
PRI #231:

Bidirectional parenthesis algorithm

1. Introduction
In its current form the UBA (Unicode Bidirectional Algorithm UAX #9) displays instances of parentheses

in cases where the boundaries of the parentheses have mixed directionality in a way that will very often

not provide the result users expect. A simple example is “a(b)” in an RTL paragraph: 5

(a(b

Under the UBA in its current form, users, developers, and localizers who wish to obtain the desired

display form need to use invisible control characters (Ex: LRE, RLO, PDF) to alter the logical string so that

UBA can interpret it correctly. In the simple case above, this could include the following options (not all

of which are equally recommended):

[LRE] a (b) [PDF] 10

[LRO] a (b) [PDF]

a (b) [LRM]

This solution requires users to have detailed knowledge of the way the UBA works to correctly position

appropriate invisible control characters. Furthermore, such a solution is fragile since text may be edited

or copied after the placement of the control characters, potentially leading to further problems with the 15

display.

The problem of mismatched parentheses is very common, and end users routinely encounter difficulties.

Rarely are users sufficiently informed about the UBA to solve the display problems themselves. On the

contrary, users may attempt to fix problems with visual ordering by changing the logical structure of

their text in order to achieve the desired output. For example, in place of “a(b)” a user may type “(a(b” 20

in order to achieve the desired display form in a RTL paragraph. By altering the logical structure, such

workarounds can lead to different problems in subsequent text processing. Even for professional

developers and localizers, the problems are time consuming on account of being common, and not

always trivial to solve.

A different approach to the handling of parentheses would be to enhance or extend UBA to add logic for 25

handling of paired punctuation marks. Use of a parenthesis algorithm could ensure both logical

correctness and display fidelity for common text scenarios without resorting to use of control characters

or other workarounds. Such an algorithm might correctly handle runs in either RTL or LRT embedding

directions and as such, remain consistent with the dynamic nature of the UBA. Since there are multiple

ways such a parenthesis algorithm could be implemented, it would be important to have 30

implementations standardize on a single solution to ensure stability for data interchange.

2

This document provides details for a solution to the problem—a “bidi parenthesis algorithm” (BPA)—

that may be implemented either as a formal amendment to UAX #9 to include the proposed rule N0 (§

4.1) or by the endorsement of the particular use of higher level protocols described below (§ 4.2).

It is the view of the proposers that UBA can be seen as a heuristic for determining what bidi-layout 35

behavior is most likely desired for any given string, and that the proposed change would comprise an

enhancement to that heuristic that would provide significant benefits to implementations and users

generally. The BPA is not a panacea: there will always be exceptional scenarios that require use of

control characters and specific familiarity with UBA. The expectation, however, is that a BPA-enhanced

UBA could eliminate that need in an entire class of common scenarios. 40

2. Recap of the relevant part of the UBA
Parentheses and other impacted paired signs have the bidi category ON (other neutral), the resolution

of which is treated by rules N1 and N2 in the UBA:

N1. A sequence of neutrals takes the direction of the surrounding strong text if the text on both sides has
the same direction. European and Arabic numbers act as if they were R in terms of their influence on
neutrals. Start-of-level-run (sor) and end-of-level-run (eor) are used at level run boundaries.

 L N L → L L L

 R N R → R R R

 R N AN → R R AN

 R N EN → R R EN

AN N R → AN R R

AN N AN → AN R AN

AN N EN → AN R EN

EN N R → EN R R

EN N AN → EN R AN

EN N EN → EN R EN

N2. Any remaining neutrals take the embedding direction.

N → e

The problem arises when the two paired signs are resolved differently by the above rules. For example,

in “a(b)”, the opening parenthesis is resolved to L under N1, whereas the final one is resolved to R under 45

N2:

3

Figure 1. Unicode bidi utility showing output of a(b) in a RTL paragraph

Note that the Unicode bidi utility does not do glyph mirroring. The final output would be (a(b as shown

above.

