

Open Source Project for
Unicode Locales

- Open Source Linux Locale Data in XML -

Kentaro Noji
Tetsuji Orita

Globalization Center of Competency
Yamato Software Laboratory, IBM Japan Ltd.

18th International Unicode Conference 1. Hong Kong, April 2001

Abstract: We've developed over 140 Linux locales and made them available via IBM developersWorks
under the IBM Public License-open source license. These locales have been developed based on the
Unicode online database, collation keys and locale data in XML. The locale data in XML was generated
from the ICU (Internationalization Class for Unicode). Java also uses the ICU architecture. Consequently
the Linux locale sensitive functions are equivalent between ICU and Java. We will maintain all the locale
data through these XML files as the master locale data. In this paper, we describe the overall scope of this
project and the technical methodology used to develop Linux locales. We also introduce a tool to display
this locale data in human readable format via the Web.

1. Introduction

Open source development is the most attractive software development methodology today.
We developed Unicode locales in order to provide them to the Linux open source
community. The Universal Locales for Linux is a package of Unicode locales that is based
on the Unicode Standard V3.0 [1]. The Universal Locales for Linux was created using the
UCA(Unicode Collation Algorithm) [2], Unicode data [3] in Unicode V3.0 and
ICU–International Components for Unicode [4].

Linux is a UNIX clone operating system. It provides functionalities similar to UNIX as it
is specified by POSIX [5] and XPG [6]. POSIX and XPG define an internationalization
specification, but Linux follows the LI18NUX 2000 Globalization Specification V1.0 [7]
that is specified by the Linux Internationalization Initiative [8]. Linux internationalization
is mainly handled by the GlibC(GNU C library) [9]. The GlibC implements stable
internationalization functionalities from V2.2 up, and the Universal Locale supports the
GlibC V2.2. The Universal Locales provides over 140 Linux locales that constitute a
superset of the locales that the LI18NUX 2000 Globalization specification defines, the
locales that the ICU provides, and the existing Linux locales. The Universal Locales are
available from IBM developerWorks [10].

The following is the objective of our locale project.

A) Define master locale data in XML and develop the transformer from the master locale

data to the Linux locale data.
B) Use the open source development methodology for locale development and provide

Unicode locales as open source resources.

18th International Unicode Conference Hong Kong, April 2001 2

In this paper, we describe the Locale development process in Chapter 2, the design of the
locales in XML in Chapter 3, the implementation of the transformer from XML to a Linux
locale in Chapter 4, and a locale data verification tool in Chapter 5.

2. Locale Development Process

2.1 The development cycle and the existing internationalization resources.

Linux locales have been developed in the open source community but the existing Linux
locales are only suitable for encodings such as ISO 8859-1, eucJP, and so on. Because our
functional objective is to follow both Unicode and ICU, we created all locales directly from
the master locale data in XML. Fig. 1 shows the relation between existing resources such
as ICU, Unicode, and our development process. The master locales were created from the
ICU locales, and they are maintained as the master locale data. Using master locale data
is effective in maintaining consistency among the ICU, the Universal Locales, and the
XML locales. When a new locale is added, the locale data in XML is added, not platform
specific locale data. Bug reports are collected from the open source community. The bug fix
is applied to all locale data by fixing the master locale in XML. By virtue of this
development cycle, the locale data can be verified by the native speakers from all over the
world, and the locale data is more credible. The bug fixes are easily delivered as open
source.

The XML file variant.xml in the master locales is the locale data for the GlibC V2.2
specific categories.

ICU Locales

root.txt

lang.txt

lang_country.txt

Master Locales
in XML

root.xml

lang.xml

lang_country.xml

variant.xml

Univ. Locales
(Linux)

lang_country

LC_COLLATE

UNICODE

UnicodeData

Collation Keys

GlibC Spec.
(ISO14652)

Open source
by IBM

developerWorks

LC_CTYPE

...Transformer

• Bug report
• Bug fix

• Bug report
• Bug fix

Fig. 1

18th International Unicode Conference Hong Kong, April 2001 3

= = Linux
i18n

Java
i18n

ICU
i18n

2.2 Universal Locales for Linux

The Universal Locales for Linux follows the LI18NUX 2000 Globalization specification
V1.0 that defines the interfaces and functions that must be supported by operating
systems to run internationalized application software. The basis of this specification is
from POSIX, XPG, Java and ICU. Annex B (Normative) to this document introduces the
supported locales and code sets. The Universal Locale for Linux supports all locales on this
list but the supported encoding is UTF-8 only. The Universal Locales makes use of the
UCA, and the character classification in the Unicode Character database that is specified
by the Unicode Standard.

