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Abstract. A new program analysis is presented, and two compile time methods for this 
analysis are given. The analysis attempts to answer the question: "Given some trustworthy 
and some untrustworthy input, can we trust the value of a given variable after execution 
of some code". The analyses are based on an abstract interpretation framework and a 
constraint generation framework respectively. The analyses are proved safe with respect 
to an instrumented semantics. We explicitly deal with a language with pointers and 
possible aliasing problems. The constraint based analysis is related directly to the abstract 
interpretation and therefore indirectly to the instrumented semantics. 

1 Introduction 

This paper discusses a static program analysis that can be used to check that the validity 
of data is only promoted to higher levels of trust in a conscious and controlled fashion. 
It is important to stress that the purpose of the analyses is not to improve run-time 
performance, but to give warnings to the programmer whenever untrustworthy data are 
being unduly trusted. 
In the rest of the paper we try to motivate the need for a trust analysis. We give an 
instrumented semantics for a simple first order language with pointers, in effect keeping 
track of the trustworthiness of data at mn-time. Then an abstract interpretation is pre- 
sented, approximating the analysis statically. Finally, in order to gain separate analysis of 
separate program modules as well as better time complexity, a constraint based analysis 
is presented. The constraint based analysis is proved to be a safe approximation of the 
abstract interpretation. 

2 Motivation 

Many computer systems handle information of various levels of trustworthiness. Whereas 
the contents of the company database can usually be trusted, the input gathered via a 
modem, or from a part-time secretary may not be trusted as much, and data validation and 
authentication routines must ensure the validity of data before it is promoted to a higher 
level of trust and entered into the database. 
That there is a need for some method to control the propagation of trust in real-life 
computer programs is witnessed for example by the security hole recently found in the 
Unix sendmail program [I]. Sendmail is the maU forwarding program running on 
the majority of Unix machines on the Intemet The security hole allowed one to give 
the program a certain devious input (in an e-mail message) that would result in having 
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arbitrary commands executed on the machine with superuser privileges. Had an analysis 
like the one described in this paper been run on the s e n d m a i l  sources it is likely that 
such a breach in security could have been noticed in advance. See below. 
As an example of the kind of analysis envisioned, Perl [8] implements "taint" checks at 
run-time to help ensure that untrustworthy values are not put in places (such as a process' 
user-id) where only trusted data should go. This "tainting" is very closely related to the 
instrumented semantics given below. 
We aim at finding a static program analysis, i.e. an analysis run only once when a 
program is compiled, such that the programmer is warned if and when data is promoted 
from untrustworthy to trustworthy in an uncontrolled fashion. Clearly there will be a 
need to promote data from untrusted to trusted, but with the envisioned analysis we can 
guarantee that the promotion takes place in an explicit and conscious way. 
In [3, 4] Denning and Denning present a flow analysis for what they call "secure in- 
formation flow". Their analysis in a sense solves the dual of the problem attacked in 
this paper. Their aim is to prevent privileged information from leaking out of a trusted 
computer system, whereas "trust analysis" aims at preventing untrustworthy information 
from entering into a trusted computer system. 

2.1 The Sendmail example 

Inside the s e n d m a i l  C code there is a routine, d e l i v e r ( ) ,  that delivers an e-mall 
message to an address: 

void deliver(MSG m, ADR a, 

setuid (a. uid) ; 

} 

. . . )  { 

For some addresses, the uid field makes no sense and is uninitialized. In current sources, 
the ADR structure contains a bit that should be set just when the u i d  field is valid, and 
this bit is tested in several places at run-time before the u i d  field is used. The security 
hole existed because the programmer had forgotten to insert enough of these checks and 
consequently, under certain circumstances one was able to circumvent the checks and 
gain superuser privileges. 
With a trust analysis, a reasonable choice is to make the s e t u i d  ( ) system-call accept 
only trusted values, as it sets the user-id of the current process. This forces a .  u i d  to 
be a trusted value for compilation of d e l i v e r  ( ) to succeed. One would then have just 
one place, namely in a validation procedure, where the value of an address' u i d  field is 
promoted to trusted. 

ADR validate_address(ADR a) { 

ADR al; 

... some validation, fill in appropriate parts of al. 

... we may now trust the contents of a.uid. 

al.uid = trust(a.uid); 

return al; 
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The trust analyzer will now be able to ensure the programmer that only trusted values 
are passed to s e t u i d  ( ) .  And all the run-time checks on the validity bit are no longer 
needed as the trust checks are wholly static. 