Because there are two possible resolutions under N1, but only one for N2 the possible sequences that

give rise to mismatched parentheses are: 50

A) N1 and N1: …O(O…E)E… -OR- …E(E…O)O…

B) N1 and N2: …O(O…O)E… -OR- …E(O…O)O…

Where:

O = one or more strong types opposite to the embedding direction

E = one or more strong types of the embedding direction, or start/end of run 55

Extended complexity within the enclosed text can be ignored since only the non-neutral neighbors to a

paired punctuation mark will influence their resolution. Any other neutral types adjacent to parentheses

in a run may be ignored when evaluating the level of the paired punctuation marks since their resolution

is also determined by N1 and N2, and is therefore equal to the individual resolution of the paired

http://unicode.org/cldr/utility/bidi.jsp?a=a%28b%29&p=RTL

4

punctuation marks. For example, neutrals (N) in a sequence ON(NON)E will be resolved in the same way 60

as example B above.

3. Design

3.1. Goal

The goal of the parenthesis algorithm is to ensure that paired punctuation marks such as parentheses

are always treated as a pair when applying the UBA so that they position and orient correctly, and 65

content inside and outside the enclosed span does not cross the boundaries of the span. The resolution

of the pair is intended to provide the most intuitive layout for the context.

3.2. Identification of paired punctuation marks

Paired punctuation marks are pairs of characters A and B, where A has general category

Open_Punctuation (gc = Ps), B has general category Close_Punctuation (gc = Pe), and A and B form a 70

mirrored pair (Bidi_Mirrored = Yes for both, and Bidi_Mirroring_Glyph of A is B). See appendix for a

complete listing.

Because the bidi mirrored characters form a proper subset of the bidi neutrals (bc = ON), all paired

punctuation marks are also bidi neutral. This definition ensures the inclusion of parenthesis-like marks

and the exclusion of quotation marks and presentation forms (e.g., ︵︶︷︸︹︺). It also ensures that 75

the marks of every pair are mirrored characters of each other. As of Unicode 6.1, the set of paired

punctuation marks consists of 58 pairs of characters: 55 pairs of script Common, 1 of script Ogham, and

2 of script Tibetan.

3.3. Finding paired punctuation marks

Scan a paragraph from beginning to end looking for characters that meet the definition of paired 80

punctuation marks as defined above (§ 3.2).

Examples of such Open_Punctuation and Close_Punctuation characters are the opening parenthesis

(U+0028) and closing parenthesis (U+0029), respectively. For simplicity, the following discussion will use

the term open parenthesis for the first class of characters and close parenthesis for the second.

If an open parenthesis is found, push it onto a stack and continue the scan. If a close parenthesis is 85

found, check if the stack is not empty and the close parenthesis is the other member of the mirrored

pair for the character on the top of the stack. If so, pop the stack and continue the scan; else return

failure. If the end of the paragraph is reached, return success if the stack is empty; else return failure.

Success implies that all open and close parentheses, if any, in a paragraph are matched correctly. Failure

implies that there are one or more mismatched paired punctuation marks in a run and therefore the 90

handling under the parenthesis algorithm will not be attempted.

3.4. Nesting

Paired punctuation marks must be correctly nested in order for the algorithm to run. Incorrectly nested,

unbalanced, or mismatched pairs may cause inconsistency in the rules governing the resolution of the

5

paired punctuation marks. Therefore, the BPA should not be applied in these cases. Standard resolution 95

using N1 and N2 should proceed as normal.

Correct nesting requires the paired punctuation marks to be mirror characters of each other, to be at

the same embedding level, and to have a lower or equal embedding level as the content they contain. A

drop in the level of the content below the level of either paired punctuation mark would constitute an

error in nesting, and therefore, the BPA should be abandoned. 100

These constraints only apply for the current paragraph.

3.5. Resolution of paired punctuation marks

The next task is to determine whether the paired punctuation marks should be made to match the

adjacent context or the paragraph direction. For the purposes of assessing which direction to resolve

paired marks, the following possibilities exist: 105

6

LTR RTL

L(L)L  L

L(L)R  L

R(L)L  L

R(L)R  L

L(R)L  L

L(R)R  R

R(R)L  R

R(R)R  R

L(N)L  L

L(N)R  L

R(N)L  L

R(N)R  R

L(LR)L  L

L(LR)R  L

R(LR)R  L

L(L)L  L

L(L)R  L

R(L)L  L

R(L)R  R

L(R)L  R

L(R)R  R

R(R)L  R

R(R)R  R

L(N)L  L

L(N)R  R

R(N)L  R

R(N)R  R

L(LR)L  R

L(LR)R  R

R(LR)R  R

The highlighted cases are ones which are currently failing under the existing

UBA, and are fixed by the BPA.

