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Abstract- In this communication, necessary and sufficient conditions 
are presented for the unique blind identification of possibly nonminimum 
phase channels driven by cyclostationary processes. Using a frequency- 
domain formulation, it is first shown that a channel can be identified 
by the second-order statistics of the observation if and only if the 
channel transfer function does not have special uniformly spaced zeros. 
This condition leads to several necessary and sufficient conditions on 
the observation spectra and the channel impulse response. Based on 
the frequency-domain formulation, a new identification algorithm is 
proposed. 

Index Terms-Communication systems, system identification, cyclosta- 
tionary processes. 

I. INTRODUCTION 

Reliable communication often requires the identification of the 
channel impulse response. Such identification can facilitate channel 
equalization as well as maximum likelihood sequence detection. 
The so-called blind channel identification means that the channel is 
identified without using a training signal; instead, the identification 
is achieved by using only the channel output along with certain 
a priori statistical information on the input. Such methods have 
the potential to increase the transmission capability due to the 
elimination of training signals. Recently, since the publication of 
[4], [ I  1 J, [12], blind channel identification techniques using second- 
order cyclostationary statistics have attracted considerable research 
attention. The purposes of this communication are: i) to investigate 
basic questions of channel identifiability in the frequency domain 
and their relations to the time-domain results obtained earlier in [ 121; 
ii) to present a new frequency-domain approach to blind channel 
identification. A set of necessary and sufficient conditions for channel 
identifiability is presented. Based on a new optimization criterion, a 
new channel identification algorithm is derived. Such an algorithm 
is not easily seen in the time domain and offers potential savings in 
computation. 
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11. PROBLEM FORMULATION 

A. The Model 
We consider a discrete-time model for a baseband communication 

system with QAM signaling 
M 

x(t)  = h(a)u(t  - a )  + n( t )  
a=--M 

u ( t )  = C s k S ( t  - kT) 
k 

where x(.) is the channel output process, h(.) is the channel impulse 
response, {SL} the sequence of information symbols, 1/T the symbol 
transmission rate, and n(.) an additive noise process. The sampling 
rate is normalized to 1. 

The following conditions are assumed in the paper: 
Al .  The symbol interval T is a known integer, T > 1. 
A2. The channel has a finite impulse response. 
A3. {SL} is zero mean, and E ( s ~ s ; )  = S(k  - l ) ,  where 6 ( t )  is 

the discrete-time impulse function. 
A4. n(.) is zero mean, white, and uncorrelated with {sL}. 
Remark: To study the channel identifiability conditions, we assume 

that the noise variance is known. However, such an assumption is not 
necessary for the blind channel identification algorithm proposed in 
this communication. 

B. Cyclostationarity Properties 

To obtain the relation between the output (cyclostationary) statistics 
and the channel transfer function, define the autocorrelation function 
of x( . )  and its Fourier transform by 

The autocorrelation functions (Fourier transforms of the autocorre- 
lations) of U(.) and n(.) are denoted by ~ , ( t ,  T )  (S,(t, v)) and 
r n ( t ,  T )  (S,(t, v)), respectively. Under Assumptions Al-A4, it can 
be shown that 

where H ( v )  is the discrete-time Fourier transform of h(.). Since 
S,(t, v )  is a periodic function of t with the period T ,  S,(t, v) is 
also periodic in t with period T when the noise process is wide- 
sense stationary, as assumed in this communication. Let (v) be 
the kth Fourier coefficient of S,(t, v), referred to as the kth cyclic 
spectrum, given by 

t=o 

We have, from (3) 

O < k < T - 1  (6 )  

where r?’(v)  and rLL’(v) are the kth cyclic spectra of U(.) and 
n(.), respectively. Under Assumptions A3 and A4 and by (4), we 
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T - 1. (8) 

I 
Fig. 1. A channel with uniformly (.rr/4)-spaced zeros. 

