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Abstract. This paper proposes a novel framework for learning a statistical shape
model from image data, automatically without manual annotations. The frame-
work proposes a generative model for image data of individuals within a group,
relying on a model of group shape variability. The framework represents shape as
an equivalence class of pointsets and models group shape variability in Kendall
shape space. The proposed model captures a novel shape-covariance structure
that incorporates shape smoothness, relying on Markov regularization. Moreover,
the framework employs a novel model for data likelihood, which lends itself to
an inference algorithm of low complexity. The framework infers the model via
a novel expectation maximization algorithm that samples smooth shapes in the
Riemannian space. Furthermore, the inference algorithm normalizes the data (via
similarity transforms) by optimal alignment to (sampled) individual shapes. Re-
sults on simulated and clinical data show that the proposed framework learns
better-fitting compact statistical models as compared to the state of the art.

Keywords: Statistical shape model, Kendall shape space, geodesic distance,
Markov model, shape sampling, shape alignment, image data normalization.

1 Introduction and Related Work

The typical notion of object shape [4,13] is an equivalence class of object bound-
aries / silhouettes, where the equivalence relation is given by a similarity transforma-
tion. These geometric invariance properties make shape space non-Euclidean. Follow-
ing Kendall [8], representing shapes via pointsets with known correspondences, we
model (i) preshape space as a subset of Euclidean space, i.e., an intersection of the unit
hypersphere (for scale invariance) with a hyperplane through the origin (for transla-
tion invariance) and (ii) shape space with an additional rotational-invariance structure.
While typical pointset-based shape models ignore this structure, the proposed method
adapts shape modeling and inference to this Riemannian structure.

Unlike typical pointset-based shape models, the proposed model incorporates prior
information that real-world objects have smooth boundaries. Such information is useful
during (i) model learning: as regularization to counter the noise in image data (even
errors in manual landmark placement) to produce more compact models; and (ii) model
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application (e.g., segmentation with shape priors): to more effectively regularize the
learned covariance, having several near-zero eigenvalues, to enforce smoother shapes.

Many early methods for statistical shape analysis rely on manually defined land-
marks on image data [3] or templates [11]. Later methods optimize point positions
relying on model covariance or information-theoretic criteria [2,4], but do not propose
generative models. Medial representations [13] lead to sophisticated Riemannian statis-
tical shape modeling approaches [6], but are limited to non-branching objects.

Some advanced approaches capture shape variability through nonlinear diffeomor-
phic warps of object boundaries [1,5,7,14]. Unlike our approach, such approaches entail
joint statistical analysis in the very large dimensional Riemannian spaces of nonlinear
diffeomorphisms coupled with the aligned boundaries. Some such approaches [5] en-
force shape smoothness via current distance [14], which is a metric, but is computa-
tionally expensive as compared to the shape dissimilarity in our approach. Others [1]
models object boundaries as missing data by treating deformations as hidden variables,
somewhat analogous to our approach in Kendall shape space.

We propose a novel generative statistical model that relies on Kendall shape space
and pointset-based shape representation. It introduces a novel prior on shape smooth-
ness. It treats each individual shape pointset as a random variable, thereby modeling its
distribution that can lead to more robust inference via expectation maximization (EM).
The proposed EM relies on a novel algorithm for sampling smooth shapes.

2 Methods

We present a shape model in Kendall shape space including a Markov prior for shape
smoothness, a computationally-efficient likelihood model for the observed image data
given individual shapes, and EM inference involving sampling smooth shapes.

2.1 Statistical Shape Model Using Riemannian Distances and Smoothness Priors

We model each shape as an equivalence class of pointsets, where equivalence is defined
via translation, rotation, and isotropic scaling. During model learning, given the corre-
spondences between points in the mean shape and points in each individual shape, we
infer point locations within each shape. The known correspondences allow us to order
the points in each pointset and thereby represent each pointset as a vector.

Consider I individuals labeled i = 1, · · · , I with 3-dimensional anatomical shapes
represented using pointsets of cardinality N . Let the hidden random vector Zi model
the shape for individual i, where an instance zi ∈ R

D, D = 3N . Let the parameters
{μ,C, β} model the probability density function (PDF) of individual shape pointsets,
i.e., P (Zi|μ,C, β), where μ ∈ R

D represents the group mean, C ∈ R
D×D represents

the unregularized group covariance, and β ∈ R
+ represents the smoothness of the spa-

tial variation of point locations in each shape. Without loss of generality, we constrain
the mean shape μ and the individual shapes zi to (i) have the centroid at the coordinate-
space origin and (ii) be of unit norm. Thus, μ and {zi}Ii=1 lie in preshape space.

