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Aperiodic Tilings: Breaking Translational Symmetry

Leonid A. Levin∗

Boston University†

Abstract

Classical results on aperiodic tilings are rather complicated and not widely under-
stood. Below an alternative approach to these results is offered in hope to provide
additional intuition not apparent in classical works.

1 Palettes and Tilings

Physical computing media are asymmetric. Their symmetry is broken by irregularities, phys-
ical boundaries, external connections, etc. Such peculiarities, however, are highly variable
and extraneous to the fundamental nature of the media. Thus, they are pruned from theoret-
ical models such as cellular automata, and reliance on them is frowned upon in programming
practice.

Yet, computation, like many other highly organized activities, is incompatible with per-
fect symmetry. Some standard mechanisms must assure breaking the symmetry inher-
ent in idealized computing models. A famous example of such mechanisms is aperiodic
tiling: hierarchical self-similar constructions, first used for computational purposes in a clas-
sical – although rather complicated – work [Berger 66]. They were further developed in
[Robinson 71, Myers 74, Gurevich Koriakov 72]; [Allauzen Durand 96] give a helpful expo-
sition.

Definition 1 Let G be the grid of unit length edges between integer points on an infinite
plane. A tiling T is its mapping into a finite set of colors. Its crosses and tiles are
ordered color combinations of four edges sharing a corner or forming a square respectively.
A Palette P of T is a set including all its tiles (+palette for crosses).
We say P with a mapping f of its colors into a smaller color alphabet enforces a set S of
tilings if replacing colors according to f turns each P -tiling into a tiling in S.

Turning each edge orthogonally around its center turns G into its dual graph and palettes
into +palettes and vice versa. Thus, one can use either type as convenient.
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2 2-Adic Coordinates

The set of all tilings with a given palette P has translational symmetry, i.e. any shift
produces another P -tiling. We want a palette that forces a complete spontaneous breaking
of this symmetry, i.e. prevents individual tilings from being periodic. So, each location in
a given tiling will be uniquely characterized by a sort of coordinates. Their infinitely many
values cannot be reflected in the finite variety of tile’s colors. Rather they will be represented
distributively, i.e. in the colors of the surrounding tiles, and computable from them to any
given number of digits.

Let us first so distribute, say, the horizontal Cartesian integer coordinates x = (2i+1)2k of
vertical edges by reflecting one bit (i mod 2) in their color. We view this bit as the direction
of a bracket. In this tiling C1, the brackets of the same rank k are equidistant (Figure 1).

It is convenient to visualize the bits of even rank, picturing them }/{ or red, separately
from odd, depicted ]/[. The bits of either shape at each side of the origin form the progression
of balanced parenthetical expressions, called domains. Each domain has four grandchil-
dren of the second lower rank: two within its outermost brackets and one to each side. The
two children have the other shape and are centered at each border of the parent, thus
connecting it with its grandchildren.

Handling the vertical coordinate similarly yields a neat 2-d tiling C called central. Fig-
ure 2 depicts intersections of orthogonal domains of equal ranks as squares shown by using
boldness bit to interrupt each line outside the orthogonal domains of the same rank.
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Figure 1: Brackets of C1 split by rank.

Figure 2: (Right) Boldness bit lines in C.
Courtesy of A. Shen and B. Durand: 1
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C1 has a special, i.e. unmatched, bracket in the origin, directed arbitrarily and unranked.
No palette can enforce a set of tilings with unique special points (designated by a Borel
function commuting with shifts) since the set of all tilings is compact1 while the set of
locations of their special point and the group Z of their shifts is not. We will extend Z to a
compact group and also define ranks in other tilings, e.g., shifted C1, using this property:

Remark 1 A shift by (2i+1)2k in C1 reverses all brackets of rank k−1, none of lower ranks,
and every second bracket of any rank > k.

1and so has finite shift-invariant measures, e.g., defined by condensation points of frequencies of finite
configurations in some quasiperiodic tiling
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So, the shifts by (2i+1)2k change our bits only at a 2/2k fraction of locations. This fraction
can be used as a metric on the group of shifts which can then be completed for it. The result
is a remarkable compact group g of 2-adic integers or 2-adics acting on a similarly completed
set of 2-adic coordinates. A 2-adic a is a formal infinite sum

∑
i≥0

2iai = . . .+4a2+2a1+a0,
where ai ∈ {0, 1}, viewed as an infinite to the left sequence of bits. The usual algorithms for
addition and multiplication make g a ring with Z as a sub-ring (e.g., −1 = . . .+8+4+2+1).2

The natural action of Z (by shifts) can be extended to the action of the whole g on C1

and its images. Indeed, the brackets of rank k are unaffected by terms ai with i > k+1.
Thus, a 2-adic shift a of C1 can be defined as the pointwise limit of the sequence of shifts
by integers approximating a. With inverse shifts, this sequence diverges for the unranked
bracket in the origin of C1 and of its integer shifts. This bracket is determined not by its
location, but by an arbitrary default included as an additional (external, unmoved by shifts)
point in the tilings. The reflection reverses the default, all brackets and the signs of their
locations. With added reflection, the action of g is free and transitive: each of these tilings
can be obtained from any other, e.g., from C1. In 2 dimensions we can also add the diagonal
reflection exchanging the vertical and horizontal coordinates.3

3 Enforcing the Coordinate System with a Palette

Theorem 1 The set of 2-adic shifts and reflections of tiling C can be enforced by a palette.