2.3 ICU and Java

The ICU is consists of Unicode-based internationalization components for various
platforms. It provides globalization functionalities such as locale-related functions,
resource isolation, code conversion, collation, transliteration, word, line and sentence
breaks. The Universal Locales for Linux was developed to be equivalent to the ICU locale
data. The Universal Locales for Linux are equivalent to
Java’s locale-related functions because Java uses the
ICU architecture. Fig. 2 indicates the relation among
ICU, Java and Linux.

2.4 GlibC V2.2 internationalization specifications

The GlibC V2.2 internationalization specification refers not only to POSIX/XPG but also to
the ISO/IEC 14652 [11]-Specification method for cultural conventions. The ISO/IEC 14652
is an expansion of the specification of POSIX/XPG. It is revised frequently because it is
still a draft, but the GlibC V2.2 has already implemented the following locale categories.

z Identification of the locale … LC_IDENTIFICATION
z Name format and data … LC_NAME
z Address format and data … LC_ADDRESS
z Telephone format and data … LC_TELEPHONE

We provide this locale data as supplemental data. They are filled in using the IBM
National Language Design Guide Vol. 2 [12]

3. The design of Locale data in XML

3.1 Locale data in XML

In our locale development process, all Linux locales are transformed from the master
locale data file. The master locale data is represented in XML because XML is an open
standard and has the flexibility to exchange data among the various structured data
repositories. The flexibility of data exchange is a very important property for our project
because;

Fig. 2

18th International Unicode Conference Hong Kong, April 2001 4

1. We created only Linux locales at this time, but the master Locales should

have the capability to be transformed to any kind of locales such as Linux,
ICU, Java, POSIX, and so on.

2. The master locales need to be integrated with the ICU locale data, UNICODE
collation and character class, and the IBM National Language Design Guide.

We use XML for the master locale definitions in order to meet the above two requirements.
The design of the locale data in XML is based on the ICU locale architecture. The majority
of the syntax used to describe locale data is the same as the syntax of ICU locale data.
Although the GlibC specific locale categories are not defined on the ICU, the master
locales include them as supplemental locale data in XML. Their syntax follows ICU. This
locale data in XML is provided by the ICU development group.

Fig. 3 is an example of locale data in XML. This example shows both the number and
currency format. The locale data format is represented in a pattern. The first decimal
pattern “ #,##0.###;-#,##0.### ” indicates that the negative sign is “ - “ and the grouping is
by groups of three digits.

<numberFormat class="decimal" default="true">
<patterns>
<decimal>#,##0.###;-#,##0.###</decimal>
<percent>#,##0%</percent>

<scientific>¤#,##0.00;(¤#,##0.00)</scientific>
</patterns>
<symbols>
<decimal>.</decimal>
<group>,</group>
<list>;</list>
<percentSign>%</percentSign>
<nativeZeroDigit>0</nativeZeroDigit>
<patternDigit>#</patternDigit>
<plusSign>+</plusSign>
<minusSign>-</minusSign>
<exponential>E</exponential>
<perMille></perMille>
<infinity></infinity>
<nan></nan>

</symbols>
</numberFormat>
<currencies>
<currency id="USD" default="true">
<symbol>$</symbol>
<name>USD</name>
<decimal>.</decimal>

<pattern>¤#,##0.00;(¤#,##0.00)</pattern>
</currency>

</currencies>

Fig. 3

18th International Unicode Conference Hong Kong, April 2001 5

3.2. Locale categories in XML

The locale category in the master locale data in XML should be a superset of the Linux
locales, ICU, POSIX and so on because the master locale should hava the capability to
generate various locales. Table 1 shows the locale comparisons between categories for
Linux, ICU, and POSIX. The common categories in this table are three categories:
calendar, monetary, and numeric. If the superset of categories on this table is included in
the master locales, character classifications and full collation tables should be in the locale
data in XML. However, neither is included because they are provided within Unicode.