We propose to model a PDF on preshape space to capture the covariance structures
of population shape variability and shape smoothness, by relying on the (i) approxi-
mate Normal law [10] that models a Gaussian PDF in the hypersphere’s tangent space
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at mean μ and (ii) Markov-based Gibbs energy that penalizes deviation of each point’s
location from its neighbors’ locations. We extend this PDF to shape space, enforcing
rotation invariance. The Normal law relies on the logarithmic map Logμ(·) and the ex-
ponential map Expμ(·). Let zin ∈ R

3 be the n-th point in the shape pointset for the i-th
individual. The Markov model relies on a neighborhood system N := {Nn}Nn=1, where
Nn gives the set of neighbors of the n-th point. We enforce the same N for all pointsets.
We propose to model shape variability, for all individuals i, via P (zi|μ,C, β) :=

1

η(μ,C, β)
exp

(
−1

2
(Logμ(zi))

TC−1Logμ(zi)−
β

2

∑
n

∑
m∈Nn

‖zin − zim‖22
)
, (1)

where η(μ, c, β) is the normalization constant.

2.2 Efficient Model of Likelihood of Image Data Given Object Shape

Let random vector Xi model the observed image data for individual i. We propose
a novel generative model for the observed individual data {xi}Ii=1 given individual
shapes {zi}Ii=1. This paper considers the data to represent the object boundary by the
set of pixels on the zero crossing of a level set fitted to the 0.5-valued isosurface of the
fuzzy segmentation. Each data pointset xi can have a different number of points Mi.

The proposed model relies on a novel dissimilarity measure δ(xi, zi) between two
pointsets xi and zi of different cardinality, where the pointset zi represents shape (in
shape space). We design this dissimilarity measure by measuring the dissimilarity be-
tween pointsets, modulo translation t, rotation R, and scale s, as follows:

δ(xi, zi) := min
s,R,t

(
N∑

n=1

min
m

‖xsRt
im − zin‖22 +

M∑
m=1

min
n

‖xsRt
im − zin‖22

)
, (2)

where data pointset xi comprises M points {xim}Mm=1, shape pointset zi comprises N
points {zin}Nn=1, s ∈ R represents isotropic scaling, R ∈ R

D×D represents rotation as
an orthogonal matrix with determinant 1, t ∈ R

D represents translation, and xsRt
m :=

sRxm + t is the location of the similarity-transformed point xm.
The dissimilarity δ(·, ·) is non-negative and symmetric. Ensuring pointsets xi and zi

to be devoid of coincident points, which is straightforward, δ(xi, zi) = 0 if and only
if xi = zi. Thus, except the triangular inequality, δ(·, ·) satisfies all metric properties.
Moreover, unlike methods [5,15] using current distance having quadratic complexity
in either pointset cardinality, δ(xi, zi) can be well approximated efficiently using algo-
rithms of complexity close to O(M +N) instead of O(MN), by maintaining a list of
nearest inter-pointset neighbors and updating it intermittently (see Section 2.3).

Thus, we model P (xi|zi) := exp(−δ(xi, zi))/γ, with normalization constant γ.

2.3 Parameter Inference Using Expectation Maximization

We fit the model to the data x̄ := {xi}Ii=1 by computing the maximum-likelihood
estimate (MLE) for the parameters. In this paper, β is a user-defined parameter. Denot-
ing θ := {μ,C}, we solve for the MLE argmaxθ P (x̄|θ), treating the shape pointsets
z̄ := {zi}Ii=1 as hidden / latent variables, via iterative EM optimization.
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At iteration t, given parameter estimates θt := {μt, Ct}, the E step defines

Q(θ; θt) := EP (Z̄|x̄,θt)[logP (x̄, Z̄|θ)], where P (x̄, z̄|θ) =
I∏

i=1

P (xi|zi)P (zi|θ). (3)

The expectation is difficult to evaluate analytically and, hence, we approximate it using
Monte-Carlo simulation of shape pointsets z̄ (see Section 2.4) as follows:

Q(θ; θt) ≈ Q̂(θ; θt) :=
1

S

S∑
s=1

logP (x̄, z̄s|θ), where z̄s ∼ P (Z̄|x̄, θt). (4)

The M step obtains parameter updates θt+1 := argmaxθ Q̂(θ; θt). Given data x̄ and
the sample individual shapes {z̄s}Ss=1, we alternatingly optimize the shape-distribution
parameters μ,C and the internal parameters {si, Ri, ti}Ii=1, until convergence.

