
Constraint Estimation and Derivative-Free Recovery
for Robot Learning from Demonstrations

Jonathan Lee1, Michael Laskey1, Roy Fox1, Ken Goldberg1,2

Abstract— Learning from human demonstrations can facili-
tate automation but is risky because the execution of the learned
policy might lead to collisions and other failures. Adding explicit
constraints to avoid unsafe states is generally not possible when
the state representations are complex. Furthermore, enforcing
these constraints during execution of the learned policy can
be challenging in environments where dynamics are difficult to
model such as push mechanics in grasping. In this paper, we
propose Derivative-Free Recovery (DFR), a two-phase method
for generating robust policies from demonstrations in robotic
manipulation tasks where the system comes to rest at each time
step. In the first phase, we use support estimation of supervisor
demonstrations and treat the support as implicit constraints
on states. We also propose a time-varying modification for
sequential tasks. In the second phase, we use this support
estimate to derive a switching policy that employs the learned
policy in the interior of the support and switches to a recovery
policy to steer the robot away from the boundary of the support
if it drifts too close. We present additional conditions, which
linearly bound the difference in state at each time step by
the magnitude of control, allowing us to prove that the robot
will not violate the constraints using the recovery policy. A
simulated pushing task in MuJoCo suggests that DFR can
reduce collisions by 83%. On a physical line tracking task using
a da Vinci Surgical Robot and a moving Stewart platform, DFR
reduced collisions by 84%.

I. INTRODUCTION

Robotic manipulation tasks are relevant in many industrial
applications such as warehouse order fulfillment and flexible
manufacturing where a robot must grasp or manipulate an
object in environments with little structure. One method of
approaching these problems is to construct an analytic model;
however, doing so can often be difficult due to complex
state spaces such as images, complicated mechanics such
as pushing, and uncertainties in parameters such as friction.
An alternative method is to use supervisor demonstrations to
learn a policy. With learning from demonstrations, a robot
observes a supervisor policy and learns a mapping from state
to control via regression. This approach has shown promise
for automation and robotics tasks such as grasping in clutter
[16], robot-assisted surgery [33], and quadrotor flight [8].

Enforcing constraints on states, such as ensuring that a
robot does not tension tissue above a certain level of force
during a surgical task, remains an open problem in learning
from demonstrations. Even if the demonstrated trajectories
satisfy the constraints, there is no guarantee that the resulting
learned policy will. For example, the robot may take a series
of slightly sub-optimal actions due to approximation error

1Department of Electrical Engineering and Computer Science
2Department of Industrial Engineering and Operations Research
1−2The AUTOLAB at UC Berkeley; Berkeley, CA 94720, USA
jonathan lee@berkeley.edu,

laskeymd@berkeley.edu, royf@berkeley.edu,
goldberg@berkeley.edu

Fig. 1: The da Vinci Surgical Robot tracking a line drawn on gauze as
the Stewart platform applies physical disturbances. The Baseline policy is
compared with the policy with Derivative-Free Recovery (DFR) on the da
Vinci line tracking task. Each segment depicts the fraction of “Completed,”
“Halted,” and “Collided” trajectories. The results show that DFR significantly
reduces collisions while also increasing the fraction of completed trajectories.

of the learned policy and find itself in states vastly different
from those visited by the supervisor. We desire to ensure
the robot does not enter constraint-violating regions during
execution. In this paper, we consider this problem for robotic
manipulation in domains where the system comes to rest
at each time step. This problem setting is inherent in many
manipulation tasks in industrial and surgical settings with
position control and has become increasingly important in
automation [7], [25], [20].

While techniques exist to enforce constraints on learned
policies, they are often limited to operate in domains with
known models [13], [22]. This can be challenging when
dealing with robotic manipulation where interactions between
objects can be fundamentally hard to model [31]. It can also
be challenging to explicitly specify constraints. In a surgical
task, objects such as tissue are often soft and deformable and
observations often come from images from an endoscope.
Additionally, specifying constraints such as the level of
tension allowed on certain piece of tissue may require hard-
coding rules that rely on complex models of these objects and
noisy observations. However, the supervisor’s demonstrated
data provide not only information about the desired policy,
but also information about the constraints. Intuitively, the
robot should only visit states that the supervisor knows are
safe to visit.

We propose leveraging the demonstration data to estimate
the support of the supervisor’s state distribution and treating
the estimated support as a set of implicit constraints. The
support is defined as the subset of the state space that the
supervisor has non-zero probability of visiting. This subset
is informative because it describes regions that must be safe

ar
X

iv
:1

80
1.

10
32

1v
3

 [
cs

.R
O

]
 1

6
O

ct
 2

01
8

since the supervisor visits those states. The complement of the
support describes the region that may not be safe or include
constraint-violating states. In the aforementioned surgical
task, this would correspond to the robot recognizing that
observations of heavily tensioned tissue are uncommon or
nonexistant in the supervisor demonstrations and so it should
try to avoid these states.

Various methods exist for density estimation which may
be used to identify regions of support. In prior work, it was
shown that the One Class SVM can be used effectively to
estimate boundaries around the supervisor’s demonstrations
[18].