(9) 

It is convenient to treat the problem of channel identifiability in 
the ;-domain. Let 

With the correspondences H ( J )  U H ( z ) ,  H * ( d  - X.8) tf 

H * ( r - I k R ( l / z * ) ) ,  and r( ')(d) ++ r (k ) (z ) ,  we obtain the 
identification equations 

"*), k = O , . . . , T - l  . (12) 

If is the coefficient of z P r  in r ( k ) ( z ) ,  we shall now relate it 
to the autocorrelation function r z ( t ,  T ) ,  which can be estimated from 
the channel output in practice. Denoting the cyclic autocorrelation by 

T-1 

the coefficient y i k )  is given by 

It is noted that, once r I ( t ,  r )  and are obtained, 7 i k )  can be 
computed by applying the fast Fourier transform (FFT) to r Z ( f ,  7 ) .  

The problem of channel identification is now equivalent to identifying 
~ ( z )  given r(k)(z).  

111. NECESSARY AND SUFFICIENT 
CONDITIONS OF CHANNEL IDENTIFIABILITY 

The issue of channel identifiability is related to the following 
question: given { r (k ) ( z ) ,  k = O;.. ,T-l}, t o w h a t e x t e n t c a n H ( z )  
be determined? It is clear from (12) that there is an inherent phase 
ambiguity for the identification in the sense that if H ( z )  satisfies 
(12), so does H ( - ) e J @  for any @. Such ambiguity has been noted 
in [ I ] ,  and it is generally considered acceptable for communication 
applications. The more important question is whether this ambiguity 
is the only ambiguity. A linear time-invariant channel with a finite 
impulse response is therefore referred to as ident@abZe if it can be 
determined from (12) up to a multiplicative constant (phase). 

A.  A Condition on the Channel Transfer Function 

The identifiability condition on H ( s )  relates to a simple no- 
tion of uniformly spaced zeros. A channel transfer function is 
said to have uniformly 0-spaced zeros if a subset of zeros of 
H ( z )  is uniformly spaced on a circle of the z-plane with angular 
spacing 8 ,  see Fig. 1. Such a set of zeros must have the form 
{re3c+a, r e ~ + + 2 ~  9 .  . . . r e J ~ + ~ ( o  = reJe) .  

The following theorem on channel identifiability applies to a linear 
time-invariant FIR channel. A similar condition for stable minimal 
IIR channels can be found in [lo]. 

Theorem I ; An FIR channel H ( z )  is identifiable from { r c k j ( z ) )  
If and only if H ( z )  does not have uniformly (27r/T)-spaced zeros. 
Moreover, if the channel is identifiable, the zeros of H ( z )  are the 
common zeros of the {T'(k)(z) ,  k = 0, .  . . , T - l}. i.e., 

Z ( H ( ~ ) )  = ( 7 ~ ( r ( ' ) ( ~ ) )  (15) 
k 

where 2 ( H ( z ) )  stands for a set of zeros' of H ( = ) .  

two examples that provide some insights into the issue. 
Before a proof is presented, we make a few comments along with 

The zeros of H * ( e - ' k e ( l / z * ) )  are reciprocals of the zeros of 
H ( z )  rotated counterclockwise by k8, i.e., if zo E Z ( H ( z ) ) ,  
then ( 1 / z : ) e 3 k R  E 2 ( H * ( e - J k o ( 1 / z * ) ) ) .  
The zeros of r (k ) (z )  are related to the zeros of H ( z )  by 

The zero diagram of an identifiable channel is shown in 
Fig. 2(c), and the corresponding zeros of the T ' ( k ) ( z )  are shown 
in Fig. 2(a) and (b). The channel does not have uniformly spaced 
zeros and it is clear that the zeros of the channel can be obtained 
from the intersection of the zeros of the observation spectra. 
An unidentifiable case is illustrated by Fig. 3 which shows two 
channels that have the same zero diagram for Fig. 4 
shows the corresponding impulse responses. In general, those 
zeros that are not (2n/T)-spaced are uniquely determined. The 
(27r/T)-spaced zeros are either minimum-phase or maximum- 
phase zeros. If the channel has m sets of (27r/T)-spaced zeros, 
there are 2" possible channels corresponding to the same output 
spectra. In a recent paper [13], Tugnait explored the implications 
of Theorem 1, and showed that a certain class of multipath 
channels is not identifiable using second-order statistics. The 
example given in Fig. 4 belongs to such channels. In this case, 
as suggested in [13], making use of higher order statistics may 
make the channel identifiable. 