Sequences with a neutral type outside the parenthesis or mixed with a strong type inside can be ignored

since they will be equivalent to one of the above possibilities after resolution using N1 or N2. Similarly,

sequences with mixed type content RL, RLR, LRL, etc., enclosed within the paired punctuation signs are 110

functionally equivalent to the above types with enclosed LR.

Once the paired punctuation marks have been identified, they should be resolved to the embedding

direction except in the following cases which are resolved, based on context, opposite the embedding

direction:

 The directionality of the enclosed content is opposite the embedding direction, and at least one 115

neighbor has a bidi level opposite to the embedding direction O(O)E, E(O)O, or O(O)O.

 The enclosed content is neutral and both neighbors have a bidi level opposite to the embedding

direction O(N)O. Resolving to opposite to the embedding direction is current behavior under

the UBA (N1).

The rationale for following the embedding level in the normal case is that the text segment enclosed by 120

the paired punctuation marks will conform to the progression of other text segments in the writing

direction. In the exception cases, the rationale to follow the opposite direction is based on context being

established between the enclosed and adjacent segments with the same direction.

Other neutral types adjacent to paired punctuation marks are resolved subsequent to resolving the

paired punctuation marks themselves, and will therefore be influenced by that resolution. 125

3.5.1. Examples

Based on an RTL paragraph:

1. R(L)R WERBEH (a) CIBARA

2. R(L)L book(s) CIBARA

3. L(N)L WERBEH hobby(-)horse CIBARA

4. L(LR)R WERBEH (CIBARA fabrikam) j. smith

Note that examples 1 and 3 resolve correctly under the current UBA, whereas examples 2 and 4 require

the BPA to display correctly.

Based on an LTR paragraph: 130

7

5. L(LR)R j. smith (fabrikam CIBARA) WERBEH

3.5.2. A special case

The rules for the resolution of paired punctuation marks have been designed to provide the same

output as rules N1 and N2 under the existing UBA except in cases that lead to mismatched parentheses.

There is, however, a special case that will produce a different resolution for the level of balanced 135

parentheses under the BPA than under the current UBA. This case is:

 O(OEO)O

Under the current UBA, both parentheses in this example are resolved to O under N1. However, under

the BPA, the mixed directionality of the enclosure will cause the parentheses to be resolved to E:

LTR UBA & BPA alpha(bravo CIBARA charlie)delta

RTL UBA charlie)delta CIBARA alpha(bravo

RTL BPA delta(charlie CIBARA bravo)alpha

Note that in this case, under the current UBA, the text that is logically outside the parentheses is placed 140

between them in RTL context, and the enclosed text has moved outside. Also, the parentheses

themselves face the wrong direction. Under the BPA the segments follow the writing direction, so that

the enclosed text remains inside the parentheses and the parentheses face each other.

3.6. Bidirectional controls

3.6.1. Left-To-Right Override (U+202D) and Right-To-Left Override (U+202E) 145

Text containing an explicit directional override (LRO or RLO and PDF) around a sequence that includes

paired punctuation marks is not affected by the BPA. This is because the directionality of the content

enclosed by the override is already determined to be strong L or strong R (as appropriate) and no

neutral ambiguity remains to be resolved. Thus, no special handling is needed in the BPA.

3.6.2. Left-To-Right Embedding (U+202A) and Right-To-Left Embedding (U+202B) 150

A span of text that includes explicit directional embedding controls (LRE or RLE and PDF) influences the

BPA by updating the embedding direction. The effect is comparable to that of changing the base

paragraph direction. No special handling is needed in the BPA.

3.6.3. Left-To-Right Mark (U+200E) and Right-To-Left Mark (U+200F)

Explicit directional marks (LRM or RLM) influence the directionality of adjacent neutrals as normal under 155

the UBA; that is they behave like any other strong L or strong R. No special handling is needed in the BPA.

This same is true for ARABIC LETTER MARK (U+061C), which has been accepted for encoding in a future

version of the standard.