We use this support estimate to derive a switching policy
that employs the robot’s learned policy in safe states and
switches to a recovery policy if the robot drifts close to
the boundary of the estimated support. The recovery policy
is posed as a derivative-free optimization (DFO) of the
decision function of the support estimator, which provides a
signal towards estimated safe areas. Because traditional DFO
methods can be difficult to apply in dynamical systems, we
propose a method to find likely directions toward safety by
examining the outcome of applying small perturbations in
the control signal, which we assumed lead to small changes
in state. The recovery policy is designed to steer the robot
towards safer regions in the best case or come to a stop if it
cannot. We also present a condition, which bounds the change
in state with respect to the magnitude of control, under which
the robot will never enter the constraint-violating regions
using the recovery policy.

In simulated experiments on the MuJoCo Pusher task [14],
[30], we compared the proposed recovery control to a naive
baseline and found that recovery reduced performance of the
learned policy by 35% but also reduced the rate of collisions
by 83%.

We also deployed the recovery strategy on a da Vinci
Surgical Robot in a line tracking task under disturbances
from a Stewart platform shown in Fig. 1(b) and found that
the successes increased from 24% to 52% and collisions
decreased from 76% to 12%.

This paper makes four contributions:
1) An implicit constraint inference method using support

estimation on demonstrated data.
2) Derivative-Free Recovery, a novel model-free method

for recovery control during execution of a learned
policy.

3) Conditions under which the robot will not violate the
constraints while using the recovery method.

4) Experimental results evaluating the proposed methods
in simulation and on a physical robot.

II. RELATED WORK

Learning from Demonstrations in Automation Tasks:
Learning from demonstrations, sometimes also referred to as
imitation learning, describes a broad collection of methods for
learning to replicate sequential decision making. Specifically
in automation and robotics, learning from demonstrations
often makes use of kinesthetic or teleoperated demonstrations
of control given by a human supervisor that is able to reason
about the task from a high level. The learning system takes
as input these demonstrations and outputs a policy mapping
states to actions.

Prior work in automation has explored learning from
demonstrations for highly unstructured tasks such as grasping
in clutter, scooping, and pipetting [16], [19]. Past work
has also addressed the specific problem of learning from
demonstrations under constraints [4], [5]. A popular method
for dealing with unknown constraints is to identify essential
components of multiple successful trajectories based on
variances in the corresponding states and then to produce
a learned policy that also exhibits those components [6].
Despite early empirical success, constraint satisfaction is not
guaranteed [22] and the machine learning model used to
learn the policy must often be compatible with the variance
estimator. We consider a method that is agnostic to the
machine learning model.

C-LEARN [22] successfully incorporated motion planning
with geometric constraints into keyframe-based learning
from demonstrations for manipulation tasks, guaranteeing
constraint satisfaction. However, constraints must be inferred
from predetermined criteria, and an accurate model is required
in order to satisfy those constraints using a motion planner.

Recent work has also dealt with learning constraint sat-
isfaction policies from demonstrations when the constraints
are unknown but linear with respect to the controls [3], [15].
There has also been recent work in guiding model-free policies
towards states about which they are more confident, effectively
trying to avoid certain unknown regions of the state space
via temporal difference learning [28].

Significant literature exists on the topic of error detection
and recovery (EDR) [9] with models. For example, Donald et
al. [10] used EDR methods for planning with microrobots. In
this paper we address this problem in the model-free domain.

Safe Learning to Control: Interest in learning-based
approaches for control for under constraints has increased
as a result of recent advances in learning and policy search,
which have traditionally been studied without constraints due
to their exploratory and unpredictable nature [1].

Assuming dynamics are known or can be estimated, Gillula
and Tomlin [13] applied reachability analysis to address
bounded disturbances by computing a sub-region within a
predefined safe region where the robot will remain safe under
any disturbance for a finite horizon. This region is referred
to as the “discriminating kernel” by Akametalu et al. [2]
and Fisac et al. [11] who extended this theory to obtain safe
policies that are less conservative under uncertainty. In their
work, the safety controller is applied only on the boundary
of the discriminating kernel while the robot’s controller is
freely applied in the interior, resulting in a switching policy.
Although our objectives are similar, there are several key
differences in our assumptions. First, we do not require the
model or constraints to be specified explicitly to the robot.
Also, safe reinforcement learning aims to facilitate exploration
for policy improvement while our approach addresses safe
execution of policies after learning.

In surgical robotics, Yip and Camarillo [35] studied model-
free control of continuum manipulators in constrained environ-
ments where the constraints are initially unknown. The authors
proposed a combined position and force controller which
actively estimates Jacobians. Continuum manipulators in
surgical environments are in general designed to “conform” to
obstacles constraints. In this paper, we consider manipulators

in general constrained environments where the manipulator
may not have direct force feedback from interacting with
constraints.

III. PROBLEM STATEMENT

Assumptions: We consider a discrete-time manipulation
task with an unknown Markovian transition distribution and
constraints specifying stay-out regions of the state space,
such as collisions. The constraints are initially unknown to
the robot. We further assume that the system comes to rest
at each time step as in manipulation tasks with position
control such as [19]. As in many applications of learning
from demonstrations, we do not assume access to a reward
function, meaning that there is no signal from the environment
to indicate whether the robot is successfully completing the
task. We assume a given set of observations of demonstrations
from a supervisor that do not violate the constraints. The
remainder of this section formalizes and elaborates these
assumptions.

Modelling: Let the continuous state space and continuous
control space be denoted by X ⊆ Rn and U ⊆ Rd,
respectively. The unknown transition distribution is given
by p(xt+1|xt, ut) with unknown initial state distribution
p0(x). We define τ = {(x0, u0), . . . , (xT−1, uT−1), (xT)}
as a trajectory of state-action pairs over T time steps.
The probability of a trajectory under a stochastic policy
π : X 7→ U is given by

p(τ |π) = p0(x)

T−1∏
t=0

p(ut|xt;π)p(xt+1|xt, ut).

