogram (ECG) for heart 

monitoring; and plethysmograph for organ volume monitoring. These devices have the 

potential to create massive amounts of data, making manual inspection infeasible. Therefore, 

medical time series databases must be able to store, index, and mine large datasets to enable 

proper analysis of a patient’s health.

Difficulties in searching and mining time series data arise from the high dimensionality and 

the sheer size of the data. Techniques such as k-means clustering and Motif Discovery are 

not tractable due to high complexities (O(ndk+1 log n) and O(dn2) respectively, where d is 

the number of dimensions, k is the number of clusters, and n is the number of objects). 

Previous works have reduced the number of dimensions to help mitigate the inherent high 

runtime complexities of data mining algorithms [6]. However, certain domains, such as 

medical time series signals, are largely dominated by n (n >> d) [7] and therefore, reducing 

d does very little to improve the overall runtime. In addition, a significant decrease in d may 

not be possible as the underlying intrinsic dimensions may also be large. Attempts to 

decrease d to a smaller space than the intrinsic dimensions will impair the overall 

discriminatory power of any classifier.

Search and data mining tasks rely heavily on an optimal distance function. Finding an 

optimal distance function becomes more difficult with an increasing number of dimensions 

as distance norms have the property to converge with an increasing number of dimensions 

[8]. It has been shown that this convergence is true for any p-norm and is more related to the 

intrinsic dimensions than the embedding dimensions [9]. However, [10] suggests that Lp 

norms are effective when considering small neighborhoods. This finding was also shown 

experimentally in [11]. Therefore, a match can be defined as ‖u − υ‖p < R where R defines a 

tight radius (or small neighborhood). Clustering with such a distance measure will result in a 

large number of precise groupings.

Medical time series signals are unique from many other time series signals in their inherent 

redundancy. For example, ECG measurements of the heart produce a repetitive signal with 

little differences between subsequent beats. Therefore, a significant reduction in the size of a 

medical time series index can be observed when using such an aggregations. As shown later, 

the number of groupings grows logarithmically with increasing n for many real-world 

biomedical datasets.

This paper presents an online aggregation algorithm for constructing efficient time series 

data indexes. This algorithm takes in a stream of objects and groups them to highly 

concentrated collections. An aggregated index is composed of an object representative from 

each collection. Searches and data mining tasks are constrained to only the aggregated 
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index, thereby significantly improving performance with respect to memory and 

computation.

For the purpose of this paper, a time series T = {t1, t2, …tn} is defined as an ordered set of 

points in the time domain. An object is defined as a segment s = {ti, ti+1, …, ti+m−1} where s 
is an ordered subset of points from T and m ≤ n. Similarity is defined by the L2 norm (but 

any Lp norm can be used). Locality Sensitive Hashing (LSH) [12] is used to reduce the 

overall complexity of the algorithm, allowing it to run online.

The proposed algorithm runs similar to the Online Facility Location problem [13]. An input 

segment is hashed using LSH. If this hash collides with a facility (e.g., an existing 

grouping), the segment is assigned to that facility. If no collisions occur, a new facility (or 

grouping) is created and inserted into the global hash table. The aggregation algorithm is 

based on the assumption that classes, in terms of classification, are composed of multiple 

tight sub-groupings where Lp norms have high discriminatory power [10].

Similar indexes have been proposed in textual databases such that redundant information is 

indexed only once [14][15][16]. Such indexes are often used with versioned data such as 

indexing the Internet Archive (a collection of over 85 billion versioned web pages over the 

last decade), version control systems, Wikis, data backup solutions, etc. In general, 

documents are broken down into fragments. Fragments that occur in multiple documents (or 

versions) are indexed only once. Fragments are chosen in an optimal (aligned) manner such 

that the number of index fragments is minimized. These systems have been shown to 

significantly improve search performance by reducing the overall search space.

Real data are used in the analysis of this paper. The proposed algorithm yields logarithmic 

growth of groupings while keeping sensitivity and specificity above 98%. Search and 

clustering performance (in terms of computations) is improved by several orders of 

magnitude. This algorithm has a low computation and memory complexity, allowing it to 

run online.

