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Since the 1980s, Bayesian networks (BNs) have become increasingly popular for building statistical

models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a

more efficient modelling framework than traditional reliability techniques (like fault trees and

reliability block diagrams). However, limitations in the BNs’ calculation engine have prevented BNs from

becoming equally popular for domains containing mixtures of both discrete and continuous variables

(the so-called hybrid domains). In this paper we focus on these difficulties, and summarize some of the

last decade’s research on inference in hybrid Bayesian networks. The discussions are linked to an

example model for estimating human reliability.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A reliability analyst will often find himself making decisions
based on uncertain information. Examples of decisions he may
need to take include defining a maintenance strategy or choosing
between different system configurations for a safety system.
These decisions are typically based on only limited knowledge
about the failure mechanisms that are in play and the environ-
ment the system will be deployed in. This uncertainty, which can
be both aleatory and epistemic, requires the analyst to use a
statistical model representing the system in question. This model
must be mathematically sound, and at the same time easy to
understand for the reliability analyst and his team. To build the
models, the analyst can employ different sources of information,
e.g., historical data or expert judgement. Since both of these
sources of information can have low quality, as well as come with
a cost, one would like the modelling framework to use the
available information as efficiently as possible. Finally, the model
must be encoded such that the quantities we are interested in
(e.g., the availability of a system) can be calculated efficiently.

All of these requirements have led to a shift in focus, from
traditional frameworks, like fault trees, to more flexible modelling
frameworks. One such framework for building statistical models
for complex systems is the Bayesian network (BN) framework
[1–3]. BNs have gained popularity over the last decade [4], partly
ll rights reserved.
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because a number of comparisons between BNs and the classical
reliability formalisms have shown that BNs have significant
advantages [5–10].

BNs consist of a qualitative part, an acyclic directed graph,
where the nodes mirror stochastic variables and a quantitative
part, a set of conditional probability functions (CPFs). An example
of the qualitative part of a BN is shown in Fig. 1. This BN models
the risk of an explosion in a process system. An explosion
(Explosion?) might occur if there is a leak (Leak?) of chemical
substance that is not detected by the gas detection (GD) system.
The GD system detects all leaks unless it is in its failed state
(GD Failed?). The environment (Environment?) will influence the
probability of a leak as well as the probability of a failure in the
GD system. Finally, an explosion may lead to a number of
casualties (Casualties?).

The graphical structure has an intuitive interpretation as a
model of causal influences. Although this interpretation is not
necessarily entirely correct, it is helpful when the BN structure is
to be elicited from experts. Furthermore, it can also be defended if
some additional assumptions are made [11].

BNs originated as a robust and efficient framework for
reasoning with uncertain knowledge. The history of BNs in
reliability can (at least) be traced back to [12,13]; the first real
attempt to use BNs in reliability analysis is probably the work of
Almond [13], where he used the GRAPHICAL-BELIEF tool to
calculate reliability measures concerning a low pressure coolant
injection system for a nuclear reactor (a problem originally
addressed by Martz [14]). BNs constitute a modelling framework
which is particularly easy to use in interaction with domain
experts, also in the reliability field [15]. BNs have found
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Environment?

Leak?

GD failed?

Explosion? Casualties?

Fig. 1. An example BN describing a gas leak scenario. Only the qualitative part of the BN is shown.
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applications in, e.g., fault detection and identification, monitoring,
software reliability, troubleshooting systems, and maintenance
optimization. Common to these models are that all variables are
discrete. As we shall see in Section 3, there is a purely technical
reason why most BN models fall in this class. However, in Section
4 we introduce a model for human reliability analysis, where both
discrete and continuous variables are in the same model.
Attempts to handle such models are considered in Section 5 and
we conclude in Section 6.
2. Preliminaries

Mathematically, a BN is a compact representation of a joint
statistical distribution function. A BN encodes the probability
density function governing a set of variables by specifying a set of
conditional independence statements together with a set of CPFs.

For notational convenience, we consider the variables
fX1; . . . ;Xng when we make general definitions about BNs in the
following, and we use the corresponding lower-case letters when
referring to instantiations of these variables. Now, we call the
nodes with outgoing edges pointing into a specific node the
parents of that node, and say that Xj is a descendant of Xi if and
only if there exists a directed path from Xi to Xj in the graph. In
Fig. 1, Leak? and GD Failed? are the parents of Explosion?, written
paðExplosion?Þ ¼ fLeak?;GD Failed?g for short. Furthermore,
paðCasualties?Þ ¼ fExplosion?g. Since there are no directed paths
from Casualties? to any of the other nodes, the descendants of
Casualties? are given by the empty set and, accordingly, its non-
descendants are fEnvironment?, GD Failed?, Leak?, Explosion?g. The
edges of the graph represent the assertion that a variable is
conditionally independent of its non-descendants in the graph
given its parents in the same graph. The graph shown in Fig. 1
does for instance assert that for all distributions compatible with
it, we have that fCasualties?g is conditionally independent of
fEnvironment?;GD fails?; Leak?g when conditioned on fExplosion?g.

When it comes to the quantitative part, each variable is
described by the CPF of that variable given its parents in the graph,
i.e., the collection of CPFs ff ðxijpaðxiÞÞg

n
i¼1 is required. The under-

lying assumptions of conditional independence encoded in the
graph allow us to calculate the joint probability function as

f ðx1; . . . ; xnÞ ¼
Yn

i¼1

f ðxijpaðxiÞÞ, (1)

i.e., that the joint probability distribution can be completely
expressed as the product of a collection of local probability
distributions. This is in fact the main point when working with
BNs: assume that a distribution function f ðx1; . . . ; xnÞ factorizes
according to Eq. (1). This defines the parent set of each Xi, which
in turn defines the graph, and from the graph we can read off the
conditional independence statements encoded in the model. As
we have seen, this also works the other way around, as the graph
defines that the joint distribution must factorize according to
Eq. (1). Thus, the graphical representation is bridging the gap
between the (high level) conditional independence statements we
want to encode in the model and the (low level) constraints this
enforces on the joint distribution function. After having estab-
lished the full joint distribution over fX1; . . . ;Xng (using Eq. (1)),
any marginal distribution f ðxi; xj; xkÞ, as well as any conditional
distribution f ðxi; xjjxk; x‘Þ, can in principle be calculated
using extremely efficient algorithms. These will be considered in
Section 3.

