

Case Studies: Building an Internet File System with Multilingual Capabilities

Simon K. Wong

Principal Member of Technical Staff, Oracle Corporation

18th International Unicode Conference

�Table of Content� TOC \o "1-3" �

1. Introduction	� GOTOBUTTON _Toc509229957 � PAGEREF _Toc509229957 �3��

2. Architecture Overview	� GOTOBUTTON _Toc509229958 � PAGEREF _Toc509229958 �4��

2.1 Protocol Servers - Showing Objects to the Client	� GOTOBUTTON _Toc509229959 � PAGEREF _Toc509229959 �4��

2.2 The Repository	� GOTOBUTTON _Toc509229960 � PAGEREF _Toc509229960 �4��

3. iFS Repository	� GOTOBUTTON _Toc509229961 � PAGEREF _Toc509229961 �5��

3.1 iFS Schema	� GOTOBUTTON _Toc509229962 � PAGEREF _Toc509229962 �5��

3.1.1 Unicode-based file system	� GOTOBUTTON _Toc509229963 � PAGEREF _Toc509229963 �5��

3.1.2 Character Set and Language Attributes	� GOTOBUTTON _Toc509229964 � PAGEREF _Toc509229964 �5��

3.1.3 Storing Document Content	� GOTOBUTTON _Toc509229965 � PAGEREF _Toc509229965 �6��

3.1.4 Enabling Full Text Search on Multilingual Documents	� GOTOBUTTON _Toc509229966 � PAGEREF _Toc509229966 �6��

3.2 iFS Java API - Java Classes Running Against the iFS Schema	� GOTOBUTTON _Toc509229967 � PAGEREF _Toc509229967 �7��

3.2.1 The Localizer Class	� GOTOBUTTON _Toc509229968 � PAGEREF _Toc509229968 �7��

3.2.2 Default Character Set and Default Language	� GOTOBUTTON _Toc509229969 � PAGEREF _Toc509229969 �8��

3.2.3 Modifying the Character Set and Language Attributes	� GOTOBUTTON _Toc509229970 � PAGEREF _Toc509229970 �9��

3.2.4 Language Sensitive Full Text Search	� GOTOBUTTON _Toc509229971 � PAGEREF _Toc509229971 �9��

4. Protocol Servers	� GOTOBUTTON _Toc509229972 � PAGEREF _Toc509229972 �10��

4.1 FTP Server	� GOTOBUTTON _Toc509229973 � PAGEREF _Toc509229973 �10��

4.2 HTTP Server	� GOTOBUTTON _Toc509229974 � PAGEREF _Toc509229974 �11��

4.2.1 Enforcing UTF-8 in HTTP Request.	� GOTOBUTTON _Toc509229975 � PAGEREF _Toc509229975 �12��

4.2.2 Delivering Document Contents of Different Character Sets	� GOTOBUTTON _Toc509229976 � PAGEREF _Toc509229976 �12��

4.3 SMB Server	� GOTOBUTTON _Toc509229977 � PAGEREF _Toc509229977 �13��

4.4 IMAP4 and SMTP Servers	� GOTOBUTTON _Toc509229978 � PAGEREF _Toc509229978 �13��

4.4.1 RFC822 Parser Storing Multilingual Message Content	� GOTOBUTTON _Toc509229979 � PAGEREF _Toc509229979 �14��

4.4.2 RFC822 Parser Supporting non-ASCII Message Header	� GOTOBUTTON _Toc509229980 � PAGEREF _Toc509229980 �14��

4.4.3 Rendering non-ASCII documents into RFC822 Messages	� GOTOBUTTON _Toc509229981 � PAGEREF _Toc509229981 �15��

4.4.4 Non-ASCII Mailbox Name	� GOTOBUTTON _Toc509229982 � PAGEREF _Toc509229982 �15��

4.5 CUP Server	� GOTOBUTTON _Toc509229983 � PAGEREF _Toc509229983 �16��

4.6 WCP Server	� GOTOBUTTON _Toc509229984 � PAGEREF _Toc509229984 �16��

5. GUI Components	� GOTOBUTTON _Toc509229985 � PAGEREF _Toc509229985 �17��

5.1 WinUI	� GOTOBUTTON _Toc509229986 � PAGEREF _Toc509229986 �17��

5.2 WebUI	� GOTOBUTTON _Toc509229987 � PAGEREF _Toc509229987 �17��

5.2.1 UTF-8 as Page Encoding	� GOTOBUTTON _Toc509229988 � PAGEREF _Toc509229988 �18��

5.2.2 Organizing Translatable Files	� GOTOBUTTON _Toc509229989 � PAGEREF _Toc509229989 �18��

5.2.3 Internationalizing JSPs	� GOTOBUTTON _Toc509229990 � PAGEREF _Toc509229990 �19��

5.2.4 Internationalizing JavaScripts	� GOTOBUTTON _Toc509229991 � PAGEREF _Toc509229991 �19��

5.3 iFS Manager	� GOTOBUTTON _Toc509229992 � PAGEREF _Toc509229992 �19��

�

Appendix� TOC \c "Appendix" �

Appendix A: Character Sets Supported in iFS	� GOTOBUTTON _Toc509229993 � PAGEREF _Toc509229993 �20��

Appendix B: Languages Supported in iFS	� GOTOBUTTON _Toc509229994 � PAGEREF _Toc509229994 �22��

�

�Introduction

Oracle Internet File System (Oracle iFS) is an advanced, high performance and highly customizable file system built on the Oracle8i database. Oracle iFS provides a repository for users to store different types of documents such as email, XML, HTML or Microsoft Word into a single Oracle8i database so that they can be accessed as if they are stored in a traditional file system. In addition to the features of a traditional file system, the repository provides version control, advanced security and full text search capabilities on these documents to meet the complex requirements of Internet content management. To allow universal access from various Internet clients, Oracle iFS also provides many Internet protocol servers such as IMAP, HTTP, SMTP and FTP. Across these features, Oracle iFS builds the internationalization infrastructure to support documents of heterogeneous character sets and languages so that users are able to store and search documents in different languages in a single Oracle iFS instance. The list of character sets and languages supported by Oracle iFS are commonly used character sets and languages supported by various Internet software such as Netscape and Internet Explorer, and they are listed in � REF _Ref458889623 * MERGEFORMAT �Appendix A: Character Sets Supported in iFS� and � REF _Ref504542844 * MERGEFORMAT �Appendix B: Languages Supported in iFS� respectively.

In Oracle iFS, valid object names such as file names, directory names, group names and user names are limited to characters defined in the character set of the Oracle8i database on which Oracle iFS operates. In other words, by using the Oracle8i database with UTF-8 as the database character set, Oracle iFS becomes a Unicode-based file system where file names, directory names, group names and user names of different languages can be shared by users having different language preferences.