Additionally, we denote pt(x;π) as the distribution of states
at time t under π, and we let p(x;π) = 1

T

∑T
t=0 pt(x;π).

Although unknown, the dynamics of the system are
assumed to leave the system at rest in each time step. For many
practical discrete-time manipulation tasks, this property is
common for example in settings where controls are positional
and objects are naturally at rest such as in grasping in clutter
[16].

Objective: This paper considers the problem of learning
to accomplish a manipulation task reliably from observed
supervisor demonstrations while attempting to satisfy con-
straints. We will only consider learning from demonstrations
via direct policy learning, i.e. supervised learning.

Instead of a reward function, we assume that we have a
supervisor that is able to demonstrate examples of the desired
behavior in the form of trajectories. The robot’s goal is then
to replicate the behavior of the supervisor.

The goal in direct policy learning is to learn a policy
π : X 7→ U that minimizes the following objective

Eτ∼p(τ |π) J(τ, π
∗) (1)

where J(τ, π∗) is the cumulative loss of trajectory τ with
respect to the supervisor policy π∗:

J(τ, π∗) :=

T−1∑
t=0

`(ut, π
∗(xt)). (2)

π∗(xt) indicates the supervisor’s desired control at the state at
time t, and ` : U×U 7→ [0,∞) is a user-defined, non-negative
loss function, such as the Euclidean norm of the difference

between the controls. Note that in (1), the expectation is taken
over trajectories sampled from π. Ideally, the learned policy
minimizes the expected loss between its own controls and
those of the supervisor on trajectories sampled from itself.

This objective is difficult to optimize directly because the
trajectory distribution and loss terms are coupled. Instead,
as in [18], [24], we formulate it as a supervised learning
problem:

min
π∈Π

Eτ∼p(τ |π∗)J(τ, π). (3)

Here, the expectation is taken with respect to the trajectories
under the supervisor policy, rather than the robot’s policy. This
formulation decouples the distribution and the loss, allowing
us to collect a dataset of training demonstrations {τ1, . . . , τN}
from the supervisor and minimize the empirical loss to obtain
a learned policy π̂:

π̂ = argmin
π∈Π

1

N

N∑
i=1

J(τi, π). (4)

This relaxation of the problem comes with a consequence.
Because the training dataset is sampled from a different
distribution (the supervisor distribution), it is difficult to
apply traditional supervised learning guarantees about the
learned policy. This problem is referred to as covariate shift.
Prior work has considered learning recovery behavior during
training [24], [17], but it is still not clear how errors may
affect the robot or its environment, which motivates the need
for increased robustness during execution.

Constraints: While prior work in learning from demon-
strations has often dealt in the unconstrained setting, we
consider learning in the presence of constraints that specify
regions of the state space that the robot should actively
avoid. Using the notation of [2], let K be a subset of X that
is constraint-satisfying and let KC , the constraint-violating
region, be its relative complement in X . Note that this region
is different from the support of the supervisor. The support is
a subset of K that does not intersect KC . The supervisor, who
is able to reason about the task at a high level, demonstrates
the task robustly by providing constraint-satisfying trajectories
during training time only. That is, p(x;π∗) = 0 for all
x ∈ KC . Our objective is to have the robot learn this policy
from demonstrations and perform it autonomously and reliably
without entering the constraint-violating regions when it is
deployed.

IV. ALGORITHMS

A. Support Estimation

Given a set of sample states from supervisor
demonstrations, {xi}ni=1 ⊂ X , support estimation
returns an approximate region of non-zero probability,
{x ∈ X : p(x;π∗) > 0}. Since the supervisor is always
safely demonstrating the task, if p(x;π∗) > 0, then we know
that x ∈ K.

As presented by Schölkopf et al. in [26], a common
objective in support estimation is to identify the set in the
state space of least volume that captures a certain probability
threshold α. For Lebesgue measure µ and probability space
(X ,B, P) where B is the set of measurable subsets of X and

Pπ∗(B) is the probability of B ∈ B under the supervisor
policy, the quantile function is

U(α) = inf
B∈B
{µ(B) : Pπ∗(B) ≥ α} .

The minimum volume estimator, B(α), is defined as the
subset that achieves this objective for a given α [26]. To
obtain the true support, we set α = 1 since we would like
to obtain the minimum volume estimator of the entire non-
zero density region. In practice, there is no way to obtain
the true minimum volume estimator with finite data and an
unknown distribution. Instead, many methods for obtaining
approximate support estimates have been proposed [12], [26].
For example, one might employ a kernel density estimator.
In these cases, we often let α < 1 to allow some tolerance
for outliers, so that the estimator is more robust.

Despite prior use of support estimation in robotic and
sequential tasks [18], estimators for which α < 1 can be
problematic when applied directly to observed states due to
the time-variant nature of the state distribution. We provide a
simple example where the minimum volume estimator fails
to provide an accurate support estimate.

Consider two disjoint subsets of the state space B0 and
B1, such that p0(x ∈ B0;π

∗) = 1 and pt(x ∈ B1;π
∗) = 1

for all t > 0. It is clear that limT→∞ p(x ∈ B0;π
∗) =

limt→∞
1
T

∑T
t=0 pt(x ∈ B0;π

∗) = 0 since states in B0

are only possible as initial states. Therefore, if we simply
draw examples from the distribution p(x;π∗), the appropriate
minimum volume estimate of any α-quantile will not include
B0 because the entire long-term probability density lies
entirely in B1.