'Repeated zeros are considered as different elements of Z ( H ( z ) ) .  
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t 
Fig. 2. (a) The zeros of r i 0 ) ( z ) .  (b) The zeros of r(l)(z). (c) Fig. 3. (a) Two channels having uniformly (a/4)-spaced zeros. (b) The 
2 ( ~ ( ~ ) )  = 2(ri0)(z)) n2(r(1)(z)). zeros of rik)(7) for all IC. 

Proof of Theorem 1: The necessity part is rather simple. The 
most obvious case is when all the zeros of H ( z )  are uniformly 
(2x/T)-spaced. In such a case 

2 ( 1 3 ~ ) ( ~ ) )  = ~ ( r i O ) ( ~ ) ) ,  vk. (17) 

It is then impossible to identify the zeros of H ( z )  from 2 ( r c k i ( z ) )  
since one cannot determine if a zero of H (  2) is inside or outside the 
unit circle. When a subset of 2 ( H ( z ) )  is uniformly (2x/T)-spaced, 
this subset cannot be identified. 

Suppose now that H ( z )  does not have uniformly (2x/T)-spaced 
zeros. We have, from (16) 

We shall show that 

Suppose that 

Then 

0 8 0 8 

Impulse responses of two unidentifiable channels. Fig. 4. 

B. Conditions on the Output Spectra 
Theorem 1, unfortunately, is not very useful in practice in deter- 

mining whether a given channel is identifiable, because H (  z )  is itself 
unknown. The conditions presented next, though a direct consequence 
of Theorem 1, can be verified based on the output spectra. 

Lemma I :  An Lth-order FIR channel H ( z )  is identifiable from 
{ r ( k ) ( z ) }  if and only if { r i k ) ( z ) }  have exactly L common zeros. 

Proof: The necessary part is immediate from (15). For the 
sufficient part, we observe from (12) that {rik)(z)}Fz; must have at 
least I, common zeros. Suppose that the channel is not identifiable, 
i.e., H ( 2 )  has a set of uniformly (2x/T)-spaced zeros. Then, 
{ r i k ) ( z ) )  have the same two sets of uniformly (2x/T)-spaced zeros 
for all I C ,  where one set comes from H ( z ) ,  and the other comes from 
H* ( e - J z k T / T / z * ) .  Therefore, { r ' ( k ) ( z ) } T z i  must have more than 
L common zeros. 

The condition for the existence of common zeros can be verified 
conveniently by checking the ranks of the generalized Sylvester 
resultants proposed by Kung, Kailath, and Morf [8], [2]. 

Lemma 2 ([&'I): Given an r x r matrix polynomial 
(20) m 

z 0 e - J k ( 2 X / T )  E 2 ( H' ($)). W. 

C(2)  = cc,zz 
Therefore ( 2 0 ,  zoe-Ji2a/T), 3 . .  , 2 0 e - ~ ( ~ - ~ ) ( 2 7 r / T ) }  is a set of 
uniformly (Sx/T)-spaced zeros of H * ( l / z * ) .  Hence H ( z )  has 
uniformly (2x/T)-spaced zeros. This contradiction leads to (19) and 
the fact that the zeros of H ( z )  can be identified from 2 ( r i k ) ( z ) )  by 
(15). Z=O 

2=0 

and a q x r matrix polynomial 
m 

D(L) = C D , z z  
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( m  + k )  blocks 

and I ) ,  , i = 1,. . . . r are the so-called dual dynamic indices (see [3]) 
of T(3) = D ( z ) C p ' ( z ) .  