The rest of this paper is organized as follows. Section II discusses related work and 

motivation. Section III describes the presented algorithm in detail. Sections IV and V present 

the experimental setup and results respectively. Conclusions are presented in VI.

II. Background

A. Subsequence Matching

Subsequence matching is synonymous with the R-NN problem in high dimensional space. 

Nearest neighbors are defined as all objects that fall within distance R to a query object. For 

the purpose of this paper, distances are defined by the L2 norm (Euclidean distance) and 

objects are represented as points in ℜd. Sequential search is a naïve approach to solving the 

R-NN problem. This, of course, has an O(n) computational complexity that is far too slow 

for large databases. Hence, an optimal solution would guarantee sub-linear complexity.
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Authors in [6] presented a framework for subsequence matching using spatial access 

methods (such as R*-trees, iSAX [17], etc). to index objects (or segments). Indexing is 

accomplished by first reducing the dimensionality of each segment using a reduction 

algorithm that satisfies the property of minimum bounds. Each reduced segment is inserted 

into a spatial index for subsequent searches. A query is satisfied by first reducing the query 

segment. The reduced segment’s corresponding bounding boxes in the spatial index are 

interrogated for any matching segments. The true distance (from the original non-reduced 

segments) between any potential matches and the query segment is calculated. Any match 

that falls outside a predefined distance is pruned and not included in the result set.

The property of minimum bounds ensures no false dismissals. The minimum bounds 

property guarantees that the distance between two reduced objects is less than or equal to the 

distance between the corresponding original (non-reduced) objects:

(1)

where û and υ̂ are the dimensionally reduced counterparts of vectors u, υ ∈ ℜd. Hence, the 

initial set of all search results is a superset of all true matches. Reduction algorithms 

satisfying the property of minimum bounds include Piecewise Aggregate Approximation 

(PAA) [18], Discrete Fourier Transform (DFT) [6], and Chebyshev polynomials [19].

PAA is perhaps the simplest and most studied of these reduction algorithms. A reduction of 

segment X of size m is accomplished by dividing X into M equal size bins. The reduction of 

X is represented by the average of each of these bins. More formally:

(2)

An example of the reduction of an ECG signal is given in Fig. 1 with a total of 512 data 

points reduced to 25 dimensions. Note that much of the detail of the signal is lost in the 

reduction. As biomedical signals are largely composed of similar repetitive patterns (such as 

heart beats), reductions can lead to a large number of false positives, resulting in an increase 

in the amount of pruning. This issue is exacerbated by the finding that spatial indexes have 

been shown both theoretically and experimentally to perform worse than sequential search 

for data with as little as 10 dimensions [20]. Hence, any method based on the framework 

proposed by [6] will have a theoretical bound that is no less than linear. Due to these 

drawbacks, experimentation for this paper was performed on indexes based on Locality 

Sensitive Hashing (LSH) [21].

LSH was introduced as an alternative to spatial indexing schemes. LSH is based on a family 

of hashing functions that are (r1, r2, p1, p2)-sensitive meaning that for any υ, q ∈ S:

• if υ ∈ B(q, r1) then PrH [h(q) = h(υ)] ≥ p1
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• if υ ∉ B(q, r2) then PrH [h(q) = h(υ)] ≤ p1

where p1 > p2 and r2 > r1. The gap between p1 and p2 is increased by combining several 

functions from the same (r1, r2, p1, p2)-sensitive family.

Spatial indexing methods and LSH require pruning as the initial result sets contain false 

positives. This pruning heavily dominates the computational complexity of both methods. 

Therefore, it is imperative to reduce the amount of pruning in order to build scalable time 

series databases.