This document describes the design and implementation of the internationalization support of Oracle iFS. It starts with an overview of the overall architecture and various components of the file system, followed by a detailed description of the internationalization design and implementation of the following subsystems:

The iFS repository

Internet Protocol servers

GUI components

�Architecture Overview

A fairly complex component architecture enables this integration between simplified file system interfaces and sophisticated database functionality. The presentation layer is provided by a set of protocol servers which expose Oracle Internet File System objects in the form of files, folders, users, groups, access control lists, and so on. On the opposite side of the system, files, folders and the relationships between them are stored within rows and columns within the database, and are manipulated by SQL commands. Between these two sits the repository layer.

Figure � SEQ Figure * ARABIC �1�: iFS Architecture

�EMBED Word.Picture.6���

Protocol Servers - Showing Objects to the Client

The Oracle Internet File System protocol servers, shown to the left in the architecture, are written using the Oracle iFS Java API, and allow clients access to objects in the repository using HTTP, Windows Explorer, FTP and e-mail clients. Objects such as documents, folders, users and groups, and the relationships between those objects, are all ultimately stored within tables and rows in the database. The protocol servers enable clients to connect to the Oracle Internet File System and manipulate those objects using familiar interfaces.

The Repository

Functionally, the repository is a single mechanism that performs the task of transforming the contents of database rows and tables into objects such as files, folders, users and groups. From a developer's viewpoint, this repository, pictured in � REF _Ref504268261 * MERGEFORMAT �Figure 1: iFS Architecture�, actually consists of two parts: a set of Java programs and a schema within an instance of Oracle8i.

The repository includes a set of Java classes presenting a file system view of these objects, and some utility classes for managing persistent objects at the database level. The utility classes, not exposed for developers, perform the actual database transactions in SQL. The exposed classes are referred to as Oracle iFS Java API. The iFS Java API is the only programmatic interface to interact with the iFS repository. The set of Java classes also include pre-defined parsers and renderers. Parsing occurs when a document is being inserted or updated, and may involve storing the resultant parts of the document inside the repository. Rendering occurs when a document is retrieved and presented in specified document type. Users can create their own parser and renderer and associate them to a document type.

The schema within the Oracle8i database includes relational tables to store documents and their meta data such as the creation date, owner, and description. It also provides pre-built indexes to enable fast query and full text search of documents.

�iFS Repository

The iFS Repository is the implementation of the core of the Oracle iFS based on which the protocol servers and the iFS GUI components are built. It is of utmost importance to provide sufficient and consistent I18n support in the iFS Repository so that other dependent components, such as protocol servers, can share this support as much as possible.

The following components of the iFS repository consists of I18n specific design and implementation.

iFS schema

iFS Java API and its implementation

iFS Schema

The major I18n goal for the iFS schema is to ensure efficient storage of documents of heterogeneous character sets and languages, and to allow effective update, retrieval and search on these documents.

Unicode-based file system

In the iFS schema, all objects names, such as file names and path names are stored in the VARCHAR2 data type of the Oracle8i database. VARCHAR2 is a common SQL data type used to store string data in RDBMS and the length of a VARCHAR2 column is specified in number of bytes. Names stored in the VARCHAR2 data type are encoded in the database character set which can be specified when a database is created. By installing the iFS schema to a database with UTF-8 as the database character set, characters defined in the Unicode standard can be used for any object names.

In addition to the file name and the directory name of a document, the iFS schema also stores the document attributes such as description. Attributes are also stored in the VARCHAR2 data type.

Character Set and Language Attributes

To support documents in different character set and languages in a single file system, the iFS schema stores the character set and language of a document as the attributes of the document. A document is stored in the database as a row of the Document table. This means that the character set column and language column are added to this table. The schema of the Document table is shown below. Among other things, the character set and language of the document are stored.

Column Name Type��ID NUMBER(20)��FORMAT NUMBER(20)��MEDIA NUMBER(20)��CONTENT NUMBER(20)��CONTENTSIZE NUMBER(20)��CHARACTERSET VARCHAR2(40)��LANGUAGE VARCHAR2(40)��READONLY NUMBER(1)��

The character set of a document is used in the following situations:

When the document content is rendered to a file, the character set of the document is used as the character encoding of the file.

When the document is displayed in the browser, the character set of the document is set in the HTTP content-type header.

When a full text search index is built on the document, Oracle InterMedia Text needs to know the character set of the document so that it can be converted into the database character set before building the index.

When a Java application requests a Reader object of the document, the iFS Java API uses the character set of the document to construct the Reader object.

The language of a document is used in the following situations:

Can be used as a criterion to limit the search for documents of a particular language. For example, you may specify to search all French documents from the iFS repository.

When a full text search index is built on the document, Oracle InterMedia Text needs to know the language of the document in order to identify the language specific lexer to parse the document for searchable words.

Since there are many different naming conventions for character set names, the iFS schema standardizes on the Java naming convention because Java encoding names are consistent with iFS Java API and they can be used directly without further mapping in Java. The Java character sets for the character sets supported in Oracle iFS are provided in � REF _Ref458889623 * MERGEFORMAT �Appendix A: Character Sets Supported in iFS�. For language names, the iFS schema standardizes on the Oracle naming convention because it can be directly used by Oracle8i database. For the list of languages supported in Oracle iFS, see � REF _Ref504542844 * MERGEFORMAT �Appendix B: Languages Supported in iFS�.

Storing Document Content

Since documents are unstructured data, they should be stored in one of the LOB data types. There are many large object data types, such as LONG, CLOB, and BLOB, which the iFS schema could use to store document content in a Oracle8i database. The LONG and CLOB data types store content in the database character set, while the BLOB data type stores content as it is. In order to maintain the integrity of document content in different character sets and languages and avoid character set conversion on document content, the iFS schema stores document content in the BLOB data type as opposed to CLOB and LONG. The document content can be divided into two groups:

Documents contain text.

Documents do not contain text.

When documents such as GIF, JPEG and BMP are stored into the iFS repository, they are stored in a different table than those documents that contain text such as Word, Excel, HTML and XML. This is to separate documents that can be indexed for full text search from those that cannot. Documents containing text are stored in the Content table with the following schema.

Column Name Type��ID NUMBER(20)��CHARACTERSET VARCHAR2(40)��LANGUAGE VARCHAR2(40)��FORMAT VARCHAR2(20)��GLOBALINDEXEDBLOB BLOB��Enabling Full Text Search on Multilingual Documents

The Content table is constructed for Oracle8i InterMedia Text to a build full text search indexes on documents of different character sets and languages. When document contents are stored as BLOBs, Oracle8i
 I
nterMedia Text requires the character sets and languages of the documents to be available as two separate columns in the same table in order to correctly build the full text search index for the documents. Since the character set and language attributes of a document are stored in a different table than the Content table, the iFS schema duplicates the character set and language column in the Content table. Note that the Oracle character set and language naming conventions are used here because Oracle8i InterMedia Text can understand Oracle character set and language names only. In addition to the character set and language of a document, the format is also stored as a separate column, and it can be either plain text or binary such as Word or Excel documents. This format column indicates to InterMedia Text whether the document needs to be filtered to extract the text portion of a document before building the index.