4. Solutions
There are two alternatives for implementing the BPA: either a new rule should be introduced into the 160

core algorithm immediately before rule N1, or the higher level protocol rules HL4 and HL5 should be

used in conjunction with logic to segment text based on the occurrence of paired punctuation marks and

insert appropriate directional marks (LRM, RLM) to achieve the desired result. Both solutions use the

logic described above (§ 3.2) to identify paired punctuation marks that are properly nested.

8

4.1. Solution by updating the core UBA 165

Given that the use of paired punctuation marks such as parentheses is a normal document scenario, we

feel that the resolution of paired punctuation marks should be addressed in the core algorithm. The

appropriate place to evaluate the paired signs is before the resolution of neutral types, that is, before

the application of N1. The solution may be phrased in terms of a new rule N0. In this way, neutral types

that are adjacent to paired punctuation marks resolved by N0 may be impacted by the outcome of that 170

resolution. See detailed examples in section 4.1.2.

4.1.1. Proposed rule

*N0. Paired punctuation marks take the embedding direction if the enclosed text contains a strong type
of the same direction. Else, if the enclosed text contains a strong type of the opposite direction and at
least one external neighbor also has that direction the paired punctuation marks take the direction
opposite the embedding direction.

This rule also requires the definition of paired punctuation marks state previously, and an additional

qualification regarding the levels:

Paired punctuation marks are pairs of characters A and B, where A has general category
Open_Punctuation (gc = Ps), B has general category Close_Punctuation (gc = Pe), and A and B form a
mirrored pair (Bidi_Mirrored = Yes for both, and Bidi_Mirroring_Glyph of A is B).

This rule is applied to those paired punctuation marks that are correctly nested and occur at the same
level without an intervening drop below their level.

 175

4.1.2. Detailed examples

1. RTL

R(L)R

WERBEH (a) CIBARA
Logical sequence 0 1 2 3 4 5 6

Text run ARABIC Space (a) Space HEBREW

Bidi Class R WS ON L ON WS R

Rules Applied N1->R N0->R N0->R N1->R

Resulting Level L1 L1 L1 L2 L1 L1 L1

2. RTL

R(L)L

book(s) CIBARA
Logical sequence 0 1 2 3 4 5

Text run ARABIC Space book (s)

Bidi Class R WS L ON L ON

Rules Applied N2->R N0->L N0->L

Resulting Level L1 L1 L2 L2 L2 L2

3. RTL

L(N)L

WERBEH hobby(-)horse CIBARA
Logical
sequence

0 1 2 3 4 5 6 7 8

Text run ARABIC Space hobby (-) horse Space HEBREW

Bidi Class R WS L ON ON ON L WS R

Rules Applied N2->R N1->L N1->L N1->L N2->R

Resulting Level L1 L1 L2 L2 L2 L2 L2 L1 L1

4. RTL

WERBEH (CIBARA fabrikam) j. smith
Logical 0 1 2 3 4 5 6 7 8

9

L(LR)R sequence

Text run j. smith Space (fabrikam Space ARABIC) Space HEBREW

Bidi Class L WS ON L WS R ON WS R

Rules Applied N2->R N0->R N2->R N0->R N1->R

Resulting Level L2 L2 L1 L2 L1 L1 L1 L1 L1

5. LTR

L(LR)R

j. smith (fabrikam CIBARA) WERBEH
Logical
sequence

0 1 2 3 4 5 6 7 8

Text run j. smith Space (fabrikam Space ARABIC) Space HEBREW

Bidi Class L WS ON L WS R ON WS R

Rules Applied N1->L N0->L N2->L N0->L N2->R

Resulting Level L0 L0 L0 L0 L0 L1 L0 L1 L1

See also additional examples later in this document.

4.2. Solution using rules for higher-level protocols

This approach may be used as a conformant solution under the current UBA since UAX #9 includes

additional rules for Higher-Level Protocols that may be applied to structured text: 180

The following clauses are the only permissible ways for systems to apply higher-level protocols to the
ordering of bidirectional text. Some of the clauses apply to segments of structured text. This refers to
the situation where text is interpreted as being structured, whether with explicit markup such as XML or
HTML, or internally structured such as in a word processor or spreadsheet. In such a case, a segment is
[a] span of text that is distinguished in some way by the structure.