The authors in [7] propose limiting the index to salient segments. Salient segments are 

defined as segments that are probabilistically unlikely to occur. Salient segmentation 

transforms a time series signal into a time series saliency function (TSF) such that each point 

in the TSF is defined as:

(3)

Each local maximum is treated as salient and is inserted into the index. Non-salient 

segments are excluded from the index, thereby limiting the search space. [7] showed up to 

98% reduction in the size of the index, but with a trade off of recall, which reduced to 

approximately 80%. Authors in [22] showed that Salient Segmentation can significantly 

improve the performance of LSH searches. The amount of prunings were reduced by more 

than 75% with approximately 20% degradation in recall. Index sizes in [22] were reduced by 

approximately 95%.

There are two weaknesses of salient segmentation. First, salient segmentation is useful when 

the segmentation is unknown, such as accelerometer data in activity recognition. In contrast, 

segmentation of signals such as ECG is a well-solved problem. Therefore, a domain-specific 

segmentation can exhibit a near identical reduction in index sizes with no loss of recall. 

Second, a biomedical time series salient index often contains redundancy. Biomedical 

signals are cyclical in nature and are often composed of many near identical patterns. It thus 

serves little use to independently index each of these similar patterns.

B. Mining time series signals

Algorithms for mining time series signals are often bounded by quadratic (or greater) 

computation complexities. k-means clustering and motif discovery are two well-studied 

algorithms for mining time series signals and are computationally bounded by O(ndk+1 log 

n) and O(dn2) respectively, where d is the number of dimensions, k is the number of clusters, 

and n is the number of objects. There are a number of works that attempt to decrease the 

average computationally complexities for both algorithms. For example, authors in [23] and 

[24] attempted to improve k-means and motif discovery respectively by using properties of 

distance measures (such as the triangle inequality). However, only the average runtimes were 

reduced and not the overall complexities. Hence, this paper proposes a scalable reduction of 
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n to significantly improve the runtime performance of these and other data mining 

algorithms.

C. Lp norms

Medical signals are generally cyclical and stationary. ECG, for example, consist of 

extremely similar and repetitive patterns. Treating small variations of the same pattern as 

independent serves little use when mining medical time series signals. As shown later, the 

number of intrinsic classes (unique patterns) grows logarithmically with the total number of 

patterns. Therefore, the computational and memory complexities can be significantly 

reduced by only considering unique patterns.

The aggregation method proposed by this paper uses the L2 norm to define similarity. 

Previous works have questioned the feasibility of Lp norms to distinguish high dimensional 

objects. Most notably, authors in [8] show that Lp norms have the property of convergence 

with an increasing number of dimensions. Convergence results in little to no differentiation 

between the distance to the closest object and the farthest object. This finding suggests that 

Lp norms are meaningless in high dimensional space. However, the finding in [8] assumed 

objects to be identical and independently distributed (i.i.d.); a false assumption for most 

datasets.

[10] shows that, in terms of classification, classes are composed of multiple clusters. In 

terms of Lp norms, clusters are assumed to be Gaussian; and classes a mixture of Gaussians. 

The distribution of these classes can be estimated using the expectation-maximization (EM) 

algorithm. This model exhibits high discriminative power for high dimensional objects. 

Authors in [11] show similar discriminative power of Lp norms for both synthetic and real 

data. However, this power decreases with an increasing radius. Therefore, objects can be 

grouped to tight clusters without the loss of precision (with each cluster being represented 

by its center).

D. Indexing Textual Databases with Redundancy

Several methods for consolidating redundant information in textual databases have been 

proposed [14][15][16]. In general, these methods break down documents into several 

fragments. Fragments are indexed in lieu of the entire documents. Identical fragments that 

occur across multiple documents (or multiple versions of a document) are inserted into an 

index only once thereby minimizing the size of the index.

The method in [15] is most similar to the work proposed here. [15] uses winnowing [25] to 

break down documents into fragments. Fragments (and their respective alignments) are 

chosen to maximize redundancy thereby reducing the overall size of the index. Performance 

of the winnowing algorithm is optimized using hashing such that the comparison of two 

fragments is based on their respective hashing. Index sizes are reduced by as much as 60% 

when removing redundancy. However, textual methods rely on exact matching to reduce 

redundancy. The probability of seeing exact matches in medical time series is extremely low 

due to several environmental (e.g., noise, sensor displacement/placement, etc.) and 

physiological (e.g., differences in heart rates, weight, age, etc.) factors.
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III. Method

The proposed algorithm takes in a stream of objects from a biomedical time-series signal. 