Update Mean μ: Given C and {z̄s}Ss=1, the optimal shape mean estimate μ̂ is:

argmin
μ

S∑
s=1

I∑
i=1

(Logμ(z
s
i ))

TC−1Logμ(z
s
i ). (5)

The gradient of the objective function is the vector C−1
∑

s

∑
i Logμ(z

s
i ) in the tan-

gent space at μ. At a local minimum, the gradient magnitude must be zero. For all
real-world data with finite variance, the null space of C−1 contains only the zero vec-
tor. So, the gradient magnitude can be zero only when

∑
s

∑
i Logμ(z

s
i ) is zero. We

iteratively seek μ satisfying the aforementioned condition, via projected gradient de-
scent (projection via C) where the iterative update, with a step size τ ∈ (0, 1), is:
μ̂ ← Expμ̂((τ/SI)

∑S
s=1

∑I
i=1 Logμ̂(z

s
i )). We set τ = 0.5 and find that a few itera-

tions suffice for convergence.

Update Covariance C: We observe that the Markov regularization term enforcing
shape smoothness, i.e.,

∑
n

∑
m∈Nn

0.5β ‖ zin − zim ‖22, is a quadratic function of zi
and can be rewritten as 0.5zTi Ωzi where Ω is a sparse precision matrix that has (i) all
diagonal elements = 2β, (ii) off-diagonal elements in row n and column m �= n as
(−β) when points n and m are neighbors, and (iii) all other off-diagonal elements = 0.

Given shape mean μ and shape-smoothness parameter β, the optimal covariance is

argmin
C

S∑
s=1

I∑
i=1

1

2
(Logμ(z

s
i ))

TC−1Logμ(z
s
i ) +

1

2
(zsi )

TΩzsi + log η(μ,C, β). (6)

The normalization constant η(μ,C, β) is difficult to evaluate analytically (even for the
Normal law [10] alone). Nevertheless, we propose a novel scheme to achieve a good ap-
proximation for practical utility that is evident from the results in this paper. We assume
that the distribution of shapes P (Zi|θ) has sufficiently low variance such that the Gaus-
sian PDF on Logμ(zi), in the tangent space at μ, can be approximated by a Gaussian
PDF on zi − μ in the tangent space. That is, we approximate locations zi to the tangent-
space locations z̆i := μ + Logμ(zi). This observation allows us to treat P (Zi|θ, β)
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as a product of two Gaussian PDFs in R
D, i.e., (i) a Gaussian PDF P (Zi|θ) with

mean μ and covariance C restricted to the tangent space at μ, capturing the popula-
tion shape variability, and (ii) a Gaussian PDF P (Zi|β) enforcing shape smoothness
via a Markov-based Gibbs energy, with mean 0 and covariance Ω−1. We know that the
product of two Gaussian PDFs is also a Gaussian PDF where the normalization constant
is easy to compute. In our case, the product Gaussian P (Zi|θ)P (Zi|β) ≈ P (Zi|θ, β)
has mean μ and covariance Creg = (C−1 +Ω)−1 that is restricted to the tangent space
at μ, which makes the normalization constant η(μ,C, β) ≈ (2π)D/2|Creg|1/2. Thus,
the optimal covariance Ĉreg is the sample covariance of z̆si in the tangent space: Ĉreg =

(1/(IS))
∑S

s=1

∑I
i=1 Logμ(z

s
i )Logμ(z

s
i )

T . The optimal covariance Ĉ = (Ĉ−1
reg −Ω)−1.