We will use X ¼ fX1; . . . ;Xng to denote the set of variables in
the BN. If we want to make explicit that some variables are
observed, we use E � X to denote the set of observed variables,
and e will be used for the observed value of E. We will use OXi

to
denote the possible values a variable Xi can take. If Xi is discrete,
then OXi

is a countable set of values, whereas when Xi is
continuous, OXi

� R. For X ¼ fX1; . . . ;Xng we have OX ¼ �
n
i¼1OXi

.

3. Inference

In this paper we will only consider a special type of inference,
namely the case of updating the marginal distributions of some
variables of interest given that the values of some other variables
are known, e.g., to compute the conditional density of Xi 2 XnE
given the observation E ¼ e, denoted f ðxijeÞ. Observe that

f ðxijeÞ ¼
f ðxi; eÞ

f ðeÞ
,

and since the denominator f ðeÞ does not depend on xi, the
inference task is therefore equivalent to obtaining f ðxi; eÞ and
normalizing afterwards. A brute force algorithm for carrying out
this type of inference could be as follows:
(1)
 Obtain the joint distribution f ðx1; . . . ; xnÞ using Eq. (1).

(2)
 Restrict f ðx1; . . . ; xnÞ to the value e of the observed variables E,

thereby obtaining f ðx1; . . . ; xn; eÞ.

(3)
 Compute f ðxi; eÞ from f ðx1; . . . ; xn; eÞ by marginalizing out

every variable except Xi.
A problem with this naı̈ve approach is that the joint distribution is
usually unmanageably large. For instance, assume a simple case in
which we deal with 10 discrete variables that have three states
each. Specifying the joint distribution for those variables would be
equivalent to defining a table with 310

� 1 ¼ 59 048 probability
values, i.e., the size of the distribution grows exponentially with
the number of variables. For instance, for 11 variables, the size of
the corresponding table would increase to 311

� 1 ¼ 177 146, and
so on. Models used in reliability domains commonly consist of
hundreds or thousands of variables, and this naı̈ve inference
approach is simply not able to handle problems of this size.

The inference problem can be simplified by taking advantage
of the factorization of the joint distribution encoded by the
structure of the BN, which supports the design of efficient
algorithms for this task. For instance, consider the network
shown in Fig. 2, which is structurally equivalent to the model
shown in Fig. 1; the variables are labelled X1; . . . ;X5 for notational
convenience.

For this example, assume that we are interested in X5, that all
variables are discrete, and that E ¼ ;. By starting from the joint



ARTICLE IN PRESS

X1

X2

X3

X4 X5

Fig. 2. An example of Bayesian network.

H. Langseth et al. / Reliability Engineering and System Safety 94 (2009) 1499–1509 1501
distribution, we find that

f ðx5Þ ¼
X

x1 ;...;x4

f ðx1; x2; x3; x4; x5Þ

¼
X

x1 ;...;x4

f ðx1Þf ðx2jx1Þf ðx3jx1Þf ðx4jx2; x3Þf ðx5jx4Þ

¼
X

x2 ;...;x4

X
x1

f ðx1Þf ðx2jx1Þf ðx3jx1Þf ðx4jx2; x3Þf ðx5jx4Þ

¼
X

x2 ;...;x4

f ðx4jx2; x3Þf ðx5jx4Þ
X

x1

f ðx1Þf ðx2jx1Þf ðx3jx1Þ

¼
X

x2 ;...;x4

f ðx4jx2; x3Þf ðx5jx4Þhðx2; x3Þ, (2)

where hðx2; x3Þ ¼
P

x1
f ðx1Þf ðx2jx1Þf ðx3jx1Þ. Therefore, we have

reached a similar problem as initially, but with one variable less.
Note that this operation, called elimination of X1, only requires us
to consider three variables at the same time (namely X1, X2 and
X3), instead of all five variables. Repeating the same procedure for
all variables except X5 would lead us to the desired result. This
procedure is known as the variable elimination algorithm [16–18].
Thus, the idea that distinguishes this approach from the naı̈ve
approach outlined above is to organize the operations among the
conditional distributions in the network, so that we do not
manipulate distributions that are unnecessarily large. One limita-
tion of the variable elimination algorithm, as formulated above, is
that it has to be repeated for each variable of interest. This is
overcome in other inference algorithms, e.g., [19].

Regardless of which algorithm that is used for implementing
the inference process, there are three basic operations involved,
which will be defined below. In the definitions we use for subset
Y � X the notation x#OY to denote the sub-vector of x, which is
defined on OY (i.e., dropping all coordinates not in Y).
Restriction
 is used for inserting the values of the observed
variables. Formally, the restriction of a function f to
the values x0 � x is a new function defined on OXnX0

s.t.

f ðwÞ ¼ f RðX0¼x0 Þ
ðxÞ

for all w 2 OXnX0 such that x 2 OX, x0 ¼ x#OX0 and
w ¼ x#OXnX0 . Restriction is used to obtain a prob-
ability distribution over the variables X when E ¼ e,
which in this notation will be written as f ðwÞ ¼
f RðE¼eÞ

ðxÞ for w 2 OXnE.

Combination
T1

T2 R E

T1

T2 R
is the multiplication of two functions; this operation
is used, e.g., when the CPFs ff Xi

ðxijpaðxiÞÞg
n
i¼1 are

multiplied in Eq. (1). More formally, let us consider
two probability functions f 1 and f 2 defined for X1

and X2, respectively. The combination of f 1 and f 2 is a
new function defined on X ¼ X1 [ X2 s.t.

f ðxÞ ¼ f 1ðx
#OX1 Þ � f 2ðx

#OX2 Þ 8x 2 OX.