In order to ensure consistent implementation the directional control marks LRM and RLM should be

applied to paired punctuation marks according to logic described in this section. In this way, neutral

types that are adjacent to paired punctuation marks may resolve differently than they would have due

to the insertion of LRM or RLM, see detailed examples in section 4.2.2.

4.2.1. Current rules 185

Properly nested paired punctuation marks may be used to identify segments of text to which the UBA

may be applied. The appropriate rule is HL4:

HL4. Apply the Bidirectional Algorithm to segments
The Bidirectional Algorithm can be applied independently to one or more segments of structured text.
For example, when displaying a document consisting of textual data and visible markup in an editor, a
higher-level process can handle syntactic elements in the markup separately from the textual data.

The segments are to be identified using the logic described above (§ 3.3).

Where necessary, directional control marks (RLM/LRM) should be inserted at the borders of segments in

order to provide correct resolution using the UBA. The appropriate rule is HL5: 190

HL5. Provide artificial context.
Text can be processed by the Bidirectional Algorithm as if it were preceded by a character of a given
type and/or followed by a character of a given type. This allows a piece of text that is extracted from a
longer sequence of text to behave as it did in the larger context.

10

The determination of whether directional control marks should be inserted is based on the logic

described above (§ 3.5). Once the appropriate marks have been inserted, segment can be processed

using the UBA.

4.2.2. Detailed examples

1. RTL

R(L)R

WERBEH (a) CIBARA
Logical sequence 0 1 2 3 4 5 6

Text run ARABIC Space (a) Space HEBREW

Bidi Class R WS ON L ON WS R

Segment (HL4) 0 0 1 1 1 2 2

Artificial context (HL5) RLM()RLM

Rules applied N1->R N2->R N2->R N1->R

Resulting Level L1 L1 L1 L2 L1 L1 L1

2. RTL

R(L)L

book(s) CIBARA
Logical sequence 0 1 2 3 4 5

Text run ARABIC Space book (S)

Bidi Class R WS L ON L ON

Segment (HL4) 0 0 0 1 1 1

Artificial context (HL5) LRM()LRM

Rules applied N2->R N1->L N1->L

Resulting Level L1 L1 L2 L2 L2 L2

3. RTL

L(N)L

WERBEH hobby(-)horse CIBARA
Logical sequence 0 1 2 3 4 5 6 7 8

Text run ARABIC Space hobby (-) horse Space HEBREW

Bidi Class R WS L ON ON ON L WS R

Segment (HL4) 0 0 0 1 1 1 2 2 2

Artificial context
(HL5)

 LRM()LRM

Rules applied N2->R N1->L N1->L N2->R

Resulting Level L1 L1 L2 L2 L2 L2 L2 L1 L1

4. RTL

L(LR)R

WERBEH (CIBARA fabrikam) j. smith
Logical sequence 0 1 2 3 4 5 6 7 8

Text run j. smith Space (fabrikam Space ARABIC) Space HEBREW

Bidi Class L WS ON L WS R ON WS R

Segment (HL4) 0 0 1 1 1 1 1 2 2

Artificial context
(HL5)

 RLM()RLM

Rules applied N2->R N2->R N2->R N1->R N1->R

Resulting Level L2 L1 L1 L2 L1 L1 L1 L1 L1

5. LTR

L(LR)R

j. smith (fabrikam CIBARA) WERBEH
Logical sequence 0 1 2 3 4 5 6 7 8

Text run j. smith Space (fabrikam Space ARABIC) Space HEBREW

Bidi Class L WS ON L WS R ON WS R

Segment (HL4) 0 0 1 1 1 1 1 2 2

Artificial context
(HL5)

 LRM()LRM

Rules applied N1->L N1->L N2->L N2->L N2->L

11

Resulting Level L0 L0 L0 L0 L0 L1 L0 L0 L1

See also additional examples given below. 195

5. Examples with and without the BPA
Paragraph
direction

Text Output

1. RTL Text Files (*.txt) Without BPA

With BPA

2. RTL WWW (World
Wide Web)

 מערכת

Without BPA

With BPA

3. RTL إعداد Office 15
(Technical

Preview)