This example reveals an important problem in the support
estimation for tasks involving Markov chains: regions of the
state space may be left out of the support estimate not because
they are not relevant, but rather they are only relevant in a
vanishing fraction of time steps. Thus, even if a region is
known to surely be in the supervisor trajectories at some time
step, it may be excluded from the estimated support. The
example is not unrealistic. This problem may occur, albeit
less severely, in any Markov chain where regions of the state
space are revisited at different time steps.

Taking inspiration from [24], instead of using a single
support estimator to encompass the entire distribution over
states p(x;π∗), we propose to use T estimators each for a
corresponding distribution pt(x;π∗). By doing so, we limit
each estimator to a single time step potentially reducing
sample variance. When demonstrations are time-aligned, this
can lead to improved support estimation. When they are not,
we at worst increase the sample complexity T -fold.

In this paper, we use the One Class Support Vector Machine
(OCSVM) to estimate the support [26], [27]. The estimator
determines a small region of X where the fraction of examples
within the region converges to an appropriate α-quantile as
more data is collected [34]. Schölkopf et al. [26] present the
primal optimization problem of the OCSVM as

min
w,ρ,ε

1

2
‖w‖22 +

1

νm

m∑
i=1

εi − ρ

s.t. w>φ(xi) ≥ ρ− εi i = 1, . . . ,m

where m is the number of training examples, 0 < ν < 1 is
a hyperparameter used to adjust the quantile level, and φ(·)
is a mapping from the state space to some implicit feature
space.

At run time, we can determine whether each visited state
lies in the estimated support by evaluating sgn {g(x)}, where
g(x) = w>φ(x)− ρ is the decision function. Positive values
indicate that x is in the estimated support and negative values
indicate otherwise. For the remainder of this paper, we will
use the Gaussian kernel: φ(x)>φ(x′) = e−γ‖x−x

′‖22 .

B. Derivative-Free Recovery Control
Once the support has been identified based on the su-

pervisor demonstrations, the robot must learn a policy that
minimizes the loss while staying within the boundaries of the
estimated support to ensure it does not violate the constraints.
To reconcile these potentially competing objectives, we
propose using a switching policy at run time as in [2]
that alternates between the learned policy π̂ from (4) and a
recovery policy πR that attempts to guide the robot to interior
regions of the support if it is close to the boundary.

The decision functions of the support estimators provide
natural signed distance functions to the boundary of the
estimated support. Thus as the robot rolls out, we can obtain
reasonable online estimates of how “close” it is to the
boundary. If the robot is in a state with a relatively high
decision function value, it should apply its learned controls
freely. However, if the decision function value at the robot’s
state is close to zero (i.e. near the boundary), the recovery
should be activated to help the robot recover.

Formally, we may define a “close” distance as any distance
from the boundary where the robot’s learned policy could
send it past the boundary in the next time step. Without
a model of the dynamics, this cannot be known exactly.
We introduce a tuneable hyperparameter λ, similar to a
learning rate, which intuitively corresponds to a proportional
relationship between the amount of change in the decision
function and the magnitude of the applied control. We then
propose a switching policy π̃ to incorporate the recovery
behavior πR:

π̃ =

{
π̂ gt(xt) > λ‖π̂(xt)‖2
πR otherwise.

The simplest recovery behavior is to apply zero control for
the remaining time steps after the threshold has been crossed,
potentially leaving the task incomplete. While this strategy
will in principle reduce the risk of entering a constraint-
violating state, it is overly conservative.

To increase the chance of completing the task while
maintaining constraint satisfaction, we propose a best-effort
recovery policy that leverages the decision function of the
support estimator. When enabled, the recovery policy should
drive the robot towards regions of the state space where
the estimated decision value is higher, indicating the interior
regions of the support. That is, we want to ascend on gt(x). If
the dynamics model were known analytically, we could apply
standard optimization techniques such as gradient ascent to
obtain a local maximum of the decision function with respect
to the controls. However, the model-free domain considered
in this paper presents a challenge, as the decision function

safe

Recovery: OFF

x0

xt

KC

riskysafe

Recovery: ON

x0

xt

KC

Recovery: OFF

x0

risky

xt

KC

(a) (b) (c)
Fig. 2: The estimated support is represented as the dotted shape and the region of constraint-violating states is denoted by KC . At run time, the robot
executes its learned policy starting at state x0. The dashed circle around the current state xt indicates the ball of states that the robot may enter in the
next time step given its intended action. In (a), the ball is fully contained in the estimated support, so the robot uses its learned policy only. In (b), the
ball overlaps with the boundary of the estimated support, indicating that the next state may be unsafe. In (c), as a result the recovery policy is activated,
restricting the magnitude of control, as random perturbations are applied to find a direction of ascent.

Algorithm 1 Derivative-Free Recovery (DFR)

1: Initialize t← 0, x0 ∼ p0(x)
2: while t < T do
3: ût ← π̂(xt)
4: while gt(xt) ≤ λ‖ût‖2 do
5: Sample random uδ s.t. ‖uδ‖2 � gt(xt)

λ
6: Apply uδ and observe xδ ∼ p(·|xt, uδ)
7: if gt(xδ) ≤ gt(xt) then
8: uδ ← −uδ
9: end if

10: uR ← η uδ
‖uδ‖2

11: Apply uR and observe x ∼ p (·|xδ, uR)
12: xt ← x
13: ût ← π̂(xt)
14: end while
15: Apply ût and observe xt+1 ∼ p(·|xt, ût)
16: t← t+ 1
17: end while

with respect to the control is unknown. It is therefore not
possible to use analytic derivative approaches to optimize the
objective.