3 The While language 

Since a large part of security conscious programs today are written in C, a stripped down 
imperative C-like language with pointers is explored. The abstract syntax for the language 
is defined by the following BNF: 

/" : := variable  n a m e s  

P ::= deref  P I I 

E ::= P 1 E + E I ... I cons t  I addr I I t rust  E I distrust  E 

S : : = w h i l e E d o S l S ; S l P  := E 

Informally, I denotes identifiers, P denotes pointer expressions, E denotes arithmetic and 
boolean expressions and S denotes statements. Initially the language included first order 
procedures, but due to lack of space and since they can be added on in a straightforward 
way they have been left out. How to do this is briefly discussed in Section 7. 
We assume programs are strongly typed (i.e. like in Pascal), but leave out type declarations 
such as int or bool as the only thing that matters for our purpose is whether a variable 
contains a pointer or a scalar (non-pointer) value. 
Doter dereferences pointers. If-statements can be emulated by while loops. This saves a 
syntactic construct. 
Notation: The following conventions are used for recta-syntactic variables: i ranges over 
identifiers I ;  e, el and e2 range over expressions E; p range over pointer expressions P 
and s, s~ and s2 range over statements S. 

4 Instrumented Semantics 

In order to keep track the trustworthiness of values at run-time, we give an instrumented 
semantics that associate each value with a flag telling whether the value can be trusted or 
not. This is to be taken as the definition of the desired analysis. 
Below are the definitions of the semantic domains. Addr is the set of possible addresses 
in memory. The set of possible program values, Val, includes at least integers, booleans 
and addresses. Environments (Env) map identifiers to addresses, Note that environments 
are assumed to be injective. 

By strong typing we can assume that trust _ is applied to scalar values only. This will be 
important for the constraint generation analysis. Notation: The memory M [v/a] is as M 
except that the address a is mapped to the value v, and similarly for environments. 

7} = {• T} 

Valx = Val x T r  

Mere1 = Addr--+ Valr 

Ez : E -* E n v  -+ M e m l  ~ ValI 

Sx : S -~ E n v  -* M e m r  -* T r  -+ M e m r  
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addri : P --, Env  --, Memr  --* Addr  

Mt  E M e m i  

We equip the set Tr with a total ordering (<) such that • _< -[- in order to make it a 
lattice. The least upper bound operation on this lattice will be denoted by V, which will 
also be used to denote the lub of environments by point-wise extension. The idea is that 
• corresponds to trusted data, and T corresponds to untrusted data. Notation: (.,.) forms 
Cartesian products and 7r,, is the n'th projection, t ranges over Tr and v over Val. 

CI i A M,  = MI(A(i))  

Cz [addr  i]]A Mz = (A(i), .]-) 

Ez I[deref p]] A Mz = let (v, t) = s177 p A/1//I in 

(rr,(Mt(v)), t V r2(Mt(v)) )  

Ct lie1 + e2] A Mt  = (Cx el A MI)-T-(s e2 A Mr) 

& [ t rust  e] A Mt  = (gz e A Mx, _t_) 

Ez [[distrust eli A Mt  = (& e A Mr, T)  

Cz const A Mz = (const, •  

(v~,t ,)- f-(v~,t~) = (v, + ,,=,t, v t~) 

The last parameter to t~I is used in connection with while loops, the reason being that if 
the condition in the loop cannot be trusted, then all variables assigned in the loop can no 
longer be trusted as they may depend on the number of iterations taken. 

addri i A Mt  = A(i)  

addrI I[deref p]] A Mr = r , (Mz(addr l  p A M• 

Sz [while e do s]] A Mz t = let (v, t ' )  = s e A Mx in 

if v then 

Ss l[while e do s]] A (St  s A M t  (t v t ' ))  t 

else Mt  

, S t ~  :=  e ] ] A M t t = l e t ( v , t ' ) = & e A M z i n  

Mt[(v, t V t') / (addrr  p A 11,/i)] 

St  I[sl;s2]] A Mt  t = S t  s2 A (St st A Mt  t) t 

5 Abstract Interpretation 

The instrumented semantics has the drawback that it propagates the trust of variables only 
at run-time. Below is presented an abstract interpretation [2] of the language computing 
an approximation to the trust tags and not the aetual values. 
Since the actual values are not known during the abstract interpretation neither am the 
addresses, hence environments and memories are collapsed into abstract environments 
mapping identifiers directly to "trust signatures". Notation: 2 z denotes the set of subsets. 
of I .  
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ValA = T r u 2  z 

EnvA = I --+ ValA 

s : E--* EnvA--* ValA 

SA : S --* EnvA --~ Tr  --* EnvA 

addrA : P ~ EnVA --* 2 I 

asg : VaIA --* EnvA ~ ValA ~ EnvA 

M A E  Memx 

v E ValA 

AA E EnvA 

We extend the total ordering on Tr to a partial ordering on Vala such that 
V v E  VaIA: _ L < v < T a n d a ,  b E 21 :V. (a<_b ~ a C b ) .  