Without BPA

With BPA

4. RTL j. smith (fabrikam
 עברית (العربية

Without BPA

With BPA

5. LTR j. smith (fabrikam

 עברית (العربية
Without BPA

With BPA

6. LTR شركة) السيد محمد

 موزعين)الإدراك
Microsoft Corp))

Without BPA

With BPA

7. LTR מלא צבע [24bpp] Without BPA

With BPA

8. LTR From: السيد محمد
 (الإدراك شركة)

Without BPA

With BPA

6. Stability
Because the BPA proposed here involves a heuristic which determines the level of paired punctuation

marks based on the content of the text itself and does not alter the text in any way, well-formed new or 200

existing text will display with desired results under the BPA. This is true whether or not the text contains

directional control marks. It is important to stress that current text which has used directional controls

in order to obtain correct display will continue to display without change under the BPA. The main

stability concern therefore is that text authored using the BPA may display differently when rendered on

12

a system which has not implemented the BPA. In such a case, the reader of that text is no worse off than 205

they would have been prior to the development of the BPA.

Another stability concern relates to the possibility of there being text which is deliberately contrived to

work around the problem of mismatched paired punctuation marks under the current UBA. An example

would be a logical pair of nested parentheses which render as a sequence of non-nested paired

punctuation marks under the UBA, i.e., logical E(O(OEO)O)E renders as E(O)OEO(O)E under the current 210

UBA, whereas the BPA preserves the logical form. The benefits of the BPA are expected to far outweigh

the loss in stability of such sequences.

7. Alternative solutions considered and rejected

7.1. Inserting marks

One suggestion to address this problem is to have edit controls insert the appropriate directional 215

controls automatically. A serious drawback to this suggestion is that the correct display of text with

paired punctuation marks would depend on the source application supporting this behavior. This also

requires these controls to have an awareness of the UBA in order to insert the correct marks when they

may currently be relying on the OS to manage the display of bidirectional text. Given the number of

different edit controls, the surface area for this approach is too great to be viable. Moreover, different 220

control implementations might vary significantly in the implementation of this solution, and hence not

achieve any overall gain in avoiding user confusion.

Having a tool that inserts the correct marks according to the proposed algorithm might be a useful tool

to facilitate cross platform stability during the transition period to widespread adoption of the BPA.

However, insertion of marks is not a stable or complete solution to the problem because text that has 225

had marks inserted may be copied and edited in contexts beyond the one in which the marks were

applied, and thus, rather than correcting problems, the presence of invisible directional control marks

may introduce problems. For example, when the text for example 4 above (§§ 4.2.2 and 5) is updated to

include the RLM marks according to the procedure in section 4.2, the text renders correctly in an RTL

paragraph: 230

However, when this text, including the marks, is put in an LRT context the text is distorted:

Only dynamic resolution of the parenthesis under the BPA is able to adapt correctly to changes in