To prove it, we use multi-component colors in T which f projects onto their first compo-
nent – bracket bit. The second component includes two enforcement bits that extend C
to the enhanced tiling CE, with a +palette ce of 7 crosses modulo 8 reflections.4 One of its
bits is the already described boldness bit (Figure 2). The other is a pointer in the direction
of the nearest orthogonal line of the same rank. On the (unranked) axes these bits are set
by a default central cross.

Definition 2 A box is an open ce-tiled rectangle, i.e. one with the border edges removed.
Its k-block is a square with monochromatic sides that is5 a tile (for k=0) or a combination
of four (k−1)-blocks sharing a corner. The four segments connecting block’s center to its
sides are called (k−1)-medians. The rest of the open block is called a frame.
We call a box k-tiled if removing an outer layer which is thinner than a k-block turns it into
a box composed of (open at the box border) k-blocks.6

Remark 2 Each ce-cross appears at meetings with 0-medians in open 3-blocks in C.
Borders between open blocks in a box are monochromatic
since all ce-crosses have 1 or 4 inward pointers.

Lemma 1 Each non-empty k-frame pattern in a box is enclosed in its open k-block.
All open k-blocks are congruent and have equal frames.

2Odd 2-adics have inverses. This allows extending g to a famous locally compact field with fractions a/2i.
3We allow fewer tilings than [Allauzen Durand 96] which permits different shifts at each side of the origin.
4[Robinson 71] uses only 6 tiles (with reflections) but colors their corners, in addition to sides.
5The rest of the requirement is redundant but useful in the proof.
6ce prevents crossing of blocks’ borders, making decompositions of boxes into blocks unique.
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Proof. k > 2 cases follow from k−1 by viewing 1-blocks as tiles. Let 1-blocks a and b be
adjacent in a 2-block c; (L, l) and (R, r) be pairs of medians of a and b with l, r directed to
the side s of c, L−R crossing a median m of c at a cross x. x forces L,R to be both pale
or both bold. This forces opposite brackets on l, r which, too, must be both pale or both
bold depending on the bracket of L−R. l, r cannot be both bold since this would require
the pointer of s to agree with their opposite brackets.

Thus, all external medians of 2-frames are pale, internal medians bold, their brackets
face the frame’s center forcing the inward pointer on the 1-medians, like m.

Lemma 2 Any 1-tiled box is k-tiled. (Follows from k=2 case by seeing k−2-blocks as tiles.)

Proof. The 8 colors of edges in open 1-blocks determine their location in a 2-frame, forcing
their regular alternation according to the pattern of 2-frames which, in turn, extend to 2-
blocks (by Remark 2 and Lemma 1).

Corollary 1 Any 2k × 2k box, extendible to a 3 times wider co-centric 1-tiled box,
extends to a (k+4)-block.

Proof. The box is k-tiled covering the inner box with four blocks sharing a corner. Viewed
as 1-blocks meeting at an appropriate cross in a 5-block, they can be extended to it.

Induction Basis. For the simplest enforcement of tiling decomposition into 1-blocks we
can use a 2-periodic parity bit to mark odd lines carrying 0-medians.
All pointers on odd lines point to odd crossing lines, thus forcing a period 2 on them.
One needs only to assure an odd line exists. This can be easily done with a parity pointer

on even lines, pointing to a crossing odd line.

Proof of Theorem 1. Let T be a ce-tiling decomposed, for each k, into k-blocks
with equal frames. Then a shift of CE matches T on all lines of rank < k.
The shifted CE converge pointwise to T , except possibly on their (unranked) axes.
By Remark 1, the shift increments grow in rank, and so sum to one 2-adic shift.
Finally, reflections match the brackets on axes.

3.1 Parsimonious Enforcement of the Grid of 1-blocks.

First, we reduce the needed parity colors. A parity pointer on a single edge suffices, so it
needs to accompany only one color if we show that ce-tilings cannot skip colors. Indeed, all
ce-crosses are either bends, i.e. have 4 inward pointers, or passes, i.e. have 1. Thus, a
third of crosses are bends, within the accuracy of O(n) for n × n boxes. Moreover, crosses
of all orientations are equally frequent, since their orientation alternates on each line.

Tedious case investigation of [Levitsky 04] shows ce bits themselves forcing 1-blocks,
rendering parity bits redundant. A k-bar is a maximal bold or pale segment, k being its
length. k > 1 and no bold 3-bar exists since it is easy to see that its middle link would be
connected by a tile to a 1-bar. Levitsky first proofs that each ce-tiling has bold 2-bars.
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Here is a simpler argument for this. The average bar length is 3 since a third of crosses
are bends. Then, absent bold 2-bars, this average would allow positive density only of bold
4-bars and pale 2-bars. Such tiling has period 6 and maps onto a 6×6 torus with three bold
4× 4 squares. But Z6 cannot have three disjoint pairs of points of equal parity!

The rest of [Levitsky 04] analysis assures bold 2-bars two tiles away at each side of any
bold 2-bar. This involves a case-by-case demonstration that no violation can be centered in
a 10× 10 box. The analysis is laborious but may be verifiable by a computer check.

4 Acknowledgments
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