The full text search index needs to be pre-built on the Content table so that it will be updated as documents are inserted or updated. When a full text search index of a table is built, Oracle InterMedia Text performs one of the following two tasks on each BLOB in the table based on the value of the format column.

Apply the INSO filter to extract all the text in a BLOB if the format is BINARY.

Convert the BLOB data from the character set specified in the character set column to the database character set if the format column is TEXT.

Oracle InterMedia Text then selects a language-specific lexer to parse the output text from the above tasks based on the language column. The language-specific lexers need to be defined and associated with a language before the index is built, and they are defined as follows:

Table � SEQ Table * ARABIC �1�: Language-Specific Lexers

Language�Lexer�Lexer Option��Brazilian Portug
u
ese�BASIC_LEXER�BASE LETTER��Canadian French�BASIC_LEXER�BASE LETTER

INDEX THEME��Danish�BASIC_LEXER�BASE LETTER

DANISH ALTERNATE SPELLING��Dutch�BASIC_LEXER�BASE LETTER��Finnish�BASIC_LEXER�BASE LETTER��French�BASIC_LEXER�BASE LETTER

INDEX THEME

THEME LANGUAGE=FRENCH��German�BASIC_LEXER�BASE LETTER

GERMAN ALTERNATE SPELLING��Italian�BASIC_LEXER�BASE LETTER��Japanese�JAPANESE_VGRAM_LEXER���Korean�KOREAN_LEXER���Latin American Spanish�BASIC_LEXER�BASE LETTER��Portug
u
ese�BASIC_LEXER�BASE LETTER��Simplified Chinese�CHINESE_VGRAM_LEXER���Swedish�BASIC_LEXER�BASE LETTER

SWEDISH ALTERNATE SPELLING��Traditional Chinese�CHINESE_VGRAM_LEXER���Others�BASIC_LEXER�INDEX THEMES

THEME LANGUAGE = ENGLISH

INDEX TEXT��

The BASIC_LEXER is used for single byte languages using white space as word separator. Asian language lexers cannot use white space as word separator. Instead, they use a V-gram algorithm to parse the documents for searchable keys. Languages that have not been supported by InterMedia Text are parsed as English.

iFS Java API - Java Classes Running Against the iFS Schema

The iFS Java API allows applications to manage documents stored in the repository as Java objects as if they are stored in a traditional file system. It ensures that documents are stored and updated correctly by populating the correct information such as character set, language and format of the documents into the iFS schema. It also provide a mechanism to handle translatable messages.

The Localizer Class

Many methods in the iFS Java API requires internationalization functions such as locale, date format and number format. The Localizer class encapsulates the locale-specific functions.

An application requires a LibrarySession object for any access to the iFS repository. The LibrarySession object defines the connection between the application and the repository. For each LibrarySession object, there is a Localizer object associated with it, and you may get the Localizer object by calling LibrarySession.getLocalizer(). The Localizer object provides the following locale specific information for the LibrarySession object.

Java locale

Date Format

Time Format

Calendar

Time Zone

Default character set and language (See next section.)

In addition, the Localizer class also encapsulates the Java message handling mechanism – Java resource bundle. Not only can an application retrieve localized Oracle iFS messages from a Localizer object but also override some or all of these messages, or introduce its own messages, by registering a resource bundle with the Localizer.setExtendedResourceBundles() method. When the Localizer.getResourceString() methods are called, the Localizer object searches for all resource bundles in the order they are registered. The Localizer class provides a consistent way for all protocol servers to obtain locale specific information and handle localized messages.

Default Character Set and Default Language

Sometimes, the character set and language of a document are not specified upon insertion or update. To provide a consistent and predictable behavior, the iFS Java API always falls back to use the system wide default character set and language for documents whose character set and language are not specified. The system-wide default character set and language are applicable to the whole Oracle iFS and should be configured by the system administrator only. The default character set and languages are stored as members of the Localizer class and they are copied to memory from a iFS property file when a Localizer object is instan
t
iated. The reason to put them in the Localizer is to make them readily available to any LibrarySession object.

There are many situations in which the default character set and language are useful.

When inserting a document to the iFS repository, the character set and language of the document are not explicitly specified.

Some of the protocol servers such as FTP require a default character set that specify the encoding of the protocol commands. These protocol servers make use of the default character set from the Localizer object for the encoding of their commands.

Based on how these defaults are used, the sensible default character set and language for Oracle iFS would be the character set and language of the majority of the client operating systems. The following steps describe how the iFS repository determines the character set and language of a document being inserted.

If the character set and language of a document are both specified, they will be used.

If the language is not specified, but the character set is specified, the iFS repository tries to guess the language from the character set. If the language still cannot be determined, the default language from the Localizer object will be used.

If the character set is not specified, but the language is specified. The default character set from the Localizer object will be used as the character set of the document.

If neither the character set nor the language is specified, the default character set and language from the Localizer object will be used as the character set and language of the document.

If the character set and language of the document are default to values that do not reflect the actual character set and language of the document, the full text search index of the document will be incorrectly built and the document cannot be content searched as a result.

Modifying the Character Set and Language Attributes

When the values of the character set and language attributes of a document are being modified, the iFS repository performs the following tasks:

Create a copy of the existing document.

Set the character set and language attributes of the new document to the new values, and

Mark the existing document as deleted so that it will be cleaned up by the iFS garbage collector running in the background.

When a document character set or language is updated, the full text search index for the document is invalidated. By creating a new copy of the existing document, the full text search index will be automatically updated for the new document while the existing document becomes a zombie document that can no longer be referenced in the iFS repository.

Language Sensitive Full Text Search

To accurately search for a document based on linguistic characteristics, Oracle InterMedia Text needs to know the language of the string to be searched. In this regard, the iFS Java API provides a new method to the oracle.ifs.bean.search class, namely search.open(String language), to allow applications to specify the language of the search string.

When a language is specified to the search.open() method to indicate a language sensitive search, the iFS repository issues the following SQL statement to the database to alter the NLS_LANGUAGE session parameter before issuing the SELECT statement to start the context search.

ALTER SESSION SET NLS_LANGUAGE=<nls_language>

Oracle InterMedia Text looks at the NLS_LANGUAGE variable and determines the language on which the search string should be parsed. After the search has been completed or the search.close() method is called, the iFS repository will issue another ALTER SESSION SQL command to change the NLS_LANGUAGE session parameter back to its original value.

�Protocol Servers

Oracle iFS provides the following protocol servers for client applications to manipulate documents. Some protocols are Internet standards while others are proprietary.

HTTP Server - Enable browser to access the iFS repository via standard HTTP and WebDAV.