T3 T3
Elimination
Fig. 3. Three components in a parallel system have life-lengths T1, T2 and T3,

respectively, giving the system a life-length of R ¼ maxðT1; T2 ; T3Þ.
is used to remove a variable from a function; an
example of elimination is seen in Eq. (2), where the
variable X5 is eliminated from the distribution
f ðx1; . . . ; x5Þ. Analogously to elimination, we also talk
about marginalization. For example, fX1;X2;X3;X4g

are marginalized out of f ðx1; . . . ; x5Þ in Eq. (2).
Formally, we say that the marginal of f over a set of
variables X0 � X is the function computed as

f ðx0Þ ¼
X

x:x#OX0 ¼x0

f ðxÞ.

Note that this function is defined on OX0 . If some of
the variables in XnX0 are continuous, the summation
is replaced by an integration over those variables.
So far we have considered inference for discrete variables whose
distribution can be represented by a table of probability values.
This representation is very convenient from an operational point
of view, as restriction, combination, and marginalization are
closed for probability tables. It means that all the operations
required during the inference process can be carried out using a
single unique data structure. The problem becomes more complex
when we face inference tasks that involve continuous variables.

Let us for instance consider the problem of calculating the
reliability of a parallel system of three components. The
components have life-lengths T1, T2 and T3, respectively, and
the system’s life-length is thus given as R ¼ maxðT1; T2; T3Þ.
We assume that each of the component’s life-lengths follows
the exponential distribution with the parameter li, so the
survival probability at system level is PðRptÞ ¼

Q3
i¼1PðTiptÞ ¼Q3

i¼1ð1� expðlitÞÞ, see Fig. 3(a).
A problem with this model is that the life-lengths of the three

components are considered independent, even if the components
are exposed to the same environment. Obviously, a common
environment introduces a correlation between T1, T2 and T3: a
rough environment will lead to reduced life-lengths for all
components, whereas a gentle environment would imply an
increase in the expected life-lengths of the components. Several
researchers have been trying to overcome this defect by explicitly
modelling the environment-induced correlation between compo-
nents’ life-lengths (see, e.g., [20–22]). We will now consider a
candidate solution to this problem, described by Lindley and
Singpurwalla [21]. The authors assumed that when the compo-
nents are operating in a controlled laboratory environment, their
life-lengths Ti follow an exponential distribution with known
parameter li. To model the effect of the common environment,
they introduced a random variable E affecting each Ti, see
Fig. 3(b). They assumed that E follows a Gamma distribution,
and that TijfE ¼ xg is exponentially distributed with parameter
giðx; liÞ for known functions giðx; liÞ ¼ lix. These assumptions
made them able to derive the marginal distribution of R when E is
unobserved. However, it should be clear that we can make this
problem analytically intractable, simply by choosing ‘‘difficult’’
functions giðx; liÞ, for instance g1ðx; l1Þ ¼ l1

ffiffiffi
x

p
, g2ðx; l1Þ ¼ l2x,

and g3ðx; l1Þ ¼ l3x
2. From an implementation point of view we
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Z1 Z2

T1 T2 T3 T4

Fig. 4. A model for the analysis of human reliability. A subject’s ability to perform

four different tasks T1; . . . ; T4 is influenced by the two explanatory variables Z1 and

Z2. The explanatory variables are drawn with double line to signify that these

variables are continuous.
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now need to represent exponentials of more complex functions,
but a more fundamental problem is that the results are no longer
available analytically, so exact inference cannot be performed.
Note that this is a consequence not of the modelling language, but

of the model itself. Nevertheless, the simplicity of making BN
models does not go well together with the difficulties of inference
in the models, and restricting our attention to models containing
only discrete variables seems very unsatisfactory in the domain of
reliability analysis. This is why a lot of research is currently put
into approximative methods for inference in hybrid BNs.

The most common approach to approximate inference among
BN practitioners is discretization, i.e., to ‘‘translate’’ all continuous
variables into discrete ones (we assume the reader has some
familiarity with this concept; more detail is given in Section 5.1).
The continuous variables are to be replaced by discrete variables,
where the discrete variables are given a sufficient number of
states to capture the true (continuous) variables sufficiently well.
The problem with this approach is to balance the desire for high
accuracy in the approximations with a reasonable calculation
burden to obtain the results. Obviously, the accuracy of the
approximations is particularly important in reliability applica-
tions, where the tails of the distributions receive a lot of attention.
Say we are interested in calculating the survival function of the
system, i.e., PðRptÞ, and, in particular, we are concerned about the
lower tail of the life-length distribution of R. If we naı̈vely
discretize each continuous variable into d states, then the
operations for inference will need to handle d4 numbers at once
(c.f. Eq. (2)). d must be chosen sufficiently large to convey enough
information to find the (approximately) correct probability, and
even refined discretization techniques (like [23]) require d�30 to
obtain sufficiently accurate results, and thus need to perform
sums over about 800:000 numbers to calculate PðR4t0Þ for a given
t0. If the parallel system had 10 components instead of 3, the sum
would be over approximately 3011

¼ 2� 1016 numbers, which is
intolerable in practice.

To conclude this section, exact inference in BNs requires the three
operations restriction, combination, and elimination. From a funda-
mental point of view we must make sure we can perform the
operations analytically, and from a practical point of view it is
beneficial if a single data structure can represent all intermediate
results of these operations. It is not difficult to find examples where
the requirements fail, particularly when some of the variables in the
domain are continuous. In these cases, the most-used survival
strategy is to discretize the continuous variables, but as we just saw
this will typically either increase the computational complexity to
an unbearable level or give approximations with unacceptably poor
quality. It is evident that models containing both discrete and
continuous variables are of high interest to the reliability commu-
nity, and we will therefore spend the remainder of this paper looking
at the most powerful methods for approximate inference in BNs
from the reliability analyst’s point of view (meaning that we are also
interested in accurate approximation of the probability of infrequent
events, like major accidents).

We proceed by discussing a model for human reliability in
Section 4. Not only is this model of interest to us in its own right,
but it is also quite simple, and it relies on only a few standard
statistical distributions in its specification. This makes the model
well-suited as a test-bed when we discuss the different methods
for approximate inference in Section 5.
1 THERP: Technique for Human Error Rate Prediction [24].
4. A model for human reliability

In this section we will consider a model used for explaining
and predicting humans’ ability to perform specific tasks in a
given environment. The model is based on the THERP methodol-
ogy.1

Consider the BN model in Fig. 4. Ti represents a person’s ability
to correctly perform task i, and Ti takes on the values ‘‘true’’ or
‘‘false’’. Ti is influenced by a set of explanatory variables, Zj. The
goal of the model is to quantify the effect the explanatory
variables have on the observable ones, and to use this to predict a
subject’s ability to perform the tasks T1; . . . ; T4.