This makes VaIA a complete lattice, and for any finite collection of programs, finite as 
well. v is used for least upper bound on this lattice too. 
The idea is that _L corresponds to trusted scalars. A set of identifiers corresponds to a 
trusted pointer that may point to any of the variables mentioned in the set. T corresponds 
to untrusted values of any kind. Letting abstract environments map identifiers to sets of 
identifiers, instead of keeping both information about the pointer and the data pointed 
to in the abstract environment, is done to handle pointer aliasing. Notation: For brevity, 
defineAA(T) = -]-,andfora C I let AA(a) = U{AA( i )  [ i E a}. 

s i AA = AA(i)  

CA I[addr i] AA = {i} 

CA I[deref p~ AA ---- V AA(CA p AA) 

CA ~el + ez~ AA = (CA el AA) V (CA ez AA) 

CA [[trust eli Aa  = 2. 

EA ~distrust 4 AA = T 

CA consl AA = .L 

The auxiliary asg function monotonically assigns a new trust value to a set of identifiers in 
an abstract environment, addrA p AA yields the set of variables that might be assigned 
to when p is the left hand side of an assignment. Notation: dom(M) denotes the domain 
of the map M. 

asg t AA T = {(i ~ T)  [ i E dom(AA)}  

asg t AA s = {(i ~ AA(i)  V t) I i E s} 

U{(i ~-* AA(i))  ] i E dom(AA)  \ s} 

addrA i AA = {i} 

addrA I[deref p~ AA ---- V AA(addrA p AA) 
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SA [[while e do s~ AA t = let A'A = SA s AA (t V CA e AA) 

in if A'A <_ AA then AA else 5A [[while e do s]] A~  t 

SA ~ :=  el] AA t = asg (s e AA V t )  AA (addrA p AA) 

SA [[Sl; S2]] AA t = SA s2 (SA s, AA t) t 

To relate the instrumented and abstract semantics an ordering between instrumented and 
abstract values is defined relative to an environment: 

A~- (v , t )  E a 

if  and onty if a = _L =~ t = _l_ anda  C I :=~ (t = .1_ and v E A(a)). 
Informally, the first implication means that if the abstract semantics says that a value is 
a trustworthy scalar then indeed it is marked trusted in the instrumented semantics. The 
secondimplication means that if the abstract semantics thinks a value is a pointer to one of 
the variables in a set a then by the instrumented semantics the value is indeed trustworthy 
and is a pointer to one of the variables in the set a. 

The relation is extended to relate combined instrumented memories and environments 
with abstract environments like this: 

M I o A E A A  

ifandonlyifdom(MIoA) = dom(A, 0 andA ~- (MioA) ( i )  E AA(i)for allvariables i E 
dom(AA) 
We relate the abstract interpretation to the instrumented semantics in the following way: 

Proposition 1 Safety. If a statement is executed in an environment A and a memory M1 
by the instrumented semantics, and the abstract environment A A is a safe approximation 
of A and Mx then the result of  the abstract interpretation is a safe approximation of the 
memory resulting from the instrumented semantics. Formally: If 

S I s A M r t  = M r, M x o A E A A ,  S A S A A t A  ~- A' and t ~ t A  

then M'  o A f- A'. 

Proof. See Appendix A. 
The abstract interpretation terminates. It is clear that s terminates as it is defined 
inductively in the (finite) structure of expressions, and no fixpoints are computed. The 
only possibility for,SA to diverge would be in the while case where a fixpoint is computed, 
but by Lemma 6 the fixpoint is computed of a monotone function over a lattice of finite 
height, hence the fixpoint can be found in finite time by iteration. 
If we let n denote the number of distinct variables used in a program, let l denote the 
number of  statements and expressions, and let ra denote the greatest depth of while-loop 
nests in the program, the number of  least upper bound operations on VaIA executed by 
the abstract interpretation will be in O((n + l)2m). In the worst case, the least upper 
bound operation on VaIA can be computed in O(n) time. This sounds worse than it really 
is. For ordinary programs m will be a small constant, and the complexity of analyzing a 
while-loop is at most O(n~) times the complexity of analyzing the loop body. Here nb is 
the number of pointer variables occurring in the body of the loop. 