SMB Server - Enable Windows explorer to mount on the iFS repository as a drive.

FTP Server - Allow standard FTP client to access documents in the iFS repository.

IMAP Server - Retrieve incoming emails from the iFS repository.

SMTP Server - Store outgoing mails into iFS repository.

CUP Server - Allow command line access to the iFS repository.

WCP Server - Allow the WinUI component to communicate with the iFS repository.

These servers manipulate iFS objects on behalf of their clients by calling the iFS Java API and some helper classes from the iFS repository. The iFS repository will use JDBC to store data in the database. The control and data flow for the iFS protocol servers are depicted in � REF _Ref458821328 * MERGEFORMAT �Figure 2: Control and Data flow of the protocol servers�.

Figure � SEQ Figure * ARABIC �2�: Control and Data flow of the protocol servers

�EMBED Word.Picture.6���

Each protocol server implements the corresponding protocol specification and the internationalization support defined by the protocol. For Oracle iFS proprietary protocols, the internationalization support has been carefully designed and implemented to support customers with different language preferences.

FTP Server

The standard FTP protocol does not define the character set of the file names or directory names that are usually passed as arguments of FTP commands, and leaves it all up to the FTP server to interpret the byte sequence of the FTP commands. To allow users to access documents of different character sets and languages, the FTP server provided by Oracle iFS implements the following QUOTE commands to support the notion of per FTP session character set and language.

Provide a QUOTE command for users to specify the character set for the FTP session. This character set specifies the character encoding to be used in subsequent FTP commands and the character set of the documents to be uploaded. The FTP protocol server converts FTP commands from this character encoding to Java String and vice versa. When the FTP session is first created, the FTP server uses the default character set from a Localizer object as the character set of the session.

Provide a QUOTE command for users to specify the language for the FTP session. The language of a FTP session specifies the language of the documents to be uploaded. The FTP server uses the default language from a Localizer object as the language of the FTP session when it first starts up.

When a QUOTE command is issued to change the character set or language of the FTP session, the FTP server actually updates the default character set or language of the Localizer object associated with the current LibrarySession object with the new value. When a document is uploaded, the FTP server creates the document by calling the iFS Java API without specifying the character set and language of the document. This is to force the iFS repository to use the character set and language from the Localizer object. See section � REF _Ref504545828 \n �3.2.1� � REF _Ref504545828 * MERGEFORMAT �The Localizer Class� for more details.

With these QUOTE commands, the FTP server is able to serve clients of different languages and character sets. Users can specify the character sets and languages of their environments using standard command line FTP client. However, users may not be able to issue QUOTE commands on FTP clients such as Internet Explorer or Netscape. For those users, the FTP server assumes that they are operated in the default character set and language of the iFS repository.

Internet Explorer 5.0 and above issue the following FTP command and expect a positive response when a FTP session is set up. This command is to ask if the FTP server supports UTF-8 as the character encoding of FTP commands. If the response is positive, Internet Explorer will send FTP commands in UTF-8 and expect responses from the FTP server in UTF-8 as well.

FTP Client> OPTS UTF8 ON

FTP Server> 200 OK

Since UTF-8 is one of the supported character sets in Oracle iFS, the FTP server provided by Oracle iFS is able to support UTF-8 FTP commands, and therefore respond positively to this command. As a result, the support for file names and directory names will no longer be limited to the default character set for these Internet Explorer clients.

HTTP Server

Oracle iFS does not implement a Java web server. Instead, it uses existing web servers such as Java Web Server, Apache Jserv, and builds a Java Servlet, called the iFS Servlet, to handle HTTP requests made to the iFS repository. As a setup requirement, the web server needs to be configured so that it directs all file (JSP, HTML, XML etc.) requests to the iFS Servlet. The iFS Servlet performs the following tasks.

Redirect file access to the iFS repository so that the web server no longer takes files from the local file system, but from Oracle iFS.

If the request file is a JSP file, process JSP files directly by calling the Oracle JSP processor.

If the request is a directory, list the directory in an HTML page.

If the request is a document with a JSP associated with it, redirect the HTTP request to the associated JSP with the document ID as the parameter. The JSP file is responsible to render this document into HTML

If the request is a document without JSP associated with it, deliver the document content in the HTTP response as it is stored.

If the request comes from a WebDAV client, service the WebDAV request based on the WebDAV protocol standard implemented in the iFS Servlet.

Because of the limited I18n support in WebDAV clients, the iFS Servlet can only support file names and directory names encoded in the Windows code page of the client operating system for WebDAV clients. Other than that, the iFS Servlet is built with multilingual capabilities to support documents in different character sets, and they are described in the sections below.

Enforcing UTF-8 in HTTP Request.

In order to support file and directory names in different languages, the iFS Servlet enforces use of UTF-8 encoding for parameters and URLs of the HTTP requests. Since file names and directory names of a document are specified as part of the URL, enforcing the use of UTF-8 enables the i
FS Servlet
 to support multilingual file names and directory names.

To enforce the UTF-8 encoding, the iFS Servlet always lists directories in the UTF-8 encoding. When a directory listing is requested, the iFS Servlet builds a UTF-8 HTML page containing the list of files in the directory. In this HTML page, the link of each file in the list is referenced with a UTF-8 encoded URL that points to the file itself. When a user clicks on the file, a HTTP request will be generated using the corresponding UTF-8 encoded URL. The iFS Servlet can then serve the request assuming that the URL is encoded in UTF-8. The important part is how the UTF-8 encoded URL is created for a file. It is created as follows:

Get the path name of the file from the iFS Java API. It is stored as a Java String.

Convert the Java String into UTF-8 bytes.

Encode each UTF-8 byte using the %XX format where %XX is the hexadecimal digits of the byte. Since URLs should only be ASCII, the %XX format is used to escape those 8-bit bytes.

When the iFS Servlet receives a request with a UTF-8 URL, it decodes the URL into Java String as follows:

Call the HTTPServletRequest.getPathInfo() to get the path in Java String.

Convert a Java String to a byte array by decoding all %XX escape sequences into bytes. The result byte array should be UTF-8 encoded.

Create a Java String from the UTF-8 byte sequences by the String(byte[] bytearray, String encoding) constructor.

Delivering Document Contents of Different Character Sets

When a document is requested by specifying the URL in a browser, the i
FS S
ervlet looks for the document and delivers the content as it is stored. Since the iFS repository keeps track of the character set of a document, the iFS Servlet tries to pass the character set of the document to the browser so that the browser can use the correct character encoding to display the document. The way to pass the character set to the browser is through the charset parameter of the HTTP content-type header. An example of the header is shown below.

 Content-Type: text/html; charset=”UTF-8”

The values for the charset parameter can be any valid IANA (Internet Alias Naming Authority) character name. See � REF _Ref458889623 * MERGEFORMAT �Appendix A: Character Sets Supported in iFS� for the list of IANA character names that Oracle iFS supports.