Assume first that the explanatory variables are used to model
the environment, that the environment can be considered
constant between subjects, and that it can be disclosed in advance
(that is, the variables are observed before inference is performed).
An example of such a factor can for instance be ‘‘Lack of lighting’’,
with the assumption that the luminous flux can be measured in
advance, and that it affects different people in the same way. Each
Ti is modelled by logistic regression, meaning that we have

PðTi ¼ truejzÞ ¼
1

1þ expð�ðw0iz þ biÞÞ
(3)

for a given set of weights wi and offset bi. As long as Z ¼ z is
observed, this is a simple generalized linear model. Therefore,
inference in this model can be handled; note that the Z’s can be
regarded simply as tools to fill in the probability tables for each Ti

in this case.
Next, assume that some of the explanatory variables are used

to model subject-specific properties, like a subject’s likelihood for
‘‘Omitting a step in a procedure’’ (this is one of the explanatory
variables in the THERP method). It seems natural to assume that
these explanatory variables are unobserved, and for the case of
simplicity we give them Gaussian distributions a priori,
Zj�Nðmj;s2

j Þ. To this end, the model is a latent trait model [25];
closely related to a factor analysis model, but with binary
attributes.

Assume we have parameters wi determining the strength of
the influences the explanatory variables have on Ti, and that we
are interested in calculating the likelihood of an observation
fT1 ¼ 1; T2 ¼ 1; T3 ¼ 1; T4 ¼ 1g. (We will use the shorthand T ¼ 1
to denote the observation in the following.) The likelihood is
given by

PðT ¼ 1Þ ¼
1

2ps1s2

Z
R2

exp �
P2

j¼1

ðzj � mjÞ
2

2s2
j

 !
Q4

i¼1 f1þ expð�wT
i z � biÞg

dz,

which unfortunately has no known analytic representation in
general. Hence, we are confronted by a model where we cannot
calculate the exact likelihood of the observation. We will now turn
to some of the state-of-the-art techniques for approximate
inference in BNs containing discrete and continuous variables,
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and use the model shown in Fig. 4 as our running example while
doing so.
5. Approximative inference for hybrid BNs

As we saw in the previous section, exact inference is not
tractable in the example model. The mathematical tools are
simply not available for the calculations to be made. In this
section we will therefore cover some of the more popular ways of
approximating the inference procedure. In Sections 5.1–5.3, we
consider three approaches that make explicit changes in the
representations of the conditional distribution functions defined
for each variable, then in Section 5.4 we will consider a scheme
that leaves the underlying model definition unchanged, but uses
sampling to approximate the inference procedure.

We will use the model shown in Fig. 4 as our running example,
and for each approximative method we will calculate both the
likelihood of the observation, PðT ¼ 1Þ, and the posterior distribu-
tion over the explanatory variables, f ðzjT ¼ 1Þ. For simplicity, we
assume that wi ¼ ½1;1�

T and that bi ¼ 0, so Eq. (3) can be
simplified to PðTi ¼ truejzÞ ¼ ð1þ expð�z1 � z2ÞÞ

�1.
5.1. Discretization

The most common technique for handling inference in hybrid
BNs is probably discretization. Discretization has been widely
studied from both a general point of view [26,27] and aimed
specifically at BNs [28,29] and classification problems [30,31].
Discretization amounts to replacing a continuous variable X in a
model by its discrete counterpart X0. X0 is obtained from X by
separating OX into disjoint intervals, which can formally be
described as follows:

Definition 1 (Discretization). A discretization of an interval OX �

R is a partitioning of OX into a finite set of disjoint connected
regions fWj : j ¼ 1; . . . ;mg, where Wi \Wj ¼ ; and [m

j¼1Wj ¼ OX .
Each Wj is labelled with a constant positive real value, f DðWjÞ,
which denotes the value at the interval Wj.

An example of discretization is shown in the left panel of Fig. 5.
X follows the standard Gaussian distribution; the discretized
version of X, X0, has density function f Dðx

0Þ. Notice that f Dðx
0Þ is a

step-function, i.e., piece-wise constant.
After discretization, X0 replaces X in the model, and can be

handled as any other discrete variable. X0 is defined such that its
value is the same whenever X falls in the interval Wi. There are a
number of different strategies for selecting the regions Wi, for
−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0
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Fig. 5. Results of discretization in our running example. The left pane gives the a

approximation of f ðz1; z2jT ¼ 1Þ together with the exact results (obtained by numeric

particularly in the tail of the distribution. The left panel shows the original distributio
example, equal width, equal frequency, and even Bayesian
approaches to mention a few.

Note that as long as m, the number of partitions, is ‘‘low’’
compared to the length of OX , discretization may entail the lack of
accuracy, as f Dðx

0Þ can be a poor approximation of f ðxÞ. On the
other hand, the distribution of X0 can be made arbitrarily close to
the one of X as m!1. Unfortunately, though, introducing too
many states in the variables may lead to an unfeasible problem
from an inference point of view. In Eq. (2) we saw that
marginalizing amounts to summing over all states of the
unobserved variables (which grows as m increases), and since
the complexity depends on the size of the largest function
handled during the variable elimination process, the computa-
tional burden may grow uncontrolled. Moreover, even though
discretization can be a good choice to control the error in each
local distribution f ðxijpaðxiÞÞ, it may not control the global error in
the model, see, e.g., [23] for a discussion. This problem is in part
due to the fact that many of the most common approaches
discretize each variable independently, without considering the
dependence relations in the graph. Taking these relations into
account, one would pay more attention to the regions of the
multivariate space where changes in the joint probability
distribution are large, both a priori and also after inserting
evidence [29].