Apart from the full collation table, the locale sensitive collation table is specified as the
tailored collation category in the master locale data in XML. The tailoring syntax follows
the ICU collation.

In summary, the locale categories in XML are below.

� Calendar
� Numeric
� Monetary
� YesNo Message
� Address
� Telephone
� Paper size
� Time zone
� Tailored collation

The transliteration category is
currently being discussed.

TABLE 1
Locale category comparison
Platform Linux

(GlibC)
POSIX

ICU

(V1.7)

Hierarchy X *3
CALENDAR X X X
MONETARY X X X
NUMERIC X X X
CHARACTER

CLASSIFICATION
X X *4

COLLATION X X X *5
YESNO MESSAGE X X
ADDRESS X
TELEPHONE X
PAPER SIZE X *1
TRANSLITERATION X *2 *6

Category

TIMEZONE X
*1 PAPER SIZE is omitted from the latest ISO 14652(2000,11/15)
*2 Transliteration is added in the latest ISO 14652(2000,11/15)
*3 Locale in ICU inherits the parent locale data.
*4 Character class uses Unicodedata
*5 ICU V1.8 Collation implements UCA
*6 Transliteration is provided by another file, not locale (ICU V1.7)

18th International Unicode Conference Hong Kong, April 2001 6

ja_JP ar_AE

root

CA US AE JP

XML

en_CA en_US

en ar ja

Transformer

ICU

root

CA US
AE

JP

en ar ja

Unicode

Universal Locales for Linux

Additional Locale data in XML

4. The transformer from XML locale data to Linux locales

4.1 Transformer

The Transformer is a tool to generate Linux locales from the master locales in XML. The
transformer parses the locale data in XML and generates Linux locale source file. It reads
three kinds of file-locale data in XML, Unicode data, and collation key files. Both Unicode
data and collation keys are provided within Unicode. The transformer has a capability
option switch to set the output locale source files for Linux or POSIX.

The XML locale data files are hierarchical and this organization is followed by the ICU
architecture. The ICU architecture specified a hierarchical locale tree framework. Fig. 4
illustrates the correspondence between the ICU locale tree and the XML locale tree. The
root locale is located at the top of the locale tree. The language locale is a child of the root
local, and the pair of language and country locale is the child of language locale. The
transformer reads multiple XML locale files, and generates one united Linux or POSIX
locale file. The transformer overwrite the locale data successively using the multiple XML
files. Namely, a locale data is overwritten by the next XML file.

The output locale data is over by the last input locale data file from the XML.

The transformer generates a character classification for Linux that is categorized
according to LC_CTYPE as well. The source file is UnicodeData.txt in the Unicode
database. The output file is separated as a root character class file. Each Linux Locale
source file copies it using the “copy” statement. Some of character classes are the locale
sensitive even if they use Unicode-for example, the Turkish locale. These character classes
require data that is generated from the modified source character class file. The
modification is described on the SpecialCasing.txt file in the Unicode data.

The collation table for Linux that is used for LC_COLLATE is also created by the
transformer, too. The transformer reads three kinds of collation file, basekeys.txt,
compkeys.txt, and ctrkeys.txt as specified in the UCA. The generated Linux collation table
is used as the root collation table, and each Linux Locale copies it using the “copy”
statement.

Fig. 4

18th International Unicode Conference Hong Kong, April 2001 7

4.2 Transformation of Locale data in XML

Table 2 shows the correspondence between each locale category in XML and each
corresponding LC_category in the Linux locale system.