Objects are defined by the segmentation. This paper assumes two types of segmentation: 

segmentation by events and segmentation by sliding window. Event-based segmentations are 

domain specific. Examples include heartbeats of an ECG signal, a cycle in the arterial blood 

pressure, etc. For sliding window segmentation, segments are extracted by sliding a window 

along the time dimension, indexing each possible segment. Each slide (or translation) of the 

window is of D data points where D ≥ 1 (this paper sets D = 1 for all datasets). A fixed 

window size is assumed for both types of segmentation.

On an input object u, the following four procedures are run:

1. Find the hash of u (Hu) using LSH

2. Search the global hash table for collisions V

3. Calculate dυ = ‖u − υ‖p∀υ ∈ V

a. If dυ < R, assign u to υ (on multiple matches, assign 

randomly)

b. Else, create a new grouping g with hash Hu, add u to g, 

and add g to the global hash table

The LSH implementation using p-stable distributions is used as the hashing algorithm [12]. 

This algorithm uses the following hash function:

(4)

where a is a randomized vector following a Gaussian distribution, b is a uniformly 

randomized vector, and r is a predefined constant. Using the properties of the p-stable 

distribution, the authors show that the probability of collision is calculated as:

(5)

with c being the distance between two vectors. As can be seen by Equation 5, the probability 

of collision decreases monotonically as c increases.

Each grouping is represented by its initial object. Upon completion of the aggregation, each 

grouping’s representative is placed into the aggregated index. LSH indexing is used in the 

experimentation for this paper. However, this work could be applied to other indexing 

techniques such as spatial trees. LSH was chosen for analysis due to LSH’s sub-linear 

theoretical complexity.

Woodbridge et al. Page 7

Proc IEEE Int Conf Healthc Inform Imaging Syst Biol. Author manuscript; available in PMC 2016 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Searches are constrained to only the aggregated index. A mapping table is kept between a 

grouping’s representative object and all its contents. When a matching representative is 

found, all objects from its respective grouping are returned.

A. Computational Complexity

This paper assumes an optimal hashing algorithm with a sufficiently large table. Therefore, 

the complexity of the algorithm is dominated by pruning (or distance computations). As 

shown in [26], the number of distance computations per object is bounded by O(nρ), where 

 and n is the total number of objects. This yields a total runtime complexity of 

O(n2ρ). In practice, the overall runtime is much lower as the search space is significantly 

reduced (i.e., the search space grows sub-linearly with respect to the number of objects). 

Therefore, the actual the number of groupings (n̂) at any point in the algorithm is much less 

than n (n̂ << n). Therefore, we get a runtime complexity bounded by O(nn2̂ρ) where, in 

general, n̂ << n.

Memory is bounded by O(n + nL). Notice that k is not included in the memory computation, 

because LSH creates L different hashes, each composed of k sub-hashes. A match is defined 

by two segments that match for at least one of the L hashes. A matching of one of the L hash 

functions is defined as a match of all of the k sub-hashes. Therefore, each of the k sub-

hashes can be combined and hashed to a single integer. Hence, the overall storage required 

to store L LSH hash results is L. As stated earlier, the number of groupings n̂ is less than the 

total number of objects. In practice, the algorithm will be bounded by O(n + n̂L).

IV. Experimental Setup

Four datasets composed of various types of biomedical signals are used in the analysis of 

this paper. The datasets are as follows:

1. MIMIC Database [27][28]. This dataset contains multiple channel 

recordings taken from patients in intensive care units. Electrocardiogram 

(QRS), arterial blood pressure (ABP), and fingertip plethysmograph (PLE) 

were used in the analysis.

2. MIT-BIH Arrhythmia Database (ECG) [29][28]. This dataset contains 

several 30-minute segments of two-channel ambulatory ECG recordings. 

These sample included arrhythmias of varying significance.