Let us return to the example described in Section 4, and use
discretization to be able to perform the inference in that model.
Firstly, we need to discretize the distributions for Zi, i ¼ 1;2. For
the purpose of this example, we select five regions by means of
equal length. We consider the domain ½� 5
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5
2� in the following.

This residual mass is allocated to the two extremes, and we get
the following approximation:
−2 −1.5 −
−2

1.5

−1

0.5

0

0.5

1

1.5

2

2.5

3

pproximation

al integration

n of the latent
1 −0.5 0 0.5

of the Gaussian

). Note the poo

variables togeth
1 1.5 2

distribution, w

r approximation

er with the corr
2.5 3

hereas the righ

to the joint po

esponding discr
t panel show

sterior distrib

etized version
Wj
 ½� 5
2 ;�

3
2�
 ð� 3

2 ;�
1
2�
 ð� 1

2 ;þ
1
2�
 ð12 ;

3
2�
 ð32 ;

5
2�
f DðWjÞ
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Recall that the conditional distribution PðTi ¼ 1jZ1; Z2Þ is
defined using logistic regression (Eq. (3)). To use this definition,
we need the discretized value to have a numerical representation.
We obtain this by using the mid-points of each interval as the
numerical interpretation, i.e., OZ0i

¼ f�2;�1;0;1;2g.
Doing the calculations, we obtain that PðT ¼ 1Þ ¼ 0:176999.

The correct value is approximately PðT ¼ 1Þ ¼ 0:173865, so the
result is not too far off. However, the results are poorer if we are
interested in the joint distribution f ðzjT ¼ 1Þ, see Fig. 5, right
panel. Note particularly the poor fit in the tail of the distribution.

Most of the software tools available for modelling BNs allow
continuous variables to be discretized. This holds for instance, for
Agena (www.agena.co.uk), Netica (www.norsys.com), Hugin
s the

ution,

.

http://www.agena.co.uk
http://www.norsys.com
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Fig. 6. Results of the MTE approximation in our running example: the approximation to each distribution is dashed, the true underlying density (normal in the left panel

and the logistic in the right) is given with a solid line.
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(www.hugin.com), Elvira (leo.ugr.es/elvira), and Genie (genie.sis.
pitt.edu).

5.2. Mixtures of truncated exponentials

The mixtures of truncated exponentials (MTE) model [32] can
be seen as a generalization of discretization, but instead of
approximating the density function inside each region by a
constant, MTEs approximate it by a linear combination of
exponential functions; the benefit from this approach is the
higher flexibility when it comes to approximating the distribution
function (Fig. 6).

So, in the MTE approach, the density functions (conditional or
marginal) are represented by means of MTEs. A potential is a
generalization of a density function, where it is not required that
the integral equals one. A potential is an interesting structure
because not every function involved in BN inference is a density.
We therefore start by defining MTE potentials:

Definition 2 (MTE Potential). Let X be a mixed n-dimensional
random vector. Let Y ¼ ðY1; . . . ;YdÞ and Z ¼ ðZ1; . . . ; ZcÞ be the
discrete and continuous parts of X, respectively, with c þ d ¼ n.
We say that a function f : OX/Rþ0 is an MTE potential if one of the
following two conditions holds:
(1)
 f can be written as

f ðxÞ ¼ f ðy; zÞ ¼ a0;y þ
Xk

i¼1

ai;y exp
Xc

j¼1

bðjÞi;yzj

8<
:

9=
;, (4)

for all x 2 OX, where ai;y , i ¼ 0; . . . ; k and bðjÞi;y , i ¼ 1; . . . ; k, j ¼

1; . . . ; c are real numbers.

(2)
 There is a partition O1; . . . ;Om of OX for which the domain of

the continuous variables, OZ, is divided into hypercubes and
such that f is defined as

f ðxÞ ¼ f iðxÞ if x 2 Oi,

where each f i, i ¼ 1; . . . ;m can be written in the form of Eq. (4).
2 Empirical studies have concluded that k ¼ 2 exponential terms are usually

enough to get a very good approximation inside a limited interval [33,34].
An MTE potential f is said to be an MTE density ifP
Oy

R
Oz
fðy; zÞdz ¼ 1.

Example 3. The function defined as

fðz1; z2Þ ¼

2þ e3z1þz2 þ ez1þz2 if 0oz1p1;0oz2o2;

1þ ez1þz2 if 0oz1p1;2pz2o3;
1
4þ e2z1þz2 if 1oz1o2;0oz2o2;
1
2þ 5ez1þ2z2 if 1oz1o2;2pz2o3

8>>>><
>>>>:
is an MTE potential since all its parts are MTE potentials. However,
it is not an MTE density.

MTEs act as a general model, which can approximate any
distribution arbitrarily well. As for discretization, the error of the
approximation can be controlled by defining a finer partitioning
(increasing m in Part 2 of the definition above), but for MTEs it is
also possible to keep m fixed, and rather increase the number of
exponential terms (k in Eq. (4)) to improve the MTE approxima-
tion within each part.2

To model a hybrid domain we need to represent the
distribution of all variables by means of a common structure, in
this case MTE potentials. Therefore, also the conditional distribu-
tions have to be MTE potentials:

Definition 4 (Conditional MTE density). Let X1 ¼ ðY1;Z1Þ and X2 ¼

ðY2;Z2Þ be two mixed random vectors. A potential f defined over
OX1[X2

is said to be a conditional MTE density if for each x2 2 OX2
,

the restriction of potential f to x2, fRðX2¼x2Þ is an MTE density
for X1.

Finally, a BN is said to be an MTE network if the conditional and
marginal distributions defined in the network are represented by
MTE potentials.

The most important feature of MTE potentials is that they are
closed under marginalization, combination and restriction [32]. It
follows from Eq. (1) that the joint probability distribution of an
MTE network is a multivariate MTE density function. Since
marginalization, combination and restriction are the only opera-
tions needed for inference in BNs, it follows that BNs with
distributions represented by MTEs offer exact inference, see, for
example, [35] for the adaption of the Shenoy and Shafer algorithm
[36] to deal with MTE networks.