The iFS Servlet first gets the character set attribute of the document, then maps the character set name from Java naming convention to the corresponding IANA name, creates the content-type header with the document’s IANA character set name as the value of the charset parameter and call the following Servlet API to set the content-type header of the HTTP response.

ServletResponse.setContentType(String contentType)

To avoid unexpected character set conversion, the iFS Servlet delivers the document content via the Java
OutputStream
 object (instead of a Java Writer object) of the HTTP response.

SMB Server

The Server Message Block (SMB) protocol server implements the SMB protocol to make a file system of a iFS repository available to Windows Explorer so that it can mount the file system as a disk drive on the Windows platform.

Microsoft has included Unicode support for the SMB protocol since LanManager Version 0.12. SMB messages contains the Flag2 field in which Unicode support can be specified. The 15th bit of the Flag2 field of every SMB message header indicates if the character set of the STRING data type defined by the SMB protocol is Unicode or not. The SMB protocol uses UTF-16 as the encoding for Unicode. The STRING data type of the SMB protocol is used for the following information:

File and directory names

Resource names (shared names, printer names etc.)

User names

Hence, if the 15th bit is set, the above names are passed as Unicode in the SMB message.

A SMB client such as Window Explorer initiates a connection request with the SMB server by mounting a drive to the iFS repository. In the negotiation phase, the SMB server responds to the negotiation SMB message from the client. In the SMB response message, the SMB server indicates to the client that it supports Unicode by setting the CAP_UNICODE of the Capabilities field of the SMB response message. As a result,, if the SMB client also supports Unicode, subsequent SMB messages will have the Flag2 field specified correctly for Unicode.

For every SMB message, the SMB server determines whether the incoming message is in Unicode or not by looking into the Flag2 field of the message. If it is in Unicode the server decodes the UTF-16 byte stream to Unicode Java string so that it can operates on Java Strings within the server process. The SMB specification does not specify if the Unicode data is encoded in big endian UTF-16 or little endian UTF-16. It is up to the implementation. The iFS SMB server assumes that UTF-16 bytes are passed in the machine endian of Intel chip sets which is little endian. This is because the majority of the SMB clients are running on the Windows and Intel platform and they pass Unicode SMB messages in the machine endian.

In little endian, the UTF-16 bytes are encoded so that the least significant byte of the Unicode character come first and the most significant byte come after. The code to convert a byte sequence in the form of a Java byte array to a Java character is shown below:

char ch = (char)(((int)ba[offset] & 0xff) |

 (((int)ba[offset+1]) << 8));

where ba is the byte array buffer for a STRING data type argument of a SMB message.

Conversely, the SMB server converts file names, directory names and user names, which are retrieved from the iFS repository as Java Strings, from Java String to little endian UTF-16 bytes before passing them back to the SMB client. The code is shown below:

ba[offset] = (byte)(((int)ch)&0xff);

 ba[offset+1] = (byte)((((int)ch)>>8)&0xff);

The SMB protocol does not allow users to pass the character set and language of a document to the server. As a result, the default character set and language will be used for documents that are dropped into the iFS repository via the SMB protocols.

IMAP4 and SMTP Servers

The email message format conforms to the RFC822 specification. The iFS repository provides a RFC822 parser and a RFC822 message renderer for the IMAP4 and SMTP protocol servers to parse and render email messages. The SMTP server parses email messages when it receives outgoing email messages whose destinations are the local iFS repository. It renders email messages when it gets outgoing email messages from the outbox. The IMAP server parses email messages when it receives incoming email messages. It renders email messages when IMAP clients fetch email messages.

The RFC822 specification has been extended to include internationalization support for non-ASCII message headers. See RFC2047 (MIME Part Three: Message Header Extensions for Non-ASCII Text) for more details. The RFC822 parser and RFC822 renderer implement this extension. In addition, the IMAP4 protocol server implements the RFC2060 (Internet Message Access Protocol - Version 4rev1) to support multilingual mail folder names.

Together with the RFC822 parser and renderer, the SMTP and IMAP protocol servers provide the following internationalization support to email users.

Non-ASCII header for the subject of a message

Non-ASCII mailbox names

Message content in different character set

RFC822 Parser Storing Multilingual Message Content

Email messages are MIME documents. MIME documents always contain the content-type header from which the character set can be determined. An example of a typical MIME type header is shown below.

Content-Type: text/plain; charset=ISO-8859-1

Content-transfer-encoding: base64

This header is interpreted to mean that the body is a base64 US-ASCII encoding of data that was originally in ISO-8859-1, and will be in that character set again after decoding. The charset specifies the IANA character set name of the MIME document. If the charset parameter is not specified, it is assumed to be ASCII.

To store email messages of different character sets into the iFS repository, the RFC822 parser performs the following tasks for each message.

Parse the email message and determines the character set of the message content from the MIME header. Map the IANA character set name to Java character set name.

Set the Java character set name to as the default character set in the Localizer object.

Decode the message content based on the content transfer encoding specified in the MIME header. The decoded message should be in the character set specified in the MIME header. This step is to make the content ready for full text search.

Insert the decoded message into the iFS repository. The iFS repository will use the default character set specified in the Localizer object as the character set of the document.

RFC822 Parser Supporting non-ASCII Message Header

According to RFC 2047, non-ASCII headers for RFC822 should be specified as encoded-words. An "encoded-word" is a sequence of printable ASCII characters that begins with "=?", ends with "?=", and has two "?"s in between. It specifies a character set and an encoding method, and also includes the original text encoded as graphic ASCII characters. The format of an encoded word is as follows:

encoded-word = "=?" charset "?" encoding "?" encoded-text "?="

The charset placeholder specifies the IANA character set name of the encoded text. The encoding placeholder specifies the type of encoding used to encode the non-ASCII text, it can be either “Q”, “q”, “b” or “B”. “Q” or “q” stands for quoted string encoding and “B” or “b” stands for Base64 encoding.

An example of the Subject header of an email message with a encoded-word is shown below:

Subject: =?iso-8859-1?q?this=20is=20some=20text?=

The RFC822 parser parses all message headers and decodes any encoded words in these headers. Decoding encoded words involves two steps:

Decode the encoded text portion of the encoded word into the characters in the encoding specified.

Apply character set conversion on the decoded word and store the result in Java string.

The headers are basically name and value pairs that are treated as attributes of an email message. The RFC822 parser stores the decoded forms of the headers such as Subject, From, To and CC as attributes of the message. This is to allow direct querying of messages by their subject name, sender address, CC address and receiver address respectively. The parser also stores the headers in their original form so that the RFC822 renderer does not need to encode non-ASCII headers when rendering an email message.

Rendering non-ASCII documents into RFC822 Messages

The RFC822 renderer renders a document into a RFC822 message. Oracle iFS allows IMAP clients to view any types of documents stored in the repository. Therefore, the renderer which is called by the IMAP server needs to handle the following two cases:

When the document is an email message stored by the RFC822 parser, the renderer renders the document as follows:

Get the headers from the original messages. These headers are stored as attributes of the message by the RFC822 parser.