3. Gait Dynamics in Neuro-Degenerative Disease Database [30][31][28]. 

This dataset contains data gathered from force sensors placed under the 

foot. Healthy subjects as well as those with Parkinson’s disease, 

Huntington’s disease, and amyotrophic lateral sclerosis (ALS) were asked 

to walk while the data was recorded. Data includes 5-minute segments for 

each subject.
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4. WALK [7]. This dataset contains a series of annotated recordings from a 

tri-axial accelerometer worn in a subject’s pants pocket. Data was 

recorded while subjects travelled through the interior of a building.

The proposed aggregation algorithm is assessed using five experiments. The first experiment 

aggregates times series signals and displays the growth of groupings with respect to the 

number of objects with varying values of R. This experiment is run using both event-based 

segmentation and sliding window segmentation. All three channels of the MIMIC dataset 

were used for testing event-based segmentation. Segmentation was based on the dataset’s 

annotations. For sliding window segmentation, the MIMIC database along with the GAIT 

and WALK datasets were used.

The second experiment tested the sensitivity and specificity of the proposed aggregation 

algorithm. The MITDB database was used for this experiment. The MITDB database is 

composed of well-annotated two-channel ECG. Time series signals from the MITDB 

database were aggregated using the proposed algorithm with event based segmentation. Each 

segment is initially labelled using the dataset’s annotations (ground truth labels). Each 

grouping is labelled using its representative’s ground truth label. Sensitivity and specificity 

are calculated by comparing each segment’s true label to that of its grouping label. The 

MITDB dataset was used used in lieu of other datasets as those datasets do not have 

annotated class labels for the segmented objects.

The third experiment assesses the improvements of clustering when limiting the clustered 

elements to only grouping representatives. The Fast k-means algorithm [23] is run on both 

the aggregated and non-aggregated data. Only event-based segmentation of the MIMIC 

dataset was used. Sliding window segmentation was not assessed as it has been shown to be 

ineffective for clustering time series signals due to redundancy [32]. The number of 

iterations is used to demonstrate the performance improvements when using an aggregated 

signal.

The fourth experiment compares the size of salient indexes [7] to that of aggregated indexes. 

The MITDB, GAIT, and WALK datasets were used (as these were the same datasets used in 

[7]).

The fifth, and final experiment, tests the improvement of subsequence search when using 

aggregated indexes. The index was populated with the MITDB dataset along with two 

additional datasets. The MIT-BIH Noise Stress Test Database (NSTDB) [28][33] and the 

MIT-BIH ST Change Database (STDB) [28] were added to increase the overall size of the 

database. Both a standard LSH index along with an aggregated LSH index were composed. 

100 random searches were performed while measuring the respective memory usage, 

precision and recall.

Each segment is normalized using the standard score normalization function:
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(6)

No filtering was used unless explicitly noted. In general, proper filtering improves the results 

of machine learning and data mining tasks. However, this paper forgoes filtering processes 

to avoid any effects of filtering (both positive and negative). Each dataset used a fixed 

segment size across all experiments. Each dataset’s parametrization is listed in Table I. As it 

is assumed that each dataset is cyclical, segment sizes were chosen to encapsulate one cycle. 

Cycle sizes do vary, however, the proposed algorithm is fairly resilient to the choice of 

segment size (as shown by the results).

V. Results

A. Sub-linear growth of groupings

Fig. 2 and Fig. 3 displays the growth of groupings with respect to the total number of 

segments. Fig. 2 displays this growth with the MIMIC dataset (including QRS, PLE, and 

ABP). The left side of the graph displays the growth for event based segmentation and the 

right displays results for sliding window segmentation. Fig. 3 displays the growth of 

groupings for the GAIT and WALK dataset with only sliding window segmentation as there 

are no annotations for segmentation for these two datasets. Three values for the radius were 

tested: R = 2, 3, and 4.

All datasets show sub-linear growth with respect to the total number of objects. Growth is 

decreased with an increased radius. The rate of growth appears to be similar for both sliding 

window segmentation and event-based segmentation. Note that sliding window segmentation 

contains a much larger number of segments than that of its sliding window counterpart.