Going back to our example, we now proceed by building an
MTE network for inference. First, we need to define MTE densities
for the marginal distributions of Zi and the conditional distribu-
tions of Ti. Accurate MTE approximations for the Gaussian
distribution and the sigmoid function are given below [33]. We
use a ‘*’ to indicate that a probability distribution is approximated
using the MTE framework

f 	ðziÞ ¼

�0:017203þ 0:930964e1:27zi if � 3pzio� 1;

0:442208� 0:038452e�1:64zi if � 1pzio0;

0:442208� 0:038452e1:64zi if 0pzio1;

�0:017203þ 0:930964e�1:27zi if 1pzio3;

8>>>><
>>>>:

http://www.hugin.com
http://leo.ugr.es/elvira
http://genie.sis.pitt.edu
http://genie.sis.pitt.edu
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Fig. 7. The MTE approximation of f ðzjT ¼ 1Þ. Note the very good approximation to

the joint posterior distribution when compared to that of discretization (see Fig. 5).
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Fig. 8. The solid line shows the logistic function with wi ¼ ½1;1�
T and b ¼ 0 (as in

our example). The three other functions correspond to the variational approxima-

tions defined by x ¼ 1, x ¼ 2, and x ¼ 3, respectively; x is chosen so to maximize

the expected lower bound of the data-complete marginal likelihood, hence it also

depends on the prior distribution for the explanatory variables.
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P	ðTi ¼ 1jz1 þ z2Þ

¼

0 if z1 þ z2o� 5;

�0:021704þ 0:521704e0:635ðz1þz2Þ if � 5pz1 þ z2o0;

1:021704� 0:521704e�0:635ðz1þz2Þ if 0pz1 þ z2p5;

1 if z1 þ z245:

8>>>>><
>>>>>:

The computation of the likelihood PðT ¼ 1Þ is

P	ðT ¼ 1Þ ¼

Z
R2

f 	ðz1Þf
	
ðz2Þ

Y4

i¼1

P	ðTi ¼ 1jzÞdz ¼ 0:176819.

The joint density for ðZ1; Z2Þ given T ¼ 1 is

f 	ðz1; z2jTÞ ¼
f 	ðz1Þf

	
ðz2Þ

Q4
i¼1 P	ðTi ¼ 1jzÞ

P	ðT ¼ 1Þ
.

Since the combination of MTE potentials is again an MTE
potential, the result will be an MTE potential (depicted in Fig. 7).

The open-source project ELVIRA [37] implements the MTE
approach outlined above. It is a research tool implemented in Java.

5.3. Variational approximations

As stated in Section 4, there is no analytical representation for
calculating the likelihood of an observation

PðT ¼ 1Þ ¼

Z
R2

Y4

i¼1

PðTi ¼ 1jzÞ

( )
f ðzÞdz. (5)

A variational approach [38–41] to handle this problem consists in
defining a lower bound approximation to the logistic function. The
approximation considered by the authors above is of a Gaussian
shape, which (among other things) entails a closed form marginal
likelihood approximation that also defines a lower bound for the
face-value likelihood.

To put it more precisely, the logistic function PðTi ¼ 1jzÞ can be
approximated by

~Pðtijz;xiÞ ¼ gðxiÞ expððAi � xiÞ=2þ lðxiÞðA
2
i � x2

i ÞÞ, (6)

where

Ai ¼ ð2ti � 1ÞðwT
i z þ biÞ and lðxiÞ ¼

expð�xiÞ � 1

4xið1þ expð�xiÞÞ
.

The function ~PðTi ¼ 1jz; xiÞ is a lower-bound variational approx-
imation to PðTi ¼ 1jzÞ, which means that ~PðTi ¼ 1jz; xiÞpPðTi ¼

1jzÞ for all values of the variational parameter xi; equality is
obtained when xi ¼ ð2ti � 1ÞðwT

i z þ biÞ.
As an example, consider Fig. 8 which shows the logistic

function PðTi ¼ 1jzÞ as a function of z:¼wTz þ b ¼ z1 þ z2 together
with variational approximations for different values of x. Note that
at, e.g., z ¼ 1 the approximation is exact if and only if x ¼ 1, i.e.,
the approximation is exact only point-wise. The trick is now to find
a value for xi that is good ‘‘on average’’ (we shall return to this a
bit later).

From Eq. (6) we see that the variational approximation is
Gaussian-shaped (quadratic in each zj in the exponential), hence
with a bit of pencil-pushing we can get a lower-bound
approximation for the marginal likelihood in Eq. (5) (for Eq. (5)
we have d ¼ 4 and q ¼ 2):

PðtÞX

Z
Rq

Yd

i¼1

~Pðtijz; xiÞ

( )
f ðzÞdz

¼ exp �
1

2
lTC�1lþ

1

2
ðlpÞ

T
ðCp
Þ
�1lp þ

1

2
log
jCp
j

jCj

� �� �

� exp
Xd

i¼1

logðgðxiÞÞ � xi=2þ liðb
2
i � x2

i Þ þ
1

2
ð2ti � 1Þbi

� �( )
,

(7)

where Cp and lp are the posterior covariance and expectation for
Z given ft; ng:

Cp
¼ C�1

� 2
Xd

i¼1

lðxiÞwiw
T
i

" #�1

(8)

lp ¼ Cp C�1lþ
Xd

i¼1

ti �
1

2
þ 2lðxiÞbi

� �
wi

( )
. (9)

The approximations above all depend on xi, but since Z is not
observed we cannot directly calculate the value for xi that
maximizes the lower bound ~PðtjnÞ; recall that the approximation

is exact only if xi ¼ ð2ti � 1ÞðwT
i z þ biÞ. Instead we can maximize

the expected lower bound E½ ~Pðt;ZjnÞ� by following an EM-like
approach [42]. For this, [43] showed that the expected lower
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Fig. 9. The joint distribution of f ðz1; z2jT ¼ 1Þ obtained by variational methods.
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Fig. 10. Uncertainty of the estimate of PðT ¼ 1Þ as a function of the number of

samples is displayed as the 5% and 95% quantiles (1000 repetitions).
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bound is maximized by x2
i ¼ E½ðwT

i Z þ biÞ
2
jT ¼ t�, but since this

expectation depends on Cp and lp an iterative scheme is required.