581 

If procedures are added to the language, fixpoints need to be computed for each procedure 
call, hence the time complexity will be even worse in that case. 
Apart from the time complexity, the main drawback of the abstract interpretation analysis 
is that it needs the world to be closed; that is, the analysis cannot be mn for each program 
module separately. In the next section a separable constraint based analysis is presented. 

6 Constraint Generation 

- Or else, what follows? 
- Bloody constraint!... 

William Shakespeare: Henry V, Act  II, Scene 4. 

The constraint generator is going to associate three constraint variables to each program 
variable. A solution to the generated set of constraints will assign an appropriate trust 
value for the program variable to one of these constraint variables. 
The constraint analysis constructs constraints from any sequence of statements. This is 
more general than simply allowing for separate analysis of individual functions, since any 
sequence of statements can be (partly) analyzed out of context. This might for example 
be useful with an advanced module system like the Beta fragment system [7]. 
For the purpose of this article, a program consists of a top fragment that includes zero 
or more fragments which may again include smaller fragments and so on. The inclusion 
ordering of the fragments form a directed acyclic graph (DAG), as a single fragment may 
be included more than once, but we disallow circular dependencies. 
Fragments are supposed to be analyzed in a bottom-up fashion, first analyzing the leaf 
fragments that include no other fragments, then analyzing fragments that include only 
leaf fragments and so on. In effect, the fragments am treated in reverse topological order. 
The domains used in the definition of the constraint generation analysis am defined below: 

V ::= I [ V I I A I  

5,)1 : V -+ V 

N : P - + V  

Ct = ( V  u Tr)  x V 

C = 2 ct 

s  : E - + C x V  

S s  : S - - + C x 2  v 

G E V  

V is the set of constraint variables. For an identifier i, Ai, and Vi are simply constraint 
variables. The intuition is that whereas i will hold the trustworthiness of the value of the 
program variable i, Ai  will hold the trust of all the values reachable by dereferencing i 
any number of times. Constraint variables Vi are used to hold the trust of addr terms. 
G is a special constraint variable corresponding to the global trustworthiness of a memory. 
That is, if a value is assigned to the target of an untrusted pointer then that value could 
end up anywhere, and the trustworthiness of the entire memory is corrupted. 
The pair (s, t) E Ct  codes the constraint s < t. For readability we write { s _< t} for such 
a constraint and {s = t} as an abbreviation for {s < t, t < s}. The generated constraints 
will be of the form { variable or  cons tan t  < variable} over the two element lattice 
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{.1., T},  hence they can,be solved by simple constraint propagation in linear time. The 
existence of a solution is guaranteed since assigning T to all constraint variables will 
satisfy the generated constraints. 
We assume that any set of constraints include the constraints {i < Ai} for all identifiers 
i. 
The function 8 on V "dereferences" constraint variables: 

6 V i = i  

* i = A i  

A i  ---- ,6i 

The function ~t "safely" takes the address of a constraint variable. 

rt V i  = Vi  

~ i =  ~Ti 

A i  = Ai  

The map N generates constraint variables from pointer expressions P:  

N i = i  

Nl[deref p]] = ~N(p) 

s  generates constraints for expressions together with the variable corresponding to the 
given expression. In each case n denotes a freshly created constraint variable. 

Es  i = (0, i) 

Csl[addr/11 = (0, Vi)  

, f s [de re f  vii = let (e, v) = ,~s p 

in (e, By) 

Es lie, + e2]] = let (c,, v~) = s  el 

in (cl u c2 u {vl _< n, v2 <_ n}, n) 

Esl[trust  e] = (0, n) 

s el] = ({T _~ n}, n)  

~ s  c o n s t  = ( 0 , - )  

S s  generates constraints for statements. The second part of the result is the set of constraint 
variables corresponding to variables assigned to within the statement. This is used to 
generate additional constraints for while-loops such that variables assigned to in the loop 
body are trusted only if the condition of the loop is. 