Additionally, conventional Derivative-Free Optimization
(DFO) and finite difference methods [23], where multiple
function evaluations of gt(x) would be made to find directions
of ascent, are not suitable because we cannot directly
manipulate the state x. Instead we may only control the
state by applying input controls through the system, and we
may only evaluate the effect of a control once it has been
applied. Furthermore, because the system advances each time
we apply a control, the objective function, which is a function
of the current state, must change as well.

To address this problem, we propose a novel greedy
derivative-free optimization approach, called Derivative-Free
Recovery (DFR) Control, that employs a method similar
to hill-climbing to make a best-effort recovery by applying
conservative controls to ascend on the decision function.
Consider the robot at state xt. A small control perturbation
uδ is applied and yields a small change in state from xt to xδ .
Consequently the perturbation also results in a small change
in the decision function which indicates whether uδ causes
ascent or descent of the decision function at state xt.

The full procedure for applying recovery controls online
is shown in Algorithm 1. At any given time step, a control is

obtained from the robot’s policy. Using λ and the magnitude
of the control, it is decided whether the robot’s control is
safe to use. If it is safe, then the control is executed without
interruption. In the event that it is not safe, the recovery
strategy is activated. A random but small control uδ is then
sampled, such that applying that control would still result
in a positive decision function value. On lines 7 and 8, an
approximate ascent direction is identified by executing the
small random control and evaluating the decision function
again. The recovery control uR is then chosen as a vector in
the direction of ascent with conservative magnitude η, where
0 < η < gt(x)

λ , limiting the risk of steering the robot out of
the support and potentially into constraint-violating regions.
Thus a larger choice of λ corresponds to a more conservative
policy. While guaranteeing improvement of decision function
may not be possible in all problems, improvements may be
found in environments with locally nice and differentiable
dynamics. A visual procedure is given in Fig. 2.

Furthermore, a fail-safe strategy naturally follows from
this algorithm. In the event that recovery is not possible
and the robot gets arbitrarily close to the boundary of the
support, the magnitudes of the sample and recovery controls
approach zero, effectively halting the robot to prevent it from
failing. In the next section, we present conditions when we
can guarantee constraint satisfaction for Algorithm 1 and
formalize a worst-case choice for λ.

C. Conditions for Constraint Satisfaction

While it is not strictly necessary for good performance
on many manipulation tasks as seen in the experiments, we
introduce a condition on the dynamics model specific to some
systems that formally characterizes a notion that the system
comes to rest between time steps and allows us to guarantee
that the robot will not violate constraints in systems where it
is satisfied.

Assumption 4.1: For all t ∈ {0, . . . , T − 1} there exists
some constant K such that the following holds:

‖xt+1 − xt‖2 ≤ K‖ut‖2. (5)
This condition holds in stable manipulation systems where
the amount of change from one state to the next is limited.

We now show that under the proposed algorithm and the
above condition, it is guaranteed that the robot will not
violate the constraints. Formally, let B̃t ≡ {x : gt(x) ≥ 0}
be the estimated support of pt(x|π∗) with a corresponding

L-Lipschitz decision function gt(x). By (5) and the Lipschitz
continuity of gt(x), |gt(xt+1)− gt(xt)| ≤ L‖xt+1 − xt‖2 ≤
LK‖ut‖2. This inequality formalizes a worst-case change
in decision function value with respect to the magnitude of
the robot’s control, giving concrete meaning to the choice
of λ = LK. Next, we guarantee constraint satisfaction for
states in the estimated support:

Lemma 4.2: If at time t, the robot is in state xt and
gt(xt) ≥ 0 and B̃t ∩ KC = ∅, then xt ∈ K.

Proof: This follows immediately from the condition that
B̃t ≡ {x : gt(x) ≥ 0}, which implies that xt ∈ B̃t. Thus,
xt must be in K.

Using this lemma, we are able to establish the following
proposition:

Proposition 4.3: Under Algorithm 1 and the preceding
conditions, the robot is never in violation of the constraints
if B̃t ∩ KC is empty.

Proof: The proof is by induction. Assume that the robot
starts inside the estimated support. The induction assumption
is that gt(xt) ≥ 0, and we prove that this remains true after
each step.

In the case where the learned policy π̂ is constraint-
satisfying, ‖ût‖2 < 1

LK gt(xt), we apply this control, and the
next state satisfies

gt+1(xt+1) ≥ gt(xt)− LK‖ut‖2 > 0.

The remaining case is where we switch to the recovery
strategy, and we apply both uδ and uR with

‖uδ‖2 = ε
LK gt(xt)

‖uR‖2 = η ≤ 1−ε
LK gt(xt)

for some 0 < ε� 1 splitting the difference between η and
gt(xt)
LK . Then the state x after applying these controls satisfies

gt(x) ≥ gt(xt)− LK(‖uδ‖2 + ‖uR‖2) ≥ 0.

We have shown that always gt(xt) ≥ 0. If B̃t ∩ KC = ∅,
then by Lemma 4.2 the robot is always constraint-satisfying.

The intuition behind the proof of this proposition is that if
we choose DFR controls with appropriately small magnitudes,
applying those controls will never lead to a step that exceeds
the boundary of the estimated support.