Algorithm 1. Variational inference
3 As initializa

distribution for Z
1:
 Start with initial guesses for Cp and lp .3
2:
 repeat

3:
 Update values for n by setting
xi  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ðwT

i Z þ biÞ
2
jT

h ir
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlpÞ

Tlp þwT
i C

pwi þ 2biw
T
i lþ b2

i

q
.

4:
 Calculate Cp and lp based on the current n (Eqs. (8) and (9)).
5:
 until Termination criterion
This iterative scheme is guaranteed to maximize the variational
approximation ~PðtjnÞ and since the approximation defines a lower
bound for PðtÞ it is also guaranteed to maximize the actual
likelihood of the observation t.

Going back to our running example, we find the variational
lower-bound of the likelihood to be 0.140329, a rather poor
estimate. On the other hand, the shape of the joint distribution for
Z1 and Z2 given T ¼ 1 is well approximated by the variational
approximation (see Fig. 9).

From the above considerations we see that for the fixed
structure given by our running example, there exists a variational
approximation allowing us to answer the probabilistic queries of
interest. However, applying the variational framework in domains
with other probability distributions may require new variational
approximations and coming up with such approximations may be
a bit of an art-form. In mathematical terms, the general variational
Bayes approach attempts to minimize the Kullback–Leibler
divergence between the true posterior and a simpler, approximat-
ing distribution. Although it is not the case in our example, we
usually see the approximating distribution made simpler than the
true posterior by assuming that the parameters in the approx-
imating distribution are independent (see, e.g., [44] for an
overview).

VIBES (variational inference for BNs) provides an inference
engine for performing variational inference in BNs [45].
tion, [43] suggests setting the value for n based on the marginal

, i.e., using x2
i ¼ E½ðwT

i Z þ biÞ
2
�.
5.4. MCMC methods

Instead of using functional approximations to achieve tractable
and analytical representations supporting probability updating,
one may also estimate the required probabilities using sampling.
As an example, consider calculating

PðT1 ¼ 1; . . . ; T4 ¼ 1Þ ¼

Z
R2

Y4

i¼1

PðTi ¼ 1jzÞf ðzÞdz

¼ EZðPðT ¼ 1jZÞÞ. (10)

This expectation can be estimated by drawing samples fz1; . . . ; zNg

from f ðzÞ and then approximating

EZðPðT ¼ 1jZÞÞ 

1

N

XN

i¼1

PðT ¼ 1jziÞ.

The law of large numbers guarantees that with a sufficiently large
number of independent and identically distributed samples, we
can obtain any desired degree of precision in the estimate. Fig. 10
shows how the precision improves as more samples are used; the
shaded area gives the 5% and 95% quantiles (1000 repetitions) for
the likelihood.

For the expectation above, we have that Z1 and Z2 are
marginally independent, thus we only need to sample from a
univariate normal distribution for which standard algorithms
exist. Unfortunately, for distributions with no analytical repre-
sentation (such as f ðzjT ¼ 1Þ) it can be quite difficult to draw
independent samples. Instead we may generate dependent
samples and exploit that the independence assumption can be
relaxed as long as we obtain samples throughout the support of
the target distribution and in the correct proportions.

MCMC methods provide a general technique for drawing a
sequence of dependent samples fz0; z1; z2; . . . ; ztg from a target
distribution that does not necessarily have an analytical repre-
sentation. In this setting, a transition function gðztþ1jztÞ is used to
sample the next state ztþ1 given zt and independently of zi, for
1pipt � 1; thus, the zis form a Markov chain. Moreover, subject
to certain regularity conditions [46], the distribution f tðzjz0Þ from
which the samples are drawn will eventually converge to a
stationary distribution independent of the starting state z0.

One of the simpler instantiations of this general framework is
the Metropolis–Hastings algorithm. In the Metropolis–Hastings
algorithm, a candidate next state c is sampled from a so-called
proposal function qð�j�Þ (that may depend on the current state zt)
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and the proposed state is then accepted with probability

accðc; ztÞ ¼ min 1;
PðcjT ¼ 1ÞqðztjcÞ

PðztjT ¼ 1ÞqðcjztÞ

� �

¼ min 1;

Q4
i¼1 PðTi ¼ 1jcÞf ðc1Þf ðc2ÞqðztjcÞQ4
i¼1 PðTi ¼ 1jzÞf ðz1Þf ðz2ÞqðcjztÞ

 !
.

If the state is accepted, the chain moves to the proposed state
ðztþ1  cÞ, otherwise it stays at its current state ðztþ1  ztÞ.
Algorithm 2 summarizes the description above.

Algorithm 2. The Metropolis–Hastings algorithm
Fig. 12. The

samples. In
1:
 t 0
2:
 Initialize z0
3:
 repeat

4:
 Sample a candidate state c form qð�jzt Þ
5:
 Sample a value a from a uniform distribution over the unit interval
6:
 if apaccðzt ; cÞ then

7:
 ztþ1  c

8:
 else

9:
 ztþ1  zt
10:
 end if

11:
 t t þ 1
12:
 until Termination criterion
It can be shown (see, e.g., [46]) that under certain conditions,

the stationary distribution is in fact the target distribution,
irrespectively of the proposal function being used. Although
convergence to the target distribution does not depend on the
proposal function, it does, however, have an impact on the
convergence speed and the mixing rate (the speed in which
samples are drawn from the area with positive support under the
target distribution). For example, Fig. 11 shows the sample
sequences obtained for PðZ1jT ¼ 1Þ using Nðzt ; 1

2 IÞ and Nðzt ;5IÞ as
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Fig. 11. The samples for Z1 using the proposals distribut
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joint distribution of f ðz1 ; z2jT ¼ 1Þ obtained by MCMC sampling. Left pane s

both cases, the first 100 observations were discarded as burn-in. The dens
proposal functions; Z1 and Z2 are sampled independently. In
particular, for qð�jztÞ ¼ Nðzt ;5IÞ we see that the chain mixes slowly
(there are several regions where the chain does not move) and we
will therefore require a longer running time to get a representa-
tive sample.