Ss [wh i l e  e do s] = let (c~, v) = Es e 

(cs, a) = S s  s 

in (c~ u ~ u ( . _ <  ~ I ~  ~}, ~) 
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Ss [ [p  : =  e]] = l e t  ( c , ,  v)  = ~ 's  e 

in (c~ U {v _< N(p),  8N(p) = 8v, tiN(p) < G}, {N(p)}} 

S..5"l]'Sl;-.q2]] = let (c,, al} = S s  s, 

(c2, a=) = a s  *= 

in (cl u c2, al U a2) 

A solution to the generated constraints (called a model) is a map m giving values to 
the constraint variables such that the constraints c are fulfilled, this is written m ~ c. 
Formally: m ~ c if and only if 

v(, ,  t )  ~ c : ~ ( , )  < ~( , ) .  

It is clear that if m ~ ci U C2 then m ~ cl and m ~ (::2. 

We will consider only a subset of all possible models for a set of constraints, namely 
so-called coherentmodels. A model m is coherent if it satisfies 

re(a) < re(b) ~ m(6a) <_ rn(6b). 

It is clear that the model that assigns T to all variables is a coherent model, hence the 
existence of a coherent model is assured. 
Coherent models and abstract environments can be related to each other in the following 
way: We write AA E m if and only if 

AA(i)  = T ~ re(i) = T 

and 

a E AA(i)  ~ m ( A i )  ---- re(a), 

or, alternatively re(G) = T .  
An intuitive view of the above is that in order for a model to be a safe approximation of 
an abstract environment, it must assign conservative trust-values to all variables, and if 
a pointer p can point to a number of variables then the constraint variable Ap must be 
equated to the trust-values of all these variables. 
The constraint generation analysis is related to the abstract interpretation by the following 
safety statement: 

Proposition 2. If 

(c,v) = S s  s, 

m ~ c, and m is coherent 

AA E_ m~ 

VJcEv : t<_m(x ) ,  

A'A = SA s AA t 

then A'A g m. 
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Proof. See Appendix B. 

The constraint generation analysis is strictly weaker than the abstract interpretation in the 
sense that more variables are treated as untrusted, as is demonstrated by the following 
example: 

Program New constraint 
p :=addrj { V j  <_p, Ap=j}  
p := addr  i [{vi _< p, Ap = i} 
i:= distrust 81{T < i} 
k := deref p [{z~p-< k, ,Sk = Z~p} 

Remember that the following constraint is implicitly assumed: {p _< Ap}. In the abstract 
interpretation, only i will be marked untrusted at the end, whereas in the constraint analysis 
the trust of i and j are linked by equality since p may point to both 2. 

Generating the constraints for a program of size n takes O(n 2) time in the worst case 
assuming that the addition of  a single constraint can be done in constant time. The 
constraints, being of  such simple nature, may be solved by value propagation in linear 
time in the number of constraints. All in all constraint generation and (partial) solving can 
be done in quadratic time in the size of  the program fragment. 

7 Extens ions  

By treating arrays as one logical variable, the analysis is able to handle arrays as well 
as scalar data. This means that the analysis cannot know that some elements of an array 
are trusted and some are not. Either all elements are trusted or none are. This tradeoff is 
necessary for the abstract and constraint analyses since they are unable to compute actual 
offsets in the array. This tradeoff in accuracy is the same as encountered in set-based 
analysis [5]. 
Records or structs can be handled by treating each field of the record as a separate 
variable. 
Extending the language with first order procedures is simple enough. The abstract inter- 
pretation will simply model the procedure calls directly and compute fixed points in case 
of  recursion. The constraint generation will first compute constraints for the body of  a 
procedure and for each call add constraints matching formal and actual parameters. By 
copying the constraints generated for the body we can achieve a polyvariant analysis such 
that a particular call of the procedure with an untrustworthy argument does not influence 
other calls of that procedure. 
A "check for trusted value" construct that will raise an error when an untrusted value is 
given as parameter is easily added to the language, but makes the semantics larger and a 
bit more complicated as it has to deal with abnormal termination. The relation between the 
instrumented and abstract interpretation must state that if the instrumented semantics says 
that a program will fail then the abstract interpretation will too. Extending the constraint 
generation analysis with the "check" construct means that there will only be a model for 
the generated constraints if  all checks are met. 

2 As remarked by one of the referees, it might be possible to detect some of these situations as p is 
dead after the first assignment, so one might remove the constraints added in the first line from the 
final constraints and thereby get a better solution. This effect might also be achieved by removing 
assignments to dead variables before trust analysis. 
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Extending the analysis to languages with higher order functions while still catering for 
pointers and mutable data seems to be more complicated and is left for future research. 
The concept of trust can be extended to multiple levels of trust, so that instead of a 
binary lattice of trust values, a lattice with longer chains was used. For the instrumented 
semantics and the constraint generation, this is a straightforward generalization. For the 
abstract interpretation, the abstract domain is changed such that all "very trusted" pointers 
are below the "lesser trusted" pointers all of which are below -1-. 