Get the content of the document and encode it with the content transfer encoding in the MIME header of the original message.

Concatenate the headers with the encoded message content.

When the document is not an email message, the renderer renders the document differently.

Get the owner’s email address and the file name attribute of the document. Construct the sender MIME header using the owner’s email address and the subject MIME header with the file name attribute.

Encode the headers to encoded words. Use UTF-8 and quoted printable as the charset value and encoding method of the encoded words re
s
pectively. Using UTF-8 as the charset is to ensure that headers containing any Unicode characters can be represented in the encoded words.

If the document content is of text, the character set attribute of the document will be used as the charset parameter of the MIME content-type header. Specifying the charset parameter in the content-type header enables the IMAP client to correctly display the document as an email message.

Non-ASCII Mailbox Name

In Oracle iFS, an IMAP mailbox is a directory of a list of email messages, and can be traversed as a directory in a file system from Windows Explorer. The subject of an email message is used as the file name for the message in a directory.

According to RFC 2060, non-ASCII mailbox names should be encoded in the modified version of UTF-7. Basically, UTF-7 encodes the whole character repository of Unicode using ASCII bytes, non-ASCII characters becomes unreadable in UTF-7. If non-ASCII mailbox names encoded in UTF-7 are stored as it is, the encoded UTF-7 name will be used as the directory name when viewed from Windows Explorer. To avoid this behavior, the IMAP server converts mailbox names from UTF-7 to Java String when they are referenced, and the converted mailbox names will be stored as directory names instead. Conversely, when a directory in the iFS repository is viewed from an IMAP client, the IMAP server converts the directory name from a Java String to UTF-7 bytes before sending it to the IMAP client.

Since the conversion form UTF-7 bytes to Java String and vice versa is not supported in JDK, the IMAP server has to implement the conversion function by itself.

CUP Server

The Command Line Utiltiy (CUP) protocol server implements the proprietary CUP protocol that allows users to access the iFS repository in a command line environment such as a Unix shell or MS-DOS box. The CUP protocol server requires a proprietary CUP client. The CUP client is basically a set of Java programs that are invoked by a set of UNIX shell scripts or MS-DOS batch files. For example, ifsls is the shell script (or batch file) that calls the CUP client Java programs to list a directory in the iFS repository.

The responsibility of the CUP client is to send CUP commands to the CUP server and redirect result from the CUP server to the console. To support clients of different character sets and languages, the CUP client and the CUP server support localized messages and provide CUP commands to specify the character set and language of a CUP session.

All CUP commands are encoded in UTF-8 so that they supports file names and directory names in any languages supported by Unicode. The CUP server and CUP client enforces UTF-8 by creating UTF-8 encoded Java stream writer and stream reader for the CUP commands.

When a CUP session is started, the login command is sent to the CUP server for authentication. Together with the login information, the default Java locale of the CUP client is also passed to the CUP server. The CUP server uses the client locale to determine the localized messages to be returned to the client. It synchronizes the client locale with that of the current CUP session by setting the Localizer locale to the client locale. As a result, the localized messages corresponding to the client locale will be retrieved when the CUP server gets them from the Localizer, and the CUP client always gets the localized messages corresponding to its locale.

Similar to the FTP server, the CUP server supports two CUP commands for clients to specify the character set and language of a CUP session. The character set and language of a session specify the character set and language of the documents to be uploaded. Their initial values are the default character set and language of the iFS repository available in the default character set and language members of a Localizer object. When a user changes the character set or language of the current session, the default character set or language in the Localizer will be updated with the new value. When the CUP server creates a document, it does not pass the character set and language of the document to the iFS Java API so that the default values from the Localizer will be used for the document.

WCP Server

The Windows Command Protocol (WCP) server implements the proprietary WCP protocol to enable efficient communication between the WinUI component and the iFS repository. WinUI is one of the GUI components in Oracle iFS, it is a Win32 Unicode program running on the Windows platform as a shell extension to the Windows Explorer. WinUI complements the Windows Explorer with extended features, such as version control and full text search, specific on the Oracle iFS. For more information on WinUI, please see section � REF _Ref504548258 \n �5.1�: � REF _Ref504548258 * MERGEFORMAT �WinUI�. The WCP commands are XML based. To add internationalization support to this protocol, the following is implemented.

Use UTF-8 encoded XML for WCP commands. This is implemented by using the UTF-8 encoded Java reader and writer in the WCP server. WinUI uses the Oracle XML parser for C/C++ to parse XML based WCP commands, and converts XML information from UTF-8 to the Windows wchar_t data type. The use of Unicode in the protocol commands enables support of multilingual file names, directory names and search string in WinUI.

When WinUI initiates a connection with the WCP server, it passes the locale information of the WinUI client to the server in the Java locale naming convention. The WCP server synchronizes this locale with the one in the Localizer object so that localized messages of the client locale will be used across the wire. As a result, WinUI always get localized messages of its locale.

�GUI Components

There are three GUI components in Oracle iFS.

WinUI – A Windows user interface used to manage iFS objects in the repository as a user

WebUI – A Web user interface to manage iFS objects such as users, files and folders stored in the repository as a user or administrator

iFS Manager – A Java program for administrators to manage the whole Oracle iFS

WinUI

WinUI is a shell extension to the Windows Explorer. Among other things, it allows users to do the following to a file stored in the iFS repository.

Right click on the file to show the iFS specific property pages that show all the attributes of the document.

Set the iFS specific attributes of the file from its property page.

Find the parent directory of the file.

Perform version control functions such as check out and check in of the file.

Use the full text search capability to search for documents.

WinUI runs on both Windows NT and Windows 98. WinUI is built as a Unicode application for Windows NT. Since Windows 98 is not Unicode ready, WinUI is built as an ANSI application for Windows 98. To maintain a single source for Windows NT and 98, WinUI makes use of the generic TCHAR macro for the string data types in the source code. When the source code is built with the UNICODE flag defined, the Unicode version of WinUI will be built. Otherwise, the ANSI version of the WinUI will be built.

The multilingual support in WinUi includes the following:

On Windows NT, WinUI is a Unicode application and inherits all multilingual support from the operating system. It can operate on files with multilingual names, and allow users to specify multilingual search strings. The multilingual support provided in Windows 98 is limited by the operating system.

WinUI integrates with the Windows locale settings as follows:

WinUI externalizes all translatable resources such as strings to Windows resource DLLs. At run time, the resource DLL corresponding to the user Windows locale will be used to compose the WinUI user interface.

WinUI maps the user Windows locale ID to the corresponding Java locale and passes it to the WCP server when initiating a connection. This enables the WCP server to send localized messages back to WinUI so that messages from the server are in the same language as the string resource from the resource DLL.