context required for resolution to the embedding direction. 235

13

8. Appendix – List of paired punctuation marks

U+0028 U+0029 () LEFT PARENTHESIS RIGHT PARENTHESIS

U+005B U+005D [] LEFT SQUARE BRACKET RIGHT SQUARE BRACKET

U+007B U+007D { } LEFT CURLY BRACKET RIGHT CURLY BRACKET

U+0F3A U+0F3B ༺ ༻ TIBETAN MARK GUG
RTAGS GYON

TIBETAN MARK GUG RTAGS
GYAS

U+0F3C U+0F3D ༼ ༽ TIBETAN MARK ANG
KHANG GYON

TIBETAN MARK ANG KHANG
GYAS

U+169B U+169C ᚛ ᚜ OGHAM FEATHER MARK
OGHAM REVERSED FEATHER
MARK

U+2045 U+2046 ⁅ ⁆
LEFT SQUARE BRACKET
WITH QUILL

RIGHT SQUARE BRACKET
WITH QUILL

U+207D U+207E ⁽ ⁾
SUPERSCRIPT LEFT
PARENTHESIS

SUPERSCRIPT RIGHT
PARENTHESIS

U+208D U+208E ₍ ₎
SUBSCRIPT LEFT
PARENTHESIS

SUBSCRIPT RIGHT
PARENTHESIS

U+2329 U+232A 〈 〉
LEFT-POINTING ANGLE
BRACKET

RIGHT-POINTING ANGLE
BRACKET

U+2768 U+2769 ❨ ❩
MEDIUM LEFT
PARENTHESIS ORNAMENT

MEDIUM RIGHT
PARENTHESIS ORNAMENT

U+276A U+276B ❪ ❫
MEDIUM FLATTENED LEFT
PARENTHESIS ORNAMENT

MEDIUM FLATTENED RIGHT
PARENTHESIS ORNAMENT

U+276C U+276D ❬ ❭
MEDIUM LEFT-POINTING
ANGLE BRACKET
ORNAMENT

MEDIUM RIGHT-POINTING
ANGLE BRACKET ORNAMENT

U+276E U+276F ❮ ❯
HEAVY LEFT-POINTING
ANGLE QUOTATION MARK
ORNAMENT

HEAVY RIGHT-POINTING
ANGLE QUOTATION MARK
ORNAMENT

U+2770 U+2771 ❰ ❱
HEAVY LEFT-POINTING
ANGLE BRACKET
ORNAMENT

HEAVY RIGHT-POINTING
ANGLE BRACKET ORNAMENT

U+2772 U+2773 ❲ ❳
LIGHT LEFT TORTOISE
SHELL BRACKET
ORNAMENT

LIGHT RIGHT TORTOISE SHELL
BRACKET ORNAMENT

U+2774 U+2775 ❴ ❵
MEDIUM LEFT CURLY
BRACKET ORNAMENT

MEDIUM RIGHT CURLY
BRACKET ORNAMENT

U+27C5 U+27C6 ⟅ ⟆
LEFT S-SHAPED BAG
DELIMITER

RIGHT S-SHAPED BAG
DELIMITER

U+27E6 U+27E7 ⟦ ⟧
MATHEMATICAL LEFT
WHITE SQUARE BRACKET

MATHEMATICAL RIGHT
WHITE SQUARE BRACKET

U+27E8 U+27E9 ⟨ ⟩
MATHEMATICAL LEFT
ANGLE BRACKET

MATHEMATICAL RIGHT
ANGLE BRACKET

U+27EA U+27EB ⟪ ⟫
MATHEMATICAL LEFT
DOUBLE ANGLE BRACKET

MATHEMATICAL RIGHT
DOUBLE ANGLE BRACKET

14

U+27EC U+27ED ⟬ ⟭
MATHEMATICAL LEFT
WHITE TORTOISE SHELL
BRACKET

MATHEMATICAL RIGHT
WHITE TORTOISE SHELL
BRACKET

U+27EE U+27EF ⟮ ⟯
MATHEMATICAL LEFT
FLATTENED PARENTHESIS

MATHEMATICAL RIGHT
FLATTENED PARENTHESIS

U+2983 U+2984 ⦃ ⦄
LEFT WHITE CURLY
BRACKET

RIGHT WHITE CURLY
BRACKET

U+2985 U+2986 ⦅ ⦆ LEFT WHITE PARENTHESIS RIGHT WHITE PARENTHESIS

U+2987 U+2988 ⦇ ⦈
Z NOTATION LEFT IMAGE
BRACKET

Z NOTATION RIGHT IMAGE
BRACKET

U+2989 U+298A ⦉ ⦊
Z NOTATION LEFT
BINDING BRACKET

Z NOTATION RIGHT BINDING
BRACKET