8 Conclusion 

We have argued that the analysis of the trustworthiness of data is a useful program analysis 
in security conscious settings, and we have given two static analyses for this purpose, one 
based on abstract interpretation, and another constraint analysis that facilitates separate 
analysis of program modules at the cost of slightly less accuracy. 
The analyses have been proved safe with respect to an instrumented semantics that has 
served as the definition of the goal of the analysis. 
The main contribution of this paper is thought to be the introduction of the concept of 
trust analysis, and the application of it to a language with pointers and mutable data 
Currently, work is in progress together with Jens Palsberg to formulate trust analysis for 
a higher order language with polymorphic functions in terms of a type inference system. 
There am some similarities between binding-time analysis [6] and trust analysis in this 
case, but there am also significant differences. Most notably, in binding-time analysis: if 
an argument is used by a function that expects a dynamic argument, the argument itself 
has to be marked dynamic, and the "dynamicness"propagates back through the argument. 
Not so in trust analysis. There the argument can be "lifted" from trusted to untrusted in 
that place without affecting other parts of the program. 
A c k n o w l e d g m e n t s :  The author wants to thank Jens Palsberg, Peter D. Mosses and 
Neil D. Jones for reading earlier drafts of this paper and giving useful comments. Also 
the anonymous referees provided useful feedback. 

A Safety of Abstract Interpretation 

F a c t  1 l f a  < b and b E s C_ ValA then a <_ V s. 

F a c t  2 l f  A ~- v E a and a < b then A F- v E b. 

Lemma3.  I f  M i  o A E AA then A ~- s e A Mz E ,f A e AA. 

Proof. By structural induction on e. We proceed with a case analysis: 
- e = i: Show Z ~- Mz (A( i ) )  E_ AA( i )  which follows from the definition of E.  
- e = ~addr i]]: Show A I- (A(i) ,  _1_) E {i}, and clearly A(i)  E A({i}).  
- e = I[deref p]]: Let (v, t) = s p A Mz and a -- CA p AA, show: 

A I- ( r , ( M r ( v ) ) ,  t V r2(M~r(v))) E V AA(a) .  

By induction, A t- (v, t) E a. By strong typing we can assume that v is indeed a 
pointer and that either a -- T or a C I .  In the first case the desired inequality holds 
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trivially. In the second case we know that v E A(a), and also that t = 1 .  Assume 
that v = A(ao), ao E a. As M I  o A E AA, A ~- Mi(v)  E AA(ao), and using Fact 
1 and Fact 2 we get the result. 

- e = [ej + e2]]: By induction, 

A ~- ((v~, tl) = EI el a Mz)  E ~A el AA = al, 

A F ((vz, t2) = Ct ez A Mr)  E ~A e2 AA :- az. 

ShowA F (vl +v2, tt Vtz) E al Va2. f f oneo f {aha2}  is T ,  the resultistrivial. 
ff they am both _L, both tl and tz must be too. 

- e = [ t r u s t  4 :  Show A F (g i  e '  A Ms, .1_) E I .  This follows directly from the 
definition of E.  

- e = [d is t rus t  e']]: Trivial from the definitions. 
- e = const: S h o w A  F (consl,  l )  E l ,  whichistrivial .  

L e m m a 4 .  l f  M z o A E A A then 

A F (addrt p A Mz, .L) ff addra p AA 

Proof  By structural induction in p. 

- p = i: Show A )- ( A ( i ) , / )  ___ {i} which follows directly from the definition of E- 
- p = [deref  p']]: ShowA t- (r l (Mx(addri  p' A Mx)), _1_) E VAA(addrA  P' AA). 

By induction: A ~- (addri p~ A MI,  .L) E addrA p' AA. ff  addrA p' AA = T 
the result is trivial. If  addrA p~ AA = s C I then there is an identifier ao E s such 
that A(a0) = addri p' A Mr. Thus A ~- Mi(A(ao))  E AA(ao) by the assumption 
that Mx o A E AA, and via Fact 1 and 2 the result follows. 

L e m m a  5. ~ A is monotone in its second argument: 

AA < A'A ~ s e AA < CA e A~A. 