WinUI uses the Win32 locale specific date and number formatting functions to format the date and number in the property pages of a file so that these formats are in sync with the formats used by the Windows Explorer.

WinUI allows users to specify the character set and language of a specific document.

WinUI allows users to specify the language of the search string for a full text search on documents.

WebUI

WebUI is a Web front end for users to manage iFS documents from a standard Web browser. In addition to the features supported in WinUI, it allows administrators to do the following:

Create and update iFS users and groups

Upload documents to the iFS repository.

Create and update ACLs (Access Control List) that can be applied to a document.

WebUI consists of JSPs, HTMLs, JavaScripts and Java beans which are deployed on Oracle iFS itself. All JSPs, HTMLs and JavaScripts are located in the iFS repository so that they can be located by the iFS Servlet (See section � REF _Ref504553852 \n �4.2� � REF _Ref504553852 * MERGEFORMAT �HTTP Server�). All Java beans (class files) are located in the locale file system so that the Servlet engine running in the HTTP server can locate them.

WebUI is fully internationalized to support users and administrators of different languages. The design and implementation issues are discussed in the following sections.

UTF-8 as Page Encoding

The major decision that has been made for WebUI I18n support is to standardize on using UTF-8 as the page encoding of all HTML pages delivered to the browser. Although WebUI would use local page encoding based on the user language, the decision to use UTF-8 is made based on the following reasons:

It is relatively difficult to deliver HTML pages in different encodings for users of different languages. To do that, each JSP has to detect the language of the user, map the language to an encoding that the browser supports, specify the character set in the content-type header as embedded Java code, and handle unsupported encoding exceptions.

Similar code has to be provided to handle HTML form parameters. Since the form parameters are encoded based on the page encoding of the form itself, WebUI needs to determine the encoding of form parameters which can be of different values. One way is to add a hidden parameter to specify the encoding when the form is generated, and WebUI determine the encoding from the value of this hidden parameter. The other way is to determine the language of the user, and map the language to the parameter encoding. As the final step, WebUI converts the parameter values to Java String based on the encoding determined.

Using the page encoding for a particular language for HTML pages, file names and directory names of a different language that cannot be encoded will be displayed as question marks. With UTF-8, file names and directory names of different languages can be displayed on the same HTML page.

However, there are some limitations using UTF-8 as page encoding in the Netscape 4.x browser. They are listed below. Netscape6 resolves all of these issues.

Non-ASCII file names cannot be specified in a HTTP multipart request on file upload.

Asian characters are corrupted in tool tips on localized version of Windows NT 4.0.

Cannot automatically select font for UTF-8 page. Users have to specify the font to be used in one of the preference pages.

Organizing Translatable Files

Translatable HTML, image, and JavaScripts are organized into different directories from the non-translatable files. The directory structure is shown below.

/ifs/webui/images - Non-translatable images

/ifs/webui/html - HTML common to all languages

/ifs/webui/js -
JavaScripts common to all langua
ges

/ifs/webui/<lang> - Locale directory such as en, fr, ja etc.

/ifs/webui/<lang>/images - Images specific for <lang>

/ifs/webui/<lang>/html - HTMLs specific for <lang>

/ifs/webui/<lang>/js - JavaScripts specific for <lang>

Based on the above structure, a utility function called getLocalizedURL() is written to take a full path name of a file as parameter and look for the available language file from this structure. Whenever a html, image and JavaScript is referenced in a JSP, this function is called to construct the path of the translated file corresponding to the current locale if it exists. For example, if the path /ifs/webui/html/welcome.html is passed to getLocalizedURL() and the current locale is fr_CA , this function looks for the following files in the order shown below.

/ifs/webui/fr_CA/html/welcome.html

/ifs/webui/fr/html/welcome.html

/ifs/webui/html/en/html/welcome.html

/ifs/webui/html/welcome.html

The function returns the first file that exists in the above list. This function always reverts to English when the translated version corresponding to the current locale does not exist.

Internationalizing JSPs

JSPs are internationalized in the following ways:

JSPs are tagged with UTF-8 as the page encoding so that the HTML pages gets generated out of these JSP pages are encoded in UTF-8. The JSP directive to specify the page encoding is shown below.

<%@ page contentType="text/html; charset=utf-8" %>

All translatable strings are externalized from JSPs to Java resource bundles. Only the formatting information remains in the JSP pages. The reason not to translate JSPs directly is to avoid merging translated text into JSPs when the embedded Java code in the JSPs are modified.

All values of form parameters and query strings are converted to Java string based on the UTF-8 encoding. Since all the WebUI forms are encoded in UTF-8, WebUI legitimately assumes that all form input parameters are encoded in UTF-8. To convert parameter values from UTF-8 into Java String, the following code is used.

String orig = request.getParameter("name");

String real = new String(orig.getBytes("ISO8859_1"),"UTF8");

The Servlet API implementation assumes that incoming form input is in ISO-8859-1 encoding. As a result, when the
HttpServletRequest.getParameter()
 API is called, all data of the input text is decoded and the decoded input is converted from ISO-8859-1 to UTF16 and returned as an incorrect Java string. To resolve this problem, JSPs need to convert the parameter value back to the original form, and then convert the original form to a Java string based on the UTF-8 encoding as shown in the code example above.

Internationalizing JavaScripts

JavaScripts are internationalized in the following ways.

All translatable strings of a JavaScript are externalized to a localizable JavaScript which contains variable and value pairs, and all hard-coded strings are replaced with variables whose values are specified in the localizable JavaScript. An example of an localizable JavaScript is shown below.

var expandIconAltText = "Click to Expand";

var rowAltText = "Click to Select";

Use the JavaScript escape() function to generate URLs so that non-ASCII characters will be correctly escaped. The escape() function behaves differently in Internet Explorer and Netscape. The escape() function in Internet Explorer generates UTF-16 escape in the form of %uXXXX where XXXX is the hexadecimal value of a UTF-16 character. The escape() function in Netscape generates UTF-8 escape sequence in the form of %XX where XX is the hexadecimal digit for the value of a UTF-8 bytes. Since WebUI uses the escape() function to generate URLs to send FTP and HTTP requests to the FTP server and WebUI respectively, the FTP server and WebUI implements the code to deal with both types of escape sequences.

iFS Manager

The iFS Manager is a pure Java application to manage the whole Oracle iFS. It runs on the same machine as the iFS repository and protocol servers. The iFS Manager makes use of the internationalization features provided by the Localizer class to provide locale specific features such as date format and number format to the user interface. All locale specific conventions follow those of the JDK 1.1x API. It supports multilingual iFS object names through the use of the Java String data type for character data.