V. EXPERIMENTS

We conducted manipulation experiments in simulation
and on a physical robot to evaluate the proposed detection
method and the reliability of various recovery strategies. Our
experiments aim to answer the following questions:

1) Does support estimation provide a viable method for
inferring safe regions given supervisor demonstrations
when real constraint-violating regions exist but are not
explicitly programmed by the supervisor? Is it viable
even on systems where the conditions for constraint
satisfaction do not necessarily hold?

2) Does DFR effectively climb the decision function?
3) How does DFR perform when varying the number of

trajectories demonstrated?
4) How does DFR perform in response to small distur-

bances not seen during training time?

A. Pusher Simulation

Pusher (Fig. 4) is an environment simulated in MuJoCo
[32] that considers the task of a one-armed robot pushing
a light gray cylinder on a table to a green goal location.
The initial state of the cylinder varies with each episode,
preventing the robot from simply replaying a reference
trajectory to succeed.

The robot has seven degrees of freedom controlling joint
angle velocities. The state space consists of the joint angles,
the joint angle velocities and the locations of the cylinder,
end-effector, and goal object in 3D space. We modified the
original task to allow control via direct changes in pose as
opposed to velocity control of the joint angles. That is, the
objects have no lasting momentum effects. We also introduced
two regions marked in red representing the constraints of the
task. The robot and the cylinder should not collide with these
red regions. We stress that the robot does not know to avoid
collisions with these states a priori, but the supervisor does.
The robot must learn the support of the supervisor in order
to recover if it approaches the collision states.

We generated an algorithmic supervisor using Trust Region
Policy Optimization [29] to collect large batches of supervisor
demonstrations. The learning model used a neural network
with two 64-node hidden layers and tanh activations. 120
supervisor trajectories were collected for each trial. The
learning models were also represented with neural networks
optimizing (4). The models cannot match the supervisor
exactly, which introduces the need for the recovery policy.

For the OCSVM, we set ν = 0.05 as an arbitrary quantile
of the observed data and then tuned the kernel scale γ = 5.0
on out-of-sample trajectories from the supervisor. To simplify
the support estimation, we removed joint angles from the state
space to include only those features relevant to the recovery
behavior, as we found extraneous features often caused the
OCSVM to require much more data.

For this task, we define a “Completed” trajectory to be
any trajectory that reached the goal state without colliding.
This includes trajectories where recovery was successful. A
“Collided” trajectory is any trajectory that reached a collision
state. Finally, a trajectory that “Halted” is any trajectory that
neither reached the goal state nor entered a collision state
in the allotted time. For example, the recovery policy may
intentionally halt the task in high risk situations, resulting in
a constraint-satisfying but incomplete trajectory. Trajectories
that halted are strictly preferable to collisions. In many
practical cases, they can also be reset, and the task may be
attempted again. The ideal policy should minimize collisions
while maintaining a high rate of completion.

We compared the proposed recovery strategy (DFR) in
Algorithm 1 to a Baseline, which did not employ any recovery
behavior, and an early stopping (ES) policy, which simply
halted when it came close to the estimated support boundary.
Fig. 3 illustrates the completed, halted, and collision rates
for each method while varying the number of demonstrations
of data. Across 10 trials with 60 evaluation samples per
data-point per trial, DFR and ES significantly reduced the
collision rate even with very little data compared to the
Baseline, suggesting that staying within the estimated support
is a viable method to avoid entering constraint violating
regions. As more data was added, the completion rates of

Fig. 3: Left: The fraction of completed completed samples of the three methods (Baseline, Early Stopping (ES), DFR) is plotted as a function of the number
of demonstrations. DFR achieves a comparable completion rate to Baseline. Middle: Halting rate which decreases for all methods as the learned policy
acquires more data. Although Basline’s halting rate decreases faster, it ultimately incurs more collisions without recovery. Right: The collision rate for
Baseline is much higher than either ES or DFR, which both have consistently low collision rates even with very little data.

Fig. 4: Left: The Pusher task. The robot must learn to push the light gray
object over the green circle without crossing over the red circles. Right:
Top-down view.

all three increased; however, DFR recovered from high risk
situations allowing it to surpass ES and reach a comparable
completion performance to the Baseline without significant
collisions. DFR on average over all iterations achieved 83%
fewer collisions compared to the Baseline. Additionally the
completion rate of DFR was only 65% of that of the Baseline.
Note that, due its conservative controller, DFR can prolong
the wall clock time of a trajectory requiring an average of
1.50 seconds per trajectory while the baseline and ES required
0.13 seconds and 0.07 seconds, respectively.

Fig. 5 depicts the effectiveness of the derivative-free opti-
mization technique on the decision function when the recovery
strategy is activated. Note that the recovery strategy remains
activated until the value of the decision function reaches the
cutoff value λ‖ût‖2 or until 500 iterations have elapsed. On
50 instantiations of the optimization algorithm on Pusher,
each curve had nearly monotonic average improvement. We
compared DFR with a finite difference oracle which was
allowed to simulate controls before taking them in order to
obtain numerical gradients with respect the controls.