TABLE 2
The correspondence between locale categories in XML and Linux

XML Linux

Category Element Category Keyword
Description

time, full t_fmt
t_fmt_ampm Time format

date, full d_fmt Date format
DateTime d_t_fmt Date and Time format
monthNames mon Month
MontheAbbr abmon Abbreviated Day
DayNames day Day
DayAbbr abday Abbreviated Day

calendars

am
pm

LC_TIME

am_pm
t_fmt_ampm

AmPm,
Time format(AmPm)

decimal in the symbols decimal_point Decimal point LC_NUMERIC
thousands_sep Thousand separator

Group in the symbols
mon_thousands_sep Thousand separator for

Monetary
numberFormat

Decimal in the patterns
LC_MONETARY

Grouping Grouping for digit

Currency id int_curr_symbol International currency
symbol

symbol currency_symbol Currency symbol

decimal mon_decimal_point Decimal pointer for
monetary

currencies

pattern

LC_MONETARY

positive_sign
negative_sign
int_frac_digits
frac_digits
p_cs_precedes
p_sep_by_space
n_cs_precedes
n_sep_by_space
p_sign_posn
n_sign_posn

Monetary format

Height height paperSize
Width

LC_PAPER
width

Paper size

yes yesstr, yesexpr Yes string and Regular
expression

no nostr, noexpr No string and Regular
expression

yesShort yesexpr Yes regular expression

messages

noShort

LC_MESSAGE

noexpr No regular expression
AddressFormat PostalPattern LC_ADDRESS postal_fmt Address format
NameFormat Namepattern LC_NAME name_fmt Salutation

18th International Unicode Conference Hong Kong, April 2001 8

GeneralSalutation name_gen
ShortSalutationMr name_mr
ShortSalutationMiss name_miss

ShortSalutationMrs

name_mrs

InternationalPattern TelephoneFormat
DomesticPattern

LC_TELEPHONE

As this paper already mentioned in Section 4.1, the locale data in XML is described using
a pattern. Therefore, the transformer must change the locale data from a pattern to
POSIX style syntax. Fig. 5 shows how the transformer changes the decimal pattern into
the POSIX style.

Fig. 5

#,##0.###;-#,##0.###

LC_NUMERIC
decimal_point "<U002E>"
thousands_sep "<U002C>"
grouping 3
END LC_NUMERIC

XMLXMLXMLXML POSIXPOSIXPOSIXPOSIX

18th International Unicode Conference Hong Kong, April 2001 9

4.3 Transformation of UNICODE collation keys to a POSIX style collation table.

The collation data in the master locale is maintained as files of collation keys in the UCA
standard. The following is an extract from the basekeys file.

The transformer reads the files of collation keys, basekeys.txt, compkeys.txt, and
ctrkeys.txt which are provided according to the UCA standard, and generates a POSIX
style collation table. The transformer generates the following POSIX type collation
definition shown in the Fig. 7 from the table in Fig. 6

<U0F83> IGNORE;IGNORE;IGNORE;<U0F83> # TIBETAN SIGN SNA LDAN
<U0F86> IGNORE;IGNORE;IGNORE;<U0F86> # TIBETAN SIGN LCI RTAGS
<U0F87> IGNORE;IGNORE;IGNORE;<U0F87> # TIBETAN SIGN YANG RTAGS
<UFEFF> IGNORE;IGNORE;IGNORE;<UFEFF> # ZERO WIDTH NO-BREAK SPACE
<U0009> <S0201>;<D0020>;<C0002>;<U0009> # HORIZONTAL TABULATION (in 6429)
<U000A> <S0202>;<D0020>;<C0002>;<U000A> # LINE FEED (in 6429)
<U000B> <S0203>;<D0020>;<C0002>;<U000B> # VERTICAL TABULATION (in 6429)
<U000C> <S0204>;<D0020>;<C0002>;<U000C> # FORM FEED (in 6429)
<U000D> <S0205>;<D0020>;<C0002>;<U000D> # CARRIAGE RETURN (in 6429)
<U2028> <S0206>;<D0020>;<C0002>;<U2028> # LINE SEPARATOR
<U2029> <S0207>;<D0020>;<C0002>;<U2029> # PARAGRAPH SEPARATOR
<U200B> <S0208>;<D0020>;<C0002>;<U200B> # ZERO WIDTH SPACE
<U0020> <S0209>;<D0020>;<C0002>;<U0020> # SPACE