Update Similarity Transforms: Given sample shapes {z̄s}Ss=1, we optimize the sim-
ilarity transforms modeled by {si, Ri, ti}Ii=1 independently for each individual i via

arg min
si,Ri,ti

S∑
s=1

(
N∑

n=1

min
m

‖ xsiRiti
im − zin ‖22 +

M∑
m=1

min
n

‖ xsiRiti
im − zin ‖22

)
(7)

that optimally aligns the data pointset xi to the set of sampled shape pointsets {zsi }Ss=1.
We optimize {si, Ri, ti}Ii=1 using gradient descent that relies on an efficient gradient
computations. The objective function depends on mappings between each point in one
pointset and the closest point in the other pointset (say, φ(·) and ψ(·), detailed next).
While the data pointset xi has a large number of points densely distributed along the
object boundary, the shape pointset zsi has far fewer points distributed sparsely along the
object boundary (sufficient to model object shape). Assuming the parameter updates to
be sufficiently small, (i) for most points xim in the data pointset, the nearest point zsiφ(m)

in the shape pointset before and after the update is unchanged and (ii) for most points
zsin in the shape pointset, the displacement vector to the nearest point xiψ(n) in the data
pointset before and after the update is unchanged. This leads to a good approximation
of the gradient of the objective function. For parameter ti, the gradient is

S∑
s=1

(
N∑

n=1

2(xsiRiti
iψ(n) − zsin)

T
∂xsiRiti

iψ(n)

∂ti
+

M∑
m=1

2(xsiRiti
im − zsiφ(m))

T ∂xsiRiti
im

∂ti

)
, (8)

where ∂xsiRiti
ij /∂ti = I, the identity matrix. Similarly, for parameter si, ∂x

siRiti
ij /∂si=

Rixij . Equating each gradient to zero gives closed-form updates for si and ti. To up-
date the rotation matrix Ri, we perform projected gradient descent on the manifold on
rotation matrices, with the gradient in ambient space as

S∑
s=1

(
N∑

n=1

2sixiψ(n)(x
siRiti
iψ(n) − zsin)

T +

M∑
m=1

2sixim(xsiRiti
im − zsiφ(m))

T

)
. (9)

2.4 Sampling Smooth Shapes in Kendall Shape Space

The E step in Section 2.3 relies on Monte-Carlo approximation to the expectation
by sampling, for all individuals i, shape pointsets {zsi }Ss=1 from the posterior PDF
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(a) (b) (c) (d) (e) (f)

Fig. 1. Smooth-Shape Sampling using HMC. HMC-sampled shapes (colored), (a) without
shape smoothness (β = 0) and (b) with shape smoothness (β > 0), from a distribution (on
2D ellipses, for easy viewing); solid black ellipse ≡ mean pointset (point locations ≡ small
circles) and the principal mode of variation ≡ dotted black ellipses. Results on 40 Simulated
Ellipsoids. (c) Uncorrupted segmentation. (d) Corrupted segmentation with (e) a 2D slice of its
distance transform (thresholded beyond [−2, 2] mm for viewing). (f) Box plot showing fraction
of total variance modeled by eigenvectors of estimated shape covariance.

P (Zi|θt, β, xi) that is proportional to P (xi|Zi)P (Zi|θt, β). We sample using a novel
adaptation of Hamiltonian Monte Carlo (HMC) [9] to the Riemannian space.

Following the analysis in Section 2.3 (used for updating C), which models the prior
P (Zi|θt, β) as a flat Gaussian on the tangent space of the hypersphere at μt, we consider
the (i) likelihood P (xi|Zi) as a non-flat PDF in R

D and (ii) posterior P (Zi|θt, β, xi) as
a flat PDF on the tangent space at μt. Thus, we sample shapes zsi by (i) first sampling
tangent vectors ts in the tangent space at μ from the posterior PDF that is restricted to
the tangent space and (ii) then producing shape samples {zsi }Ss=1 by taking the expo-
nential map Expμ(t

s). HMC sampling requires the gradient of logP (Zi|θt, β, xi) with
respect to Zi, upto an additive constant. Because we represent the flat posterior PDF
(of dimensionality < D) in the ambient D-dimensional space, a naive gradient com-
putation can result in a gradient with a component orthogonal to the tangent space of
shape space. Hence, within HMC, we replace the naive gradient by a (i) projected gra-
dient onto the tangent space of preshape space followed by (ii) a rotational alignment
with the shape mean μ. Figures 1(a)–(b) clearly shows that enforcing shape smoothness
(β > 0) enables modeling realistic shape variations leading to realistic shape samples.