Pro08 See [2]. 
With Lemmas 2 and 1, we obtain the following necessary and 

Theorem 2: An Lth-order FTR channel H ( z )  is identifiable from 
sufficient condition on the observation spectra. 

the { r ( ' ) ( z ) }  if and only if 

r a n k ( S k ( D , c ) ) = k + L .  f o r a l l k >  L (23) 

where Sk ( D .  c )  is the generalized Sylvester matrix constructed from 

D ( - )  = [r(i)(2), . . . , r(T-l)(z)]t 
c ( 2 )  = r(o)(2).  (25) 

(24) 

Prooj? We first note that, in applying Lemma 2 to (D(L), e( t)), 
we deal with a ( T  - 1) x 1 polynomial vector 

Next, we argue that there are exactly L common zeros among 
{ r ( ' ) ( z ) )  if and only if the minimal state-space realization of 
D ( z ) / c ( , - )  has order L (see [7]), i.e., E, vL = L. By applying 
Lemma 2 with T = 1,  we conclude that the channel is identifiable 
if and only if 

1-1 

r a n k ( S k ( D . c ) ) =  l + T - l ) k -  x ( k - v t )  (26) 

Remark: An interesting implication of this theorem and Lemma 
2 is that, for T = 2, the channel order can be determined by the 
changes in rank of the corresponding Sylvester resultants. A channel 
is of order L if the rank of the Sylvester resultant SA ( D ,  c)  increases 
by 2 for k 5 L and by 1 for k > L. Note that both D and c can 
be obtained from the observation. 

r= l  

which leads directly to (23) 

C.  A Necessury and SufJicient Condition in the Time Domain 

The necessary and sufficient conditions in the frequency domain 
turn out to be very useful in deriving a necessary and sufficient 
condition in the time domain. We shall now show that the sufficient 
condition given earlier in [12] is in fact also necessary. This result 
establishes a relation between the time-domain and frequency-domain 
approaches. A similar result was shown independently in [9] by a 
different method. 

The sufficient condition given in [I21 is based on a vector repre- 
sentation of the cyclostationary process. This vector representation is 
in fact a special case of the so-called translation series representation 
(TSR) of cyclostationary processes derived by Gardner and Franks 

[5], which represents a cyclostationary process by a set of jointly 
stationary processes. 

If an ( L  + l ) T  x 1 vector z ( k )  is formed by 

then the vector z(k) is related to a vector of input symbols {sk} 
by a memoryless time-invariant matrix filter H of dimension ( L  + 
l )T  x ( 2 L  + 1) (plus noise) 

where 

and the channel parameter matrix turns out to be a Sylvester resultant 
matrix 

ho hl " .  hr. 0 " '  ! ) (31) 
.=(. 0 ha . hl . . . '  . h L  . ... . 

. . . . . . . . .  . . . . .  
0 ... 0 ho hi . . .  hL 

wherehk = [ h ( k T ) , h ( k T + l ) ; . . , h ( k T + T - l ) ] ' .  
It was shown in [I21 that the channel is identifiable if H has 

full column rank. We shall now show that this condition is also 
necessary. The next theorem incorporates the explicit identification 
formula given in [ 121. 

Theorem 3: The channel impulse response is identifiable if and 
only if matrix H has full column rank. If the channel is identifiable, 
the channel parameter matrix H is given by 

H = aUAVH (32) 

where Q is an unknown constant, U and A are obtained from the 
singular value decomposition (SVD) of 

Ro = E(z ( t ) zH( t ) )  - E(n( t )n ' ( t ) )  

and V is obtained from the left singular vector p associated with the 
smallest singular value of 

RI = T ( E ( z ( t ) z H ( t  - 1)) - E ( n ( t ) n H ( t  - l ) ) )Tff  

where T is (the so-called Mahalanobis transform) 

T = A-lU". (35) 

Pro08 The proofs of the sufficiency and of the identification 
formula are given in [12]. To show the necessary part, we note that 
H is a Sylvester resultant of order L+ 1. Let a,(  z )  be the polynomial 
constructed from the ( i  + 1)th row of H 

Using Lemma 2, again with T = 1,  we have 

r a n k ( H ) = L + l + x v ,  (37) 
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where ut are the dual dynamic indices of 

If H does not have full column rank, i.e., rank ( H )  < 2L + 1, then 
x u z  < L. This implies that the { a , ( z ) }  share common zeros, i.e., 
there exists a 20 = roeJqo such that 

U,(ZO) = 0, i = 0 ; . . , T  - 1. (38) 

Note that 
T-1 

H ( z )  = C u z ( Z T ) Z - z .  (39) 
,=O 

Let 
p k  = ~ ~ / T e J [ ( C o + 2 k T ) / T ] ,  k = 0.. . . ,T - 1. 