B. Line Tracking on a da Vinci Surgical Robot
Robotic surgical procedures consist of safety-critical tasks

that require robust control due to disturbances in environment
and dynamics that are difficult to model. We consider learning
positional control in a task that mimics disturbances that might
be encountered in such environments. We applied support
estimation and recovery policies to the task of tracking lines
on gauze using the Intuitive Surgical da Vinci robot as shown
in Fig. 1. The objective of the task was to deploy a learned
policy from demonstrations to follow a red line drawn in
gauze using the end-effector under disturbances that were not

Fig. 5: Left: The average of 50 DFR optimization curves on Pusher is shown
as a result of the recovery policy being activated during a trajectory. DFR
is compared to a finite difference oracle. The decision function values were
normalized between 0.0 and 1.0 where 1.0 represents the threshold of the
switching policy. The normalized curves are capped at 1.0 because, by Alg.
1, the optimization stops once the threshold is reached. The few trajectories
that do not reach 1.0 bring the average down slightly below 1.0 in both
figures. Right: The average of 30 DFR curves on the da Vinci.

shown during training time. The gauze was mounted on a
Stewart platform [21] which introduced random disturbances
in the system during run time, but not during training. The
robot used an overhead endoscope camera to observe images,
which were processed to extract distances to the line and
positions of the end-effector.

For this task, a “Collided” trajectory was defined as any
trajectory where the end-effector deviated by more than 4
mm from the red line. A “Completed” trajectory was any
trajectory that did not collide and tracked at least 40 mm of
the gauze. All other trajectories were categorized as “Halted.”

Over 50 demonstrations were given with an open-loop
controller without disturbances. Thus the trajectories never
deviated from the line. As a result no notion of feedback
control was present in the demonstration data. The robot’s
policy was represented by a neural network. As in Pusher, we
set the hyperparameters of the OCSVM by choosing a quantile
level and validating on a held-out set of demonstrations.

The results are summarized in Fig. 1. The Baseline policy
collided on the task repeatedly under random disturbances.
The recovery was robust to the disturbances by attempting
to keep the robot in the support. As in the Pusher task,
an increase in trajectories that halted was observed with
DFR, indicating the ability to detect constraint-violating
areas and halt in the worst case. An increase in the rate
of completion was also observed as DFR applied controls
to mitigate deviations from the line and resume the original
policies when the state was sufficiently far from the boundary.

VI. DISCUSSION AND FUTURE WORK

This paper presents Derivative-Free Recovery Control for
robotic manipulation tasks. The results show that DFR can
be used as an effective method of steering towards safe
regions of a state space when a dynamics model is not
known by ascending the decision function found by support
estimation. Despite the promising asymptotic properties of
the OCSVM, it can prove difficult in very high dimensional
problems such as image space. This is a common trait of
unsupervised learning the methods such as anomaly detection.
Additionally the recovery procedure assumes the system
comes to rest at each time step. In future work, we will
extend DFR by addressing these problems with alternative
support estimators and dimensionality reduction techniques
and recovery planners that are less greedy.

VII. ACKNOWLEDGMENTS

This research was performed at the AUTOLAB at UC
Berkeley in affiliation with the Berkeley AI Research (BAIR)
Lab, the Real-Time Intelligent Secure Execution (RISE) Lab,
and the CITRIS “People and Robots” (CPAR) Initiative and
with UC Berkeley’s Center for Automation and Learning for
Medical Robotics (Cal-MR). The authors were supported in
part by donations from Siemens, Google, Cisco, Autodesk,
Amazon, Toyota Research, Samsung, and Knapp and by the
Scalable Collaborative Human-Robot Learning (SCHooL)
Project, NSF National Robotics Initiative Award 1734633,
and by a major equipment grant from Intuitive Surgical.
We thank our colleagues who provided thoughtful feedback
and suggestions, in particular Bill DeRose, Sanjay Krishnan,
Jeffrey Mahler, Matthew Matl, and Ajay Kumar Tanwani.

REFERENCES

[1] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” in International Conference on Machine Learning
(ICML), 2017.

[2] A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama, M. N. Zeilinger,
and C. J. Tomlin, “Reachability-based safe learning with gaussian
processes,” in IEEE Conference on Decision and Control (CDC), 2014.

[3] L. Armesto, V. Ivan, J. Moura, A. Sala, and S. Vijayakumar, “Learning
constrained generalizable policies by demonstration,” in Robotics:
Science and Systems (RSS), 2017.

[4] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot program-
ming by demonstration,” in Springer handbook of robotics. Springer
Berlin Heidelberg, 2008, pp. 1371–1394.

[5] S. Calinon, Robot programming by demonstration. EPFL Press, 2009.
[6] S. Calinon and A. Billard, “A probabilistic programming by demon-

stration framework handling constraints in joint space and task space,”
in IEEE International Conference on Intelligent Robots and Systems
(IROS), 2008.

[7] C. Chen, S. Krishnan, M. Laskey, R. Fox, and K. Goldberg, “An
algorithm and user study for teaching bilateral manipulation via
iterated best response demonstrations,” in International Conference on
Automation Science and Engineering (CASE), 2017.

[8] A. Coates, P. Abbeel, and A. Y. Ng, “Learning for control from multiple
demonstrations,” in International Conference on Machine Learning
(ICML), 2008.

[9] B. R. Donald, Error detection and recovery in robotics. Springer-
Verlag New York, 1989.

[10] B. R. Donald, C. G. Levey, I. Paprotny, and D. Rus, “Planning and
control for microassembly of structures composed of stress-engineered
mems microrobots,” The International Journal of Robotics Research,
vol. 32, no. 2, pp. 218–246, 2013.

[11] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. H.
Gillula, and C. J. Tomlin, “A general safety framework for learning-
based control in uncertain robotic systems,” arXiv preprint, vol.
abs/1705.01292, 2017.

[12] G. Gayraud, “Estimation of functionals of density support,” Mathemat-
ical Methods of Statistics, vol. 6, no. 1, pp. 26–46, 1997.