3 Results

We compare the proposed method with ShapeWorks [2,12] that optimizes point loca-
tions within shape pointsets, but restricts the points to the object-boundary isosurface in
the (fuzzy) segmentation and neither enforces shape smoothness nor realigns data. Both
methods use (i) N = 64 points in the shape model and (ii) similarity-transform-aligned
distance transforms of the object boundaries as input. We initialize shape mean μ, and
the neighborhood system N , using the vertices and edges of a triangular mesh fitted to
the object surface in one of the input images. After getting optimal θ∗ via EM, we solve
for optimal (i) individual pointsets z∗i as argmaxzi P (zi|xi, θ

∗, β) and (ii) aligned data

pointsets xs∗i ,R
∗
i ,t

∗
i

i to aid evaluation (described next).
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j)

Fig. 2. Results on 186 Clinical Brain MR Images. A segmentation for (a) caudate, (b) tha-
lamus. (c)–(e) Sampled thalamic shapes. Fraction of total variance modeled by eigenvectors of
estimated shape covariance for (f) caudate, (g) globus pallidus, (h) hippocampus, (i) putamen,
(j) thalamus.

Validation on Simulated Data: We generate 40 images of ellipsoids (Figure 1(c))
by introducing 1 major mode of variation, keeping 2 of the ellipsoid axis lengths to
be fixed (40 mm) and varying the third (between 40–80 mm). The proposed method
with β = 0 (without enforcing shape smoothness) and ShapeWorks were both able
to learn this variation correctly, producing only 1 non-zero eigenvalue for the learned
covariance matrix (in our case, Creg). The optimal point locations z∗in, within shape
pointsets, were virtually exactly on the object boundary seen in the input images. We
then corrupt the segmentation data with random perturbations to each object boundary
(Figures 1(d)–(e)), get optimal shape-model parameter estimates θ∗, and repeat 20
times. With the corrupted data, the proposed method correctly detects a single mode
of variation (Figure 1(f)). We set β = 2 to be sufficiently small to ensure that, within
the optimal shape pointsets, point locations z∗in were still within about 1 mm of the
uncorrupted object boundary (mean 0.9 mm, standard deviation 0.2 mm). ShapeWorks
incorrectly detected ≥ 2 modes of variation (Figure 1(f)), which is a less compact sta-
tistical model.

ShapeWorks restricts the shape pointset to lie on the segmented object boundary,
asssuming it to be devoid of errors from, e.g., random noise or inhomogeneity. Shape-
Works may treat coarse- or fine-scale random spatial perturbations in object boundary’s
segmentation as part of the true signal, leading to inflated covariance. We prevent this
by allowing a small deviation of the shape pointset from segmented object boundary.

Evaluation on Clinical Data: We used 186 T1-weighted magnetic resonance (MR)
brain images (voxel size 1 mm3 isotropic) with expert segmentations for the caudate,
globus pallidus, hippocampus, putamen, and thalamus (Figures 2(a)–(e)) provided by
the National Alliance for Medical Image Computing (www.na-mic.org).

www.na-mic.org
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The proposed method used β = 2 for all structures except the hippocampus where
we set β = 0.2 (weaker smoothness enforced) because of the more complex hippocam-
pal shape. We set β to be sufficiently small to ensure that distances between (i) points

z∗in in each optimal shape pointset and (ii) the closest point xs∗i ,R
∗
i ,t

∗
i

iφ(n) in the realigned
data pointset were about the same as the distances in case of β = 0. To evaluate the
robustness of the proposed method, we bootstrap sample 40 brains from the 186 brains,
estimate the shape model, and repeat 20 times. Compared to ShapeWorks, the proposed
method is able to learn more compact models (Figures 2(f)–(j)) by capturing a larger
fraction of the total variance in fewer eigenvectors / dimensions.

Conclusions. The results show that the proposed method produces more compact shape
models consistently for several anatomical structures, using novel contributions in the
form of (i) Riemannian statistical shape modeling, (ii) Markov regularity for shape
smoothness, (iii) optimal realignment of data during model learning, and (iv) a genera-
tive model that effectively deals with corrupted data via EM inference. We also propose
a novel method for sampling smooth shapes in Kendall shape space. The proposed
generic regularized shape model can be used for other applications.
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