U+298B U+298C ⦋ ⦌
LEFT SQUARE BRACKET
WITH UNDERBAR

RIGHT SQUARE BRACKET
WITH UNDERBAR

U+298D U+2990 ⦍ ⦐
LEFT SQUARE BRACKET
WITH TICK IN TOP
CORNER

RIGHT SQUARE BRACKET
WITH TICK IN TOP CORNER

U+298F U+298E ⦏ ⦎
LEFT SQUARE BRACKET
WITH TICK IN BOTTOM
CORNER

RIGHT SQUARE BRACKET
WITH TICK IN BOTTOM
CORNER

U+2991 U+2992 ⦑ ⦒
LEFT ANGLE BRACKET
WITH DOT

RIGHT ANGLE BRACKET WITH
DOT

U+2993 U+2994 ⦓ ⦔
LEFT ARC LESS-THAN
BRACKET

RIGHT ARC GREATER-THAN
BRACKET

U+2995 U+2996 ⦕ ⦖
DOUBLE LEFT ARC
GREATER-THAN BRACKET

DOUBLE RIGHT ARC LESS-
THAN BRACKET

U+2997 U+2998 ⦗ ⦘
LEFT BLACK TORTOISE
SHELL BRACKET

RIGHT BLACK TORTOISE
SHELL BRACKET

U+29D8 U+29D9 ⧘ ⧙ LEFT WIGGLY FENCE RIGHT WIGGLY FENCE

U+29DA U+29DB ⧚ ⧛
LEFT DOUBLE WIGGLY
FENCE

RIGHT DOUBLE WIGGLY
FENCE

U+29FC U+29FD ⧼ ⧽
LEFT-POINTING CURVED
ANGLE BRACKET

RIGHT-POINTING CURVED
ANGLE BRACKET

U+2E22 U+2E23 ⸢ ⸣ TOP LEFT HALF BRACKET TOP RIGHT HALF BRACKET

U+2E24 U+2E25 ⸤ ⸥
BOTTOM LEFT HALF
BRACKET

BOTTOM RIGHT HALF
BRACKET

U+2E26 U+2E27 ⸦ ⸧
LEFT SIDEWAYS U
BRACKET

RIGHT SIDEWAYS U BRACKET

U+2E28 U+2E29 ⸨ ⸩
LEFT DOUBLE
PARENTHESIS

RIGHT DOUBLE PARENTHESIS

U+3008 U+3009 〈 〉 LEFT ANGLE BRACKET RIGHT ANGLE BRACKET

U+300A U+300B 《 》
LEFT DOUBLE ANGLE
BRACKET

RIGHT DOUBLE ANGLE
BRACKET

U+300C U+300D 「 」 LEFT CORNER BRACKET RIGHT CORNER BRACKET

U+300E U+300F 『 』
LEFT WHITE CORNER
BRACKET

RIGHT WHITE CORNER
BRACKET

15

U+3010 U+3011 【 】
LEFT BLACK LENTICULAR
BRACKET

RIGHT BLACK LENTICULAR
BRACKET

U+3014 U+3015 〔 〕
LEFT TORTOISE SHELL
BRACKET

RIGHT TORTOISE SHELL
BRACKET

U+3016 U+3017 〖 〗
LEFT WHITE LENTICULAR
BRACKET

RIGHT WHITE LENTICULAR
BRACKET

U+3018 U+3019 〘 〙
LEFT WHITE TORTOISE
SHELL BRACKET

RIGHT WHITE TORTOISE
SHELL BRACKET

U+301A U+301B 〚 〛
LEFT WHITE SQUARE
BRACKET

RIGHT WHITE SQUARE
BRACKET

U+FE59 U+FE5A ﹙ ﹚ SMALL LEFT PARENTHESIS SMALL RIGHT PARENTHESIS

U+FE5B U+FE5C ﹛ ﹜
SMALL LEFT CURLY
BRACKET

SMALL RIGHT CURLY
BRACKET

U+FE5D U+FE5E ﹝ ﹞
SMALL LEFT TORTOISE
SHELL BRACKET

SMALL RIGHT TORTOISE
SHELL BRACKET

U+FF08 U+FF09 （ ）
FULLWIDTH LEFT
PARENTHESIS

FULLWIDTH RIGHT
PARENTHESIS

U+FF3B U+FF3D ［ ］
FULLWIDTH LEFT SQUARE
BRACKET

FULLWIDTH RIGHT SQUARE
BRACKET

U+FF5B U+FF5D ｛ ｝
FULLWIDTH LEFT CURLY
BRACKET

FULLWIDTH RIGHT CURLY
BRACKET

U+FF5F U+FF60 ｟ ｠
FULLWIDTH LEFT WHITE
PARENTHESIS

FULLWIDTH RIGHT WHITE
PARENTHESIS

U+FF62 U+FF63 ｢ ｣
HALFWIDTH LEFT CORNER
BRACKET

HALFWIDTH RIGHT CORNER
BRACKET