0F83 ; [*0000.0000.0000.0F83] # TIBETAN SIGN SNA LDAN
0F86 ; [*0000.0000.0000.0F86] # TIBETAN SIGN LCI RTAGS
0F87 ; [*0000.0000.0000.0F87] # TIBETAN SIGN YANG RTAGS
FEFF ; [*0000.0000.0000.FEFF] # ZERO WIDTH NO-BREAK SPACE
0009 ; [*0201.0020.0002.0009] # HORIZONTAL TABULATION (in 6429)
000A ; [*0202.0020.0002.000A] # LINE FEED (in 6429)
000B ; [*0203.0020.0002.000B] # VERTICAL TABULATION (in 6429)
000C ; [*0204.0020.0002.000C] # FORM FEED (in 6429)
000D ; [*0205.0020.0002.000D] # CARRIAGE RETURN (in 6429)
2028 ; [*0206.0020.0002.2028] # LINE SEPARATOR
2029 ; [*0207.0020.0002.2029] # PARAGRAPH SEPARATOR
200B ; [*0208.0020.0002.200B] # ZERO WIDTH SPACE
0020 ; [*0209.0020.0002.0020] # SPACE

Fig. 7

Fig. 6

18th International Unicode Conference Hong Kong, April 2001 10

4.4 Transformation from UNICODE DATA to POSIX style character classification

The character class for the master locale is maintained in the UnicodeData.txt file in the
Unicode data [10]. Fig. 8 is an extract from the actual UnicodeData.txt file that is included
in the Unicode data.

Table 3 explains the character attribute symbols and their descriptions. They are used in
the UnicodeData.txt file.

TABLE 3
The character attribute on the Unicode data general category

Symbol Description
Lu
Ll
Lt
Mn
Mc
Me
Nd
Nl
No
Zs
Zl
Zp
Cc
Cf
Cs
Co
Cn

Letter, Uppercase
Letter, Lowercase
Letter, Titlecase
Mark, Non-Spacing
Mark,Spacing Combining
Mark, Enclosing
Number, Decimal Digit
Number, Letter
Number, Other
Separator, Space
Separator, Line
Separator, Paragraph
Other, Control
Other, Format
Other, Surrogate
Other, Private Use
Other, Not Assigned

Lm
Lo
Pc
Pd
Ps
Pe
Pi
Pf
Po
Sm
Sc
Sk
So

Letter, Modifier
Letter, Other
Punctuation, Connector
Punctuation, Dash
Punctuation, Open
Punctuation, Close
Punctuation, Initial quote
Punctuation, Final quote
Punctuation, Other
Symbol, Math
Symbol, Currency
Symbol, Modifier
Symbol, Other

Fig. 8

0020;SPACE;Zs;0;WS;;;;;N;;;;;
0021;EXCLAMATION MARK;Po;0;ON;;;;;N;;;;;
0022;QUOTATION MARK;Po;0;ON;;;;;N;;;;;
0023;NUMBER SIGN;Po;0;ET;;;;;N;;;;;
0024;DOLLAR SIGN;Sc;0;ET;;;;;N;;;;;
0025;PERCENT SIGN;Po;0;ET;;;;;N;;;;;
0026;AMPERSAND;Po;0;ON;;;;;N;;;;;
…
003D;EQUALS SIGN;Sm;0;ON;;;;;N;;;;;
003E;GREATER-THAN SIGN;Sm;0;ON;;;;;Y;;;;;
003F;QUESTION MARK;Po;0;ON;;;;;N;;;;;
0040;COMMERCIAL AT;Po;0;ON;;;;;N;;;;;
0041;LATIN CAPITAL LETTER A;Lu;0;L;;;;;N;;;;0061;
0042;LATIN CAPITAL LETTER B;Lu;0;L;;;;;N;;;;0062;
0043;LATIN CAPITAL LETTER C;Lu;0;L;;;;;N;;;;0063;

18th International Unicode Conference Hong Kong, April 2001 11

The character classification and case conversion for the
GlibC and POSIX/XPG locales are specified by the
LC_CTYPE category. It has 11 classes-upper, lower,
alpha, digit, space, cntrl, punct, graph, print, xdigit,
blank, toupper and tolower. The Unicode data also
provides the character classification as Fig. 8 indicates.
The classification on the LC_CTYPE is the equivalent
to the four attribute on the Unicode data. They are
general category class, uppercase mapping, lowecase
mapping and titlecase mapping. The Unicode data
specifies other classifications such as canonical
combining classes, a bidirectional category and
character decomposition mapping, but these categories
are not necessary for the LC_CTYPE. Table 4 shows the
mapping rule between the general category on the
Unicode data and the character class on the POSIX.
This mapping from Unicode properties to POSIX is not
specified in the Unicode Standard. This is the proposed
mapping rule that is discussed within the ICU
development. The transformer automatically
transforms the LC_CTYPE from the Unicode data that
is shown on Fig. 8 using this mapping rule.