[13] J. H. Gillula and C. J. Tomlin, “Guaranteed safe online learning via
reachability: tracking a ground target using a quadrotor,” in IEEE
International Conferece on Robotics and Automation (ICRA), 2012.

[14] K. Hausman, Y. Chebotar, S. Schaal, G. Sukhatme, and J. Lim,
“Multi-modal imitation learning from unstructured demonstrations using
generative adversarial nets,” arXiv preprint, vol. abs/1705.10479, 2017.

[15] M. Howard, S. Klanke, M. Gienger, C. Goerick, and S. Vijayakumar,
“A novel method for learning policies from variable constraint data,”
Autonomous Robots, vol. 27, no. 2, pp. 105–121, 2009.

[16] M. Laskey, J. Lee, C. Chuck, D. Gealy, W. Hsieh, F. T. Pokorny, A. D.
Dragan, and K. Goldberg, “Robot grasping in clutter: Using a hierarchy
of supervisors for learning from demonstrations,” Automation Science
and Engineering (CASE), 2016 IEEE, pp. 827–834, 2016.

[17] M. Laskey, J. Lee, R. Fox, A. Dragan, and K. Goldberg, “Dart:
Noise injection for robust imitation learning,” in Conference on Robot
Learning, 2017.

[18] M. Laskey, S. Staszak, W. Y.-S. Hsieh, J. Mahler, F. T. Pokorny, A. D.
Dragan, and K. Goldberg, “Shiv: Reducing supervisor burden in dagger
using support vectors for efficient learning from demonstrations in
high dimensional state spaces,” in Robotics and Automation (ICRA),
2016 IEEE International Conference on. IEEE, 2016, pp. 462–469.

[19] J. Liang, J. Mahler, M. Laskey, P. Li, and K. Goldberg, “Using dvrk
teleoperation to facilitate deep learning of automation tasks for an
industrial robot,” in IEEE International Conference on Automation
Science and Engineering (CASE), 2017.

[20] L. Lu and J. T. Wen, “Human-directed robot motion/force control for
contact tasks in unstructured environments,” in International Conference
on Automation Science and Engineering (CASE), 2015.

[21] V. Patel, S. Krishnan, A. Goncalves, and K. Goldberg, “Sprk: A low-cost
stewart platform for motion study in surgical robotics,” in International
Symposium on Medical Robotics (ISMR), 2018.

[22] C. Pérez-D’Arpino and J. A. Shah, “C-learn: Learning geometric
constraints from demonstrations for multi-step manipulation in shared
autonomy,” in IEEE International Conference on Robotics and Au-
tomation (ICRA), 2017.

[23] L. M. Rios and N. V. Sahinidis, “Derivative-free optimization: a review
of algorithms and comparison of software implementations,” Journal
of Global Optimization, vol. 56, no. 3, pp. 1247–1293, 2013.

[24] S. Ross and D. Bagnell, “Efficient reductions for imitation learning,”
in International Conference on Artificial Intelligence and Statistics,
2010, pp. 661–668.

[25] G. F. Rossano, C. Martinez, M. Hedelind, S. Murphy, and T. A.
Fuhlbrigge, “Easy robot programming concepts: An industrial per-
spective,” in International Conference on Automation Science and
Engineering (CASE), 2013.

[26] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribution,”
Neural computation, vol. 13, no. 7, pp. 1443–1471, 2001.

[27] B. Schölkopf and A. J. Smola, Learning with kernels: Support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

[28] Y. Schroecker and C. L. Isbell, “State aware imitation learning,” in
Advances in Neural Information Processing Systems, 2017, pp. 2915–
2924.

[29] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International Conference on Machine
Learning (ICML), 2015.

[30] A. Singh, L. Yang, and S. Levine, “Gplac: Generalizing vision-
based robotic skills using weakly labeled images,” arXiv preprint,
vol. abs/1708.02313, 2017.

[31] B. Thananjeyan, A. Garg, S. Krishnan, C. Chen, L. Miller, and
K. Goldberg, “Multilateral surgical pattern cutting in 2d orthotropic
gauze with deep reinforcement learning policies for tensioning,” in
IEEE International Conference on Robotics and Automation (ICRA),
2017.

[32] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in International Conference on Intelligent Robots
and Systems (IROS), 2012.

[33] J. Van Den Berg, S. Miller, D. Duckworth, H. Hu, A. Wan, X.-Y. Fu,
K. Goldberg, and P. Abbeel, “Superhuman performance of surgical tasks
by robots using iterative learning from human-guided demonstrations,”
in ICRA, 2010 IEEE. IEEE, 2010, pp. 2074–2081.

[34] R. Vert and J.-P. Vert, “Consistency and convergence rates of one-
class svms and related algorithms,” The Journal of Machine Learning
Research, vol. 7, pp. 817–854, 2006.

[35] M. C. Yip and D. B. Camarillo, “Model-less hybrid position/force
control: a minimalist approach for continuum manipulators in unknown,
constrained environments,” IEEE Robotics and Automation Letters,
vol. 1, no. 2, pp. 844–851, 2016.

	I Introduction
	II Related Work
	III Problem Statement
	IV Algorithms
	IV-A Support Estimation
	IV-B Derivative-Free Recovery Control
	IV-C Conditions for Constraint Satisfaction

	V Experiments
	V-A Pusher Simulation
	V-B Line Tracking on a da Vinci Surgical Robot

	VI Discussion and Future Work
	VII Acknowledgments
	References