When using the sampled values to, e.g., analyze the conditional
distribution PðzjT ¼ 1Þ, the initial samples (called the burn-in)
obtained prior to convergence are usually discarded. The question
is now how to detect when the distribution f tðzjz0Þ of the chain is
sufficiently close to the target distribution and when a sufficient
number of samples have been drawn. As examples, [47,48]
discussed methods for analyzing the convergence properties by
comparing several chains run in parallel, and [49] considered
methods for analyzing a single chain.

Given a sample set, we can use the samples to analyze the
target distribution by, e.g., estimating the expectation and
covariance of Z. We can also estimate the distribution of Z, say,
by using kernel density estimation. The kernel density estimate
for Z given T ¼ 1 is shown in Fig. 12. The calculation of the
likelihood is, as we have seen (Fig. 10), a stochastic quantity. Using
1000 samples we obtained an estimated likelihood of 0.17466. It is
interesting to see that although the MTEs are better at approx-
imating the joint distribution f ðzjT ¼ 1Þ than MCMC with 1000
samples (compare Fig. 7 to the left panel of Fig. 12), the likelihood
estimate of the MCMC approach outperforms that of the MTE.
This is due to the nature of sampling: the law of large numbers
ensures rapid convergence of sample-averages (like the likelihood,
see Eq. (10)), whereas low-probability events (like the probability
PðZ141:5; Z241:5jT ¼ 1Þ) are not as well approximated by
moderately sized samples.

BUGS [50] is a general purpose modelling language, which
takes as its input a BN model and returns samples that can be
used for estimating any (conditional) probability distribution.
0 200 400 600 800 1000
8

6

4

2

0

2

4
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ity estimates where smoothed using a Gaussian kernel.
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BUGS is accompanied by CODA [51], which is a tool for analyzing
whether or not sufficient mixing has taken place.

5.5. Other approaches

There are other approaches for performing inference in hybrid
BNs that we have not described here. One of the earliest ideas was
based on the conditional Gaussian (CG) model [52], which assumes
that the conditional distribution for the continuous variables
given the discrete ones is multivariate Gaussian. A particular case
is the conditional linear Gaussian (CLG) model, where the mean of
the conditional distribution of each continuous variable is a linear
function of its continuous parent variables in the network. There
exist efficient algorithms for carrying out exact inference in BNs
following a CLG model [53]. However, it is required that discrete
variables only have discrete parents, and this imposes an
important limitation to the problems that can be modelled
following the CG approach. For instance, our running example
cannot be directly represented by CG or CLG models. A solution to
this problem is proposed in [54], which consists in transforming a
network containing discrete variables with continuous parents
into another network in which the resulting distribution is a
mixture of Gaussians.

Other approaches that are currently receiving some attention
in the research community include expectation propagation [55]
and techniques based on the Laplace approximation [56].
6. Conclusions

In this paper we have explored four approaches to inference in
hybrid BNs: discretization, mixtures of truncated exponentials
(MTEs), variational methods, and Markov chain Monte Carlo
(MCMC). Each of them have their pros and cons, which we will
briefly summarize here. We note that this paper is about inference,
hence the specification of the models (either manually or by
learning from data) is outside the scope of this discussion.
Furthermore, we have considered the inference problem in the
context of reliability analysis. This means that we are interested in
obtaining good approximations for low probability events, and
will therefore give the tails of the approximations some attention
in the following.

The simplest approach to inference in hybrid domains is to use
discretization. Discretization entails only a simple transformation
of the continuous variables, it is implemented in almost all
commercial BN tools, and the user only has to decide upon one
parameter, namely m, the number of intervals the continuous
variables are discretized into. Choosing a ‘‘good’’ value for m can
be a bit of a problem, though, since a too high value leads to
complexity problems and a too low value leads to poor
approximations. We note that practitioners in reliability who
use discretization without investigating this effect further are in
danger of under-estimating the probability of unwanted events
considerably.

MTEs are generalizations of standard discretization, with the
aim of avoiding the complexity problems discretization are
hampered by. MTEs benefit from the BNs’ efficient inference
engine. Furthermore, MTEs define a rather general framework,
which can approximate any distribution accurately. In particular,
MTEs are better at approximating the tail of the distribution of our
running example than discretization (compare Figs. 5 and 6).
MTEs are currently receiving a lot of attention from the research
community; both refining the inference and exploring new
applications are hot research topics. On the downside, the MTE
framework is still in its infancy, and in particular methods for
learning MTEs from data must be further explored.
The variational approximations provide satisfactory answers to
the kind of queries associated with inference in hybrid BNs.
However, the variational approximations are still rather ad hoc,
and the formulae have to be rewritten depending on the
underlying distribution used. It is also difficult to have a well-
founded understanding of the error the variational approximation
makes, and as we saw in the example, the error can be substantial.

MCMC is a very general inference technique, and it can take
advantage of a BN’s structure to speed up the simulation process.
Together with standard discretization, MCMC is currently the
most popular technique for inference in hybrid BNs. This is partly
due to a strong mathematical foundation and well-known
statistical properties of the generated estimates. From a practi-
tioners point of view, one should, however, be vigilant when using
MCMC to estimate the probability of rare events. If the probability
of a gas leak, say, is p ¼ 10�4 one would on average need to
generate 1=p ¼ 104 samples after burn-in to obtain a single
sample of the event. It is also particularly important to consider
the auto-correlation in the samples before conclusions regarding
rare events are drawn. It is our experience that practitioners are
not always aware of these facts, and sometimes abuse the
methodology by underestimating the demands to obtain repre-
sentative samples.

In our experience, the discretization method (with moderate
number of regions) is the fastest technique, outperforming the
MTE method (with the same number of regions) by a factor of
about 2. On the other hand, MTEs are about four times faster than
the variational approximation. This is not surprising, as the
variational approximation requires a number of iterations to
converge (refer to Algorithm 1). MCMC is comparably much
slower than MTEs (a factor of about 103 to obtain results of
comparable quality).

Among the four explored approaches, the MTE framework
appears to be the one best suited for reliability applications: it
balances the need for good approximations in the tail of the
distributions with not-too-high computational complexity. MTEs
are flexible from the modelling point of view, and there exist
efficient methods for inference building on the classical BN
inference scheme.
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