The effects of the radius R vary across datasets. For example, the WALK dataset shown in 

Fig. 3 reduces the total number of segments by about one third for a radius of R = 2. 

However, a radius of R = 3 or R = 4 shows excellent sub-linear growth. This is caused by 

two factors. First, the WALK dataset is much smaller than all other datasets. As more data is 

collected, there is a high probability of seeing a pattern that was previously seen. Therefore, 

smaller datasets may not experience as much reduction as larger datasets. Second, the 

WALK dataset is the most variable dataset tested by this paper. Accelerometer data is 

inherently noisy especially when the accelerometer is not affixed to the body (as with the 

WALK dataset). The results in Fig. 3 demonstrates the algorithm’s susceptibility to noise. 

This noise can be improved by increasing R as well as adding filtering.

Fig. 4 shows the effect of filtering the data before aggregation for the WALK dataset. A 

basic high pass filter is used by assigning each time point as the mean of a surrounding 

window of size 10 (approximately 0.2 seconds). A significant decrease in the cluster growth 

is observed. The choice of filter can either improve or hurt the results (in terms of sensitivity 

and specificity). For brevity, a complete analysis of proper filtering techniques is left to 

future work.
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A summary of the reduction of each type of data is given in Fig. 5. MITDB, NSTDB, and 

STDB are excluded as they are all ECG (same as QRS for the MIMIC dataset).

B. Sensitivity and Specificity

Increasing the radius R for the proposed algorithm decreases the growth of groupings. 

However, this increase in R has a cost. Increasing the radius for an acceptable match 

increases the probability of incorporating incorrect matches to a grouping. Fig. 6 shows the 

change to sensitivity and specificity with varying values of R. As expected, an increase in R 
degrades performance of the proposed algorithm. A significant drop off is observed for a 

radius of R > 4. Hence, all other experiments used a value of R ≤ 4.

The effect of R on the sensitivity and specificity may change depending on the dataset. 

However, only the MITDB dataset was used in this set of experiments as no other datasets 

included in this paper have appropriate annotations for calculating performance measures 

(i.e., only MITDB contains class labels).

C. Clustering on aggregated indexes

Fig. 7 displays the number of iterations of the fast k-means algorithm in [23] for the MIMIC 

dataset. The number of iterations is shown as a function of the total number of segments. 

Only event-based segmentation was used in this experiment as its been shown that clustering 

using sliding window segmentation has little to no meaning [32].

As shown by Fig. 7, the number of cluster iterations for non-aggregated indexes exhibits 

growth that is greater than linear. When clustering on aggregated indexes, a seemingly linear 

(or sub-linear) growth is observed. Fig. 6 demonstrates that the aggregation results in only a 

small degradation in sensitivity and specificity with small values of R. Data mining on 

aggregated indexes will, therefore, make algorithms more tractable while ensuring a high 

level of accuracy.

D. Comparison of Salient and Aggregated Indexes

Table II displays the index sizes of Salient Segmentation versus those from the proposed 

aggregated indexing algorithm. Both algorithms achieve similar results. However, Salient 

Segmentation is lossy, meaning much of the time series signals are excluded from the 

database. When using aggregated indexing, only the groupings are added to the index 

(search space). However, any segment belonging to a grouping can be associated to the 

grouping through a mapping table. Hence, the database may still contain all segments from 

the original signal resulting in lossless storage of the signal.

E. Comparison of LSH on aggregated and non-aggregated indexes

Table III displays memory and precision for both an LSH index and an LSH aggregated 

index. Precision and recall are calculated by the annotation labelling. Precision for LSH 

alone is marginally better than LSH with an aggregated index. However, the average 

memory for each query is approximately 15 times less for the aggregated index. As the 
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growth of groupings is less than linear with respect to the number objects, memory 

improvements will increase with larger databases.