Proof  Trivial by structural induction in e. 

L e m m a  6 .  S A  / s  monotone in its second argument: 

AA ~ A~A =~ SA S AA t < SA s A'A t 

Proof  By structural induction in s. 

Proof  o f  Proposition I (Safety). We want to prove the following: If 

Sz s A Mx t = M ~, MI o A E AA, SA a A A  tA = A~a and t < tA 

then M '  o A ff A~t. 
The proof is by induction in the number of calls of Sz. We proceed by a case analysis of 
the syntax of s: 
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- s = [[while e do s"fl: By Lemma 3, monotonicity of EA and Fact 2 we know that 

A F  Sz e A M I  E_s e AA. 
ff v is false (in the definition of  SI )  the result follows from monotonicity. 

Otherwise, let (v , t ' )  = EI e A Mz, M "  = S I s '  A MI (t V t') and A ~  = 
$A s' AA (tA V EA e AA). By the above fact on e we can apply induction and get 
M "  o A E A~t. 
Now we have M '  = S t  I[while e do s']] A M " ' t  and 

XA = SA [[while e d 9 s'~ AA tA = SA [[while e do s'~ A~  tA. 

By induction we get M '  o A E A~.  
- s = [[p :=  e]]: Let (v, t') = $ I e  A MI, VA = s e AA, a = addrt p A M1 and 

aA = addrA p AA. We need to show: 

M,[(v, t v t')/a] o A E asg (VA V tA) AA aa. 

If aa : T then this follows directly from the definition ofasg. Otherwise by Lemma 
4 we have A F (a, _k) E aA, hence there exists an ao E aA such that A(ao) = a. It 
is enough to ensure the inequality at ao since this is the only point where the left hand 
side is different from MI  o A and asg is clearly monotone in the second argument 
so by Fact 2 the inequality holds automatically everywhere else. Evaluating we get: 

(asg (VA V tA) A t  aA)(ao) = (VA V tA V aA(ao)). 

and 
(Mz[(v, t V t')/a] o A)(ao) = (v, t V t'). 

By Lemma 3 we know that A I- (v, r  E V a .  All that remains to show is: A I- 
(v, t v t') F VA V tA V AA(aO) which follows from Fact 1. 

- s = [[sl; s2]]: This case follows immediately by two applications of induction. 

B S afe t y  o f  C o n s t r a i n t  G e n e r a t i o n  

I ~ m m a 7  Addresses. l f  m is a coherentmodel, re(G) = I and AA E_ m then these 
two implications hold: 

a EaddrApAA C_I ~ r n ( a ) = m ( N ( p ) )  

and 
addra p AA = T ~ T = re(tiN(p)) < m(N(p)) .  

Proof. By structural induction in p. 
- p = i: addr A i AA = (i} and re(i) -= m(N(p ) )  = re(i). 
- p = [deref  p']:Notethatm(N(p'))  < m(,N(p)).Firstassumea C addrA p AA = 

V A A ( a d d r A  p' AA) C I. By induction, b e addrA p' AA @ m(b) = 
m(N(p')). Since m is coherent, m(Sb) = m(SN(r = m(N(p)). Also, as 
AA E_ m: m(Sb) = m(  Ab) = re(a). Combining the equalities we get the desired 
result. 
Secondly, suppose V A A ( a d d r A  p' AA) = T.  Either addr A p' AA = T 
in which c a s e  induction yields T = m(N(p ' ) )  < m(SN(p ' ) )  = m(N(p) ) ,  or 
there is some bo E addrA p' AA such that AA(bo) = T .  Since m is a safe 
approximation of AA this means m(bo) = T.  By induction re(b) = m(N(p ' ) )  for 
all b C addrA p' AA so we get T = m(bo) = m( N (p') ) < m( N (p) ) whichis the 
required result. 
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[ , emma 8 Expressions.  The constraints generated for expressions safely approximate 
the abstract interpretation o f  expressions. 
Suppose ( c, v) = # s e, m is a coherent model of  c, A A E m and a = # A e A A then the 
following implications hold: 

a =  T ~ m ( v ) =  T 

and 

ao E a C_I =r m ( a o ) = m ( 6 v ) .  

Proof. By structural induction in e. 

- e = i: CA i AA = AA(i)  and (e, v) = (0, i) by definition. If AA(i)  = T then 
re(i) = re(v) = T as AA E_ m. f f  ao E AA(i)  then m( Ai)  = m(6i) = m(ao) by 
the same reason. 