�

Appendix � SEQ Appendix * ALPHABETIC �A�: Character Sets Supported in iFS

�PRIVATE��Language�IANA Preferred MIME Charset �IANA Additional Aliases�Java Encoding�Oracle Charset�
�Arabic (ISO)�iso-8859-6�ISO_8859-6:1987, iso-ir-127,

ISO_8859-6, ECMA-114,

ASMO-708, arabic, csISOLatinArabic�ISO8859_6�AR8ISO8859P6��Arabic (Windows)�windows-1256� �Cp1256�AR8MSWIN1256��Baltic (ISO)�iso-8859-4�csISOLatin4, iso-ir-110,

ISO_8859-4, ISO_8859-4:1988, l4, latin4�ISO8859_4�NEE8ISO8859P4��Baltic (Windows)�windows-1257� �Cp1257�BLT8MSWIN1257��Central European (DOS)�ibm852�cp852, 852, csPcp852�Cp852�EE8PC852��Central European (ISO)�iso-8859-2�csISOLatin2, iso-ir-101, iso8859-2, iso_8859-2, iso_8859-2:1987, l2,

latin2�ISO8859_2�EE8ISO8859P2��Central European (Windows)�windows-1250�x-cp1250�Cp1250�EE8MSWIN1250��Chinese Simplified (GB2312)�gb2312�chinese, csGB2312, csISO58GB231280, GB2312, GB_2312-80, iso-ir-58�EUC_CN�ZHS16CGB231280��Chinese Simplified (Windows)�windows-936��windows-936�GBK�ZHS16GBK��Chinese Traditional�big5�csbig5, x-x-big5�Big5�ZHT16BIG5��Chinese Traditional�windows-950��MS950�ZHT16MSWIN950��Chinese�iso-2022-cn��csISO2022CN�ISO2022CN�ISO2022-CN��Chinese Traditional (EUC-TW)�EUC-TW� NOTEREF _Ref458654882 �1���EUC_TW�ZHT32EUC��Cyrillic (DOS)�ibm866

�cp866, 866, csIBM866�Cp866�RU8PC866��Cyrillic (ISO)�iso-8859-5�csISOLatinCyrillic, cyrillic,

iso-ir-144, ISO_8859-5,

ISO_8859-5:1988�ISO8859_5�CL8ISO8859P5��Cyrillic (KOI8-R)�koi8-r�csKOI8R, koi�KOI8_R�CL8KOI8R��Cyrillic Alphabet (Windows)�windows-1251�x-cp1251�Cp1251�CL8MSWIN1251��Greek (ISO)�iso-8859-7�csISOLatinGreek, ECMA-118, ELOT_928, greek, greek8, iso-ir-126, ISO_8859-7, ISO_8859-7:1987, csISOLatinGreek�ISO8859_7�EL8ISO8859P7��Greek (Windows)�windows-1253��Cp1253�EL8MSWIN1253��Hebrew (ISO)�iso-8859-8�csISOLatinHebrew, hebrew, iso-ir-138, ISO_8859-8, visual,

ISO-8859-8 Visual,

ISO_8859-8:1988�ISO8859_8�IW8ISO8859P8��Hebrew (Windows)�windows-1255��Cp1255�IW8MSWIN1255��Japanese (JIS)�iso-2022-jp�csISO2022JP�ISO2022JP�ISO2022-JP��Japanese (EUC)�euc-jp�csEUCPkdFmtJapanese, Extended_UNIX_Code_Packed_Format_for_Japanese,

x-euc, x-euc-jp�EUC_JP�JA16EUC��Japanese (Shift-JIS)�shift_jis�csShiftJIS, csWindows31J,

ms_Kanji, shift-jis,

x-ms-cp932, x-sjis�MS932�JA16SJIS��Korean�ks_c_5601-1987�csKSC56011987, korean, ks_c_5601, euc-kr, csEUCKR�EUC_KR�KO16KSC5601��Korean (ISO)�iso-2022-kr�csISO2022KR�ISO2022KR�ISO2022-KR��Korean (Windows)�windows-949��MS949�KO16MSWIN949��South European (ISO)�iso-8859-3�ISO_8859-3, ISO_8859-3:1988,

iso-ir-109, latin3, l3, csISOLatin3�ISO8859_3�SE8ISO8859P3��Thai�TIS-620�windows-874�TIS620�TH8TISASCII��Turkish (Windows)�windows-1254��Cp1254�TR8MSWIN1254��Turkish (ISO)�iso-8859-9�latin5, l5, csISOLatin5, ISO_8859-9,

iso-ir-148, ISO_8859-9:1989�ISO8859_9�WE8ISO8859P9��Universal (UTF-8)�utf-8�unicode-1-1-utf-8, unicode-2-0-utf-8,

x-unicode-2-0-utf-8�UTF8�UTF8��Vietnamese (Windows)�windows-1258� �Cp1258�VN8MSWIN1258��Western Alphabet (windows)�windows-1252�x-ansi�Cp1252�WE8MSWIN1252��Western Alphabet�iso-8859-1�cp819, ibm819, iso-ir-100, iso8859-1, iso_8859-1, iso_8859-1:1987, latin1, l1, csISOLatin1�ISO8859_1�WE8ISO8859P1��Western Alphabet (DOS)�ibm850�cp850, 850, csIBM850�Cp850�WE38PC850���Appendix � SEQ Appendix * ALPHABETIC �B�: Languages Supported in iFS

Oracle Language Name�Java Locale�
�
Arabic � ar �
�
Bengali � bn �
�
Brazilian Portuguese � pt_BR �
�
Bulgarian � bg �
�
Canadian French � fr_CA �
�
Catalan � ca �
�
Croatian � hr �
�
Czech � cs �
�
Danish � da �
�
Dutch � nl �
�
Egyptian � ar_EG �
�
American� en�
�
English � en_GB �
�
Estonian � et �
�
Finnish � fi �
�
French � fr �
�
German � de �
�
Greek � el �
�
Hebrew � he�
�
Hungarian � hu �
�
Icelandic � is �
�
Indonesian � id �
�
Italian � it �
�
Japanese � ja �
�
Korean � ko �
�
Latin American Spanish � es�
�
Latvian � lv �
�
Lithuanian � lt �
�
Malay � ms �
�
Mexican Spanish � es_MX �
�
Norwegian � no �
�
Polish � pl �
�
Portuguese � pt �
�
Romanian � ro �
�
Russian � ru �
�
Simplified Chinese � zh_CN�
�
Slovak � sk �
�
Slovenian � sl �
�
Spanish � es_ES �
�
Swedish � sv �
�
Thai � th �
�
Traditional Chinese � zh_TW �
�
Turkish � tr �
�
Ukrainian � uk �
�
Vietnamese � vi �
�

� It is not defined in IANA, but used in Internet Explorer or Netscape browsers.

� It is not defined in IANA, but use in MIME documents.

Building an Internet File System with Multilingual Capabilities

18th Unicode Conference	Page � PAGE �
21
�	Hong Kong, April 2001

18th Unicode Conference	Page � PAGE �
1
�	Hong Kong, April 2001