The aggregated index has a recall that is slightly better than LSH alone. An improvement in 

recall is largely due to distant matches (those that have a distance of approximately R to the 

query segment) that are less likely to have colliding hashes with the query segment. For 

example, if a query segment has two distant matches, where both distant matches are 

extremely close to each other, then it is possible that the query segment will have a matching 

hash with just one of the distant matches. In addition, the two distant matches will probably 

have several matching hashes resulting in the two matches being aggregated to the same 

grouping. Therefore, LSH alone will miss one of the distant matches, while LSH on an 

aggregated index will likely match to the grouping and retrieve both distant matches.

Precision is slightly lower for the aggregated index as any distant groupings (distance of 

approximately R to the query segment) may contain objects that are greater than R from the 

query object. However, the effects of such groupings appear to be minimal.

VI. Conclusion

This paper presented an algorithm for constructing an aggregated medical time series index. 

The algorithm is based on the observation that medical time series signals are often 

composed of similar and repetitive cycles. Therefore, the size of the index can be 

significantly reduced by only including unique patterns. For the purpose of this paper, two 

patterns are considered to be the same if the corresponding Euclidean distance is less than R. 

Euclidean distance has been shown to have high discriminatory power for small values of R 
[10]. Hence, small neighborhoods with radius R tend to consist of a single class.

The proposed algorithm runs similar to the Online Facility Location problem [13]. An input 

segment is hashed using LSH. If this hash collides with a facility (e.g., an existing 

grouping), the segment is assigned to that facility. If no collisions occur, a new facility (or 

grouping) is created and inserted into the global hash table. Each grouping is represented by 

its first resident and only the representative is added to the index.

This paper showed that the total number of groupings created by the algorithm grows sub-

linearly with respect to the total number of objects for many medical time series signals. 

Aggregated indexes are shown to significantly improve performance of searching and 

mining medical time series with little degradation in the quality of results.
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Fig. 1. 
Shows the Piecewise Aggregate Approximation (PAA) representation of an ECG signal 

composed of 512 data points reduced to 25 dimensions.
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Fig. 2. 
Displays the growth of clusters with increasing number of objects for the MIMIC dataset 

(including QRS, PLE, and ABP). Both event-based segmentation (left) and sliding window 

segmentation are shown (right). Each type of data shows sub-linear growth with a decreasing 

rate of growth with increasing R.
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Fig. 3. 
Displays the growth of clusters with increasing number of objects for the GAIT and WALK 

datasets. Only sliding window segmentation is used. Both datasets show sub-linear growth 

with a decreasing rate of growth with increasing R.
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Fig. 4. 
Displays the growth of clusters with increasing number of objects for the WALK dataset 

with a fixed R = 2. Results are shown with the WALK dataset filtered and unfiltered. 

Filtering is shown to slow object growth.

Woodbridge et al. Page 18

Proc IEEE Int Conf Healthc Inform Imaging Syst Biol. Author manuscript; available in PMC 2016 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Displays the aggregated index sizes for all types of data with R = 2, 3 and 4 as compared to 

original index size.
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Fig. 6. 
Sensitivity and Specificity with varying radius (R) for the MITDB dataset. Both specificity 

and sensitivity drop significantly with R > 4.
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Fig. 7. 
Displays the number of iterations when clustering using the fast k-means algorithms [23]. 

Results for both aggregated and raw data is shown for the MIMIC dataset.
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TABLE I

Dataset Parameters

Dataset Segment Size Sampling Rate

MIMIC 128 125Hz

MITDB 512 360Hz

GAIT 512 300Hz

WALK 60 50Hz

NSTDB 512 360Hz

STDB 512 360Hz
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TABLE II

Sizes of Salient and Aggregated Indexes

Dataset Salient Segmentation Aggregated Index

R = 2 R = 3 R = 4

MITDB .4% 11.1% 1.8% 1.0%

GAIT 1.8% 5.6% 1.7% .82%

WALK 1.6% 40.2% 1.3% 1.0%
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TABLE III

Memory, Precision and Recall for Aggregated Index as compared to LSH alone

Non-Aggregated Index Aggregated Index

Precision Memory Precision Memory Recall

.9523 9424kB .9428 691kB +5%
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