5 Locale walker

The locale walker is a tool to browse
the locale data, verify the collation,
character classification, and case
conversion. It is web-based CGI
program written in C. Users are able to
access the locale walker via Internet.
Fig. 9 is a screen captured from the
locale walker. It displays the locale
data such as month name, day name,
and so on.

The locale walker is good data
verification tool for persons who are not
familiar with locale, Linux, or
internationalization. Using locale
walker, any native speaker is able to
verify the locale data, collation, and
character classification easily, and
easily join our open source project and
contribute in ways open source such as
bug reporting.

TBALE 4
Mapping rule between POSIX
and UNICODE

POSIX Unicode data

Upper Lu, Lt

Lower Ll

Alpha L*, M*

Graph L*, M*, N*, P*, S*

Print Graph, Zs

Space Z*

Blank Zs, Zt

Contrl Cc, Cf

Punc P*, S*

Digit Nd

Xdigit 0-9, A-F, a-F

Zt: TAB

Zb: CR, LF, FF, NL

Fig. 9

18th International Unicode Conference Hong Kong, April 2001 12

6. Conclusion

In this paper, we introduce our project-Universal Locales for Linux-, its development
process, and the development methodology using existing internationalization and
Unicode resources. This paper also explains the locale data in XML, the Transformer and
Locale Walker. By applying open source development methods to locale development and
using existing resources, we were able to deliver over 140 Linux locales within 3 months,
and also certify high quality based on the open source contributors’ test reports. The
Locale data in XML potentially has great expressive power for describing locale data.
Locale data is not different among platforms or venders because it depends only on the
language and the country. IBM is planning to use this file for the master locale database
and would like to propose that the Unicode Consortium include it as part of the Unicode
repository. The transformer is a Java program using XML for Java and has the capability
to generate both Linux and POSIX locale representations.

Acknowledgments
We wish to thank Ulrich Drepper (glibc development) for his advice. He gave us many
suggestions to improve this locale package, and pointed out many problems in the beta version.
We also benefited from the efforts of the entire ICU development team. They provided many
great i18n resources to reach the open source community. Raghuram Viswanadha (ICU
development) provided us with the XML ICU locale data. Helena Shih (ICU development
manager) defined the architecture of the XML locale data. Mark Davis (Unicode president)
gave us a lot of advice and provided the XML-based UnicodeData. He also suggested a mapping
rule between POSIX character classes and the Unicode Character Database. R. Hari (IBM
India) provided us with the Telgu Indian Locale data. Debasish Banerjee (IBM WebSphere
development) helped us with the Bengali India Locale.

Reference
[1] Unicode V3.0: http://www.unicode.org
[2] Unicode Collation Algorithm: http://www.unicode.org/unicode/reports/tr10/
[3] Unicode Online Data: http://www.unicode.org/unicode/onlinedat/online.html
[4] ISO/IEC 9945-2 ANSI/IEEE Std 1003.2 Information Technology –Portable Operating
System Interface (POSIX) : Ref number ISO/IEC 9945-2:1993(E)
[5] XPG 4 System Interface Definitions, Issue 4, X/Open Document number C204.
[6] LI18NUX2000 Linux Globalization Specification:
http://www.li18nux.org/root/LI18NUX2000/index.html
[7] Linux Internationalization Initiative: http://www.li18nux.net/
[8] GNU C Library: http://www.gnu.org/software/libc/libc.html
[9] International Components for Unicode:
http://oss.software.ibm.com/developerworks/opensource/icu/
[10] Universal Locales for Linux: http://oss.software.ibm.com/developerworks/opensource/locale/
[11] ISO Cultural convention specification (draft ISO/IEC Technical Report 14652)
[12] IBM National Language Design Guide Vol 2. Pub. Number SE09-8802-03

Notices
IBM is a registered trademark of the IBM corporation. Java is registered a trademark of
Sun Microsystems Inc.