- e = [ a d d r  i]]: (e, v) = (0, V i )  and a = {i}. What  is required to prove thus is 

m(ao) = rn(6v) = rn(i) for a0 E {i} which is clear. 

- e = [de re f  p]]: (c, vp) = Ca p, v = 6vp anda = VAA(CA p AA). 
If a = T then either CA p A a  = T and by induction T = m(vp) <_ m(~vp) = 
re(v), or s P AA C I in which case there is some ao E EA p AA such that 

Aa(ao) = T.  As AA _ m this means that m(ao) = T.  By induction T = 
re(a0)  = m(~, ,p)  = m( , , ) .  
If ao E a C I then we must show m(ao) = rn(6v). By induction m(a~) = m(6vp) 
for all a~ C ~A P AA C I. ao = AA(a~) for some such a~ thus since AA E rn, 
rn(Aa'o) = m(ao) and since rn is coherent: 

m(a~o) = m(#vv)  = m(v)  ::~ m(ao) = m(6a~o) = m(6v). 

- e = [ e l + e 2 ] : L e t  (e,, vl)  = ~'s el and (c2, v2) = s  e2.Wehave c = clUe2U{vl <_ 
v, v2 _< v} and by induction the implications hold for the two subexpressions. 
Suppose a = T :  This means that CA e~ AA = T for some j E {1 ,2}  and by 
induction this means that rn(v~ ) = T and by definition of  c we get re(v) = T .  
By strong typing, the abstract value for the expression must be either T or _L so this 
concludes the case. 

- e = [ t r u s t  e']]: We have a = _L so the implications hold vacuously. 

- e = [d i s t ru s t  e ' ] :  We have a = T and c = { T  < v} hence rn(v) -- T as required. 

- e = const: We have a = .L so the implications hold vacuously. 

Proof  o f  Proposition 2. We want to prove the following: If 

(c, v) = S s  s, (1) 
m ~ c, and m is coherent (2) 

AA E m, (3) 

V z E v  : t < m ( x ) ,  (4) 

A'a = SA 8 AA t (5) 

then A ~  _ m. 
We proceed by induction in the number  of calls to SA. If re(G) = T then the final 
inequality holds regardless of A ~ ,  so assume re(G) = _L. A case analysis follows: 
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- s = [[while e do s'•: Let (c,, v,)  = Es e and (c,, v,)  = Ss  s'. By definition of c: 
x E v~ ~ m(v , )  < re(x) and by Lemma 8 EA e AA = T ~ re(v,) = T thus 
by (4) Vx E vs : t V CA e AA < re(x). We can now apply induction on s t and 
get A~t = SA s' AA (t V CA e AA) E m .  If this is the same as AA we are done. 
Otherwise we apply induction once more and get the result. 

- s = ~ :=  el: If addr A p AA = T then by Lemma 7, T = m(yN(p) )  < re(G) 
so in that case A~t E m by definition of E.  
Now suppose ao E a = addrA p AA C I. AtA differs from AA only on the set a 
by definition of asg. Let (c,, v,) = Cs e and a~ = s e AA. 
If A~a(ao) = t V Aa(ao) V ae ---- -[" we must show m(ao) = T. By (4) t < 
m(N(p) )  ---- ra(ao) where that last equality comes from Lemma 7. By (3) AA(ao) = 
T ~ m(ao) = T.  By Lemma 8 a ,  = T ~ rn(v~) = T,  and by definition of c, 
rn(v,) < re(v) = ra(N(p)) = m(ao), using Lemma 7 last. For a'A(ao) to be T at 
least one of the parts of the above disjunction must be -1- (by definition of the VaIA 
lattice) and by the inequalities, m(ao) = T in all cases. 
If A'A(ao) = t V AA(ao) V ae C_ I then we must show that a '  E A~A(ao) 
m(Aao) = rn(a'), a' cannot belongto t as t E Tr. If a' E AA(ao) then (3) secures 
the result. Otherwise, if a '  E a ,  then by Lemma 8 m(a') = m(Sv,)  = rn(SN(p)) 
where the last equality stems from the definition of c. By Lemma 7 and coherence 
m(SN(p))  = m(Sao) = m(Aao). 

- s = [[s,; s2]]: Let A~ = SA 81 AA t and (ct, vl) = Ss  st. Now ct C c and v, C v 
by definition of Ss ,  so by induction we get A~  _E m. With this and equivalent 
considerations as above we can apply induction to A~ and s2 and get A~ E_ m as 
required. 
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