Clearly, p z  = io and 
T-I T-1 

H ( p k )  = E a , ( p l ) p k 2  = E n , ( z o ) p k '  = 0. (40) 

Therefore, { p k ,  k = 0,. . . , T - l} are zeros of H ( z )  or H ( z )  has 
uniformly (27r/T)-spaced zeros. By Theorem 1, the channel is not 
identifiable. 

Theorem 3 also demonstrates that the time-domain algorithm 
proposed in [12] is able to identify all identifiable channels. 

L = O  2=0 

IV. A FREQUENCY-DOMAIN ALGORITHM 

We now consider the problem of identifying the channel using two 
output cyclic spectra l?(kl)(z) and r(k2)(z) .  Suppose that r ( k l ) (  2 )  

and r ( l c 2 ) ( z )  have exactly L common zeroes, i.e., H (  z )  is identifiable 
from r(kl)(i) and l ? ( k 2 ) ( z ) ,  it is easily shown from (10) that, for any 

L 

Q ( 2 )  = C q n Z - n  
n=O 

if and only if Q ( z )  = C Y H ( Z )  for some constant (I. By equating 
coefficients of powers of z in (41) with Q ( z )  = H ( z ) ,  we get 

G(k1 ,  k2)[h(L), . . . ,h(O)lH = 0 (42) 

where the ( 3 L  + 1) x ( L  + 1) matrix G(k1,  k 2 )  is defined by (see 
(43) at the bottom of page). 

Moreover, the dimension of the null space of G( k1, k2) satisfies 

d imN(G(k1,  k2)) = 1. (44) 

With a slight generalization, we have the following necessary and 
sufficient condition that involves all the I ' ( k )  (2). 

Theorem 4: An Lth-order FIR channel H (2) is identifiable from 
the {rck)(i)} if and only if 

dim(hr(G))  = 1. (45) 

where 

G = [ G t ( O ,  1 ) ; . . ,Gt (0 ,T- l ) .Gf(1 ,2) ,  
x . . . , G t ( l ,  T - 1);. . , G f ( T  - 2, T - l)]'. (46) 

Moreover 

G [ h ( L ) , . . . , h ( 0 ) I H  = 0. (47) 

Remark: Equations (45) and (47) form the foundation of the 
frequency-domain blind channel identification algorithm first pro- 
posed in [6]. 

Although the channel can be identified from the zeros of the 
cyclic spectra of the channel output suggested by Theorem 1, such 
identification is sensitive to noise and estimation error. We shall now 
derive a channel identification algorithm based on the frequency- 
domain formulation, and it is motivated by minimizing the effect of 
noise and estimation error in some sense. 

From the observations, we can obtain the estimated cyclic autocor- 
relation functions 7jik'), 7jikz). The estimated output spectra f ( k l ) ( ~ )  
and l ? k z ) ( ~ )  are given by 

where, from (14) 

, i = 1, 2 .  (49) 

The estimate H ( z )  of H ( z )  is obtained via the following optimization 
problem: 

+(k3) ,T = 7 j T e ~ k , ( 2 " / T ) r  

The solution 
L 

H ( z )  = EiL(n)z-".  
n = O  

to this minimization problem is given by 

[i(L),...,i(0)]H = argminllG(k1, kZ)u(l; (51) 

where G(k1, k z )  is the estimated G(k1, k z )  defined in (43). The 
optimal solution (in the sense of (51)) is given by 

U#O 

[iL(L),- . i(0)lH = V L + 1  (52) 
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where U L + ~  is the right singular vector of G( kl , k2 ) associated with 
the ( L  + 1)th singular value. 

The choice of kl  and k2 may affect the performance of the 
algorithm. However, it is not difficult to combine the cyclic statistics 
for some or all (distinct) k l ’ s  and k?’s. In doing so, the criterion in 
(5  1 )  can be modified by replacing G( IC l ,  k2 ) by 

G = [ G t ( 0 . 1 ) , . . . , G = 1 ( 0 , T - l ) , G = 1 ( 1 . 2 )  , 

Recursive Filtering and Smoothing for Reciprocal 
Gaussian Processes-Pinned Boundary Case 

E. Baccarelli, R. Cusani, Member, IEEE, 
and G. Di Blasio, Associate Member, IEEE 

Abstruct- The least square estimation problem for pinned-to-zero 
discrete-index reciprocal Gaussian processes in additive white noise is 

. . . . - 1), . . . , (T - 2. - l ) l t .  (53) solved, thus completing and extending some previous results available 
in the literature. In particular, following the innovations approach a 
(finite) set of recursive equations is obtained for the filter and for the 
three standard classes of smoothers (fixed-point, fixed-interval, fixed-lag). 
Recursive expressions for the mean square performance of the proposed 
estimators are also given. 

V. CONCLUDING REMARKS Index Terms-Reciprocal processes, innovations method, recursive es- 
timators* 

Such modification may improve the performance. 

We established several different necessary and sufficient conditions 
for the identifiability of a possibly nonminimum phase channel from 
its output cyclic autocorrelation functions. In comparison to the time- 
domain approach presented earlier in [ 121, the frequency-domain 
approach to the channel identification problem gives more insight 
into the issue of channel identifiability. It also provides the basis for 
new channel identification algorithms. 

I. INTRODUCTION 

A discrete-index multivariate real reciprocal Gaussian random 
process (RGP) { . r ( k )  E R”, A4 5 k 5 N }  defined on an assigned 
probability space (0, A, P) is described by the well-known self- 
adjoint second-order noncausal difference model [ 1 ] 

i ! o ( k ) r ( k )  - M + ( k ) s ( k +  1) - rVr,’(k - l ) s ( k  - 1) = e ( k ) ,  ACKNOWLEDGMENT 
M +  15 k 5 JV - 1 (1) 

where { M O  ( k ) } ,  { M+ ( k  ) } are deterministic sequences of 71 x 11 
The authors wish to thank H. Liu at the University of Texas at 

Austin for his comments. 
matrices. The conjugate process 
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is bi-orthogonal to { ~ ( k ) } ,  that is, 

E ( s ( k ) J ( s ) }  = I h ( k ,  s ) .  

and its covariance matrix is given by 11 ,  eqs. (3.4a), (3.4b)l. Boundary 
random values with singular probability measures (pinned-to-zero) 
are considered in this paper, i.e., s ( M )  = . E ( - % ~ )  = 0, P-as .  

It is assumed that the sequence {z( k ) }  is amplitude-modulated and 
then sequentially transmitted through a noisy communication channel 
for increasing values of the index k .  As a consequence, the observed 
sequence { y ( k )  E R‘} is modeled as 

y(k;) = r ( k ) s ( l ; )  + u l ( k ) ,  nr + 1 5 I; 5 N - 1 (2) 

where { w ( k )  E R‘} is an additive white Gaussian noise 
(AWGN) process, independent of { x(  k ) } ,  with covariance matrices 
{ R( k ) } :  { r( k ) }  are known and uniformly limited T x 11 matrices. It is 
also assumed that the matrices { M O  ( k ) }  and { R( k ) }  are nonsingular. 

In this correspondence, the problem of estimating a pinned-to-zero 
RGP in AWGN is addressed. Pinned-to-zero boundary conditions rep- 
resent an important subclass of the more general Dirichlet boundary 
conditions [l]. In this case, an RGP does not always admit a well- 
behaved first-order causal white innovations representation over the 
whole parameter space (e.g., including both ending points) giving a 
Markov version (in the stochastic sense) of the assigned process. As 
a consequence, the pertaining estimation problems cannot be directly 
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