
San Jose, CA, August-September 199915th International Unicode Conference 1

Developing Global Applications in Java

Developing Global Applications
in Java

Richard Gillam
Unicode Technology group

Center for Java Technology, Cupertino

I’m Richard Gillam from the Unicode Technology group in IBM’s Center for Java
Technology in Silicon Valley, and I’m here today to talk about developing global
applications, a procedure that’s generally known as “internationalization.”

Our group at IBM designed much of the internationalization support in the Java
Class Libraries under contract to Sun. What I want to do today is give you a guided
tour through these classes, what they do, and how to use them.

San Jose, CA, August-September 199915th International Unicode Conference 2

Developing Global Applications in Java

INTERNATIONALIZATION

The first thing we should probably do is look at the term “internationalization” and
what we mean by it. One of the interesting things about it is that it’s the only 20-
letter word I’ve seen that seems like a “normal word”.

San Jose, CA, August-September 199915th International Unicode Conference 3

Developing Global Applications in Java

INTERNATIONALIZATION

I18N

Because it’s such a long word, you’ll often see it abbreviated as I18N (pronounced
as “eye eighteen en”). You have an I, 18 other letters, and an N. You’ll also se this
type of approach used with other words in this field, such as “localization” (L10N).

San Jose, CA, August-September 199915th International Unicode Conference 4

Developing Global Applications in Java

INTERNATIONALIZATION

The process of designing a program
from the ground up so that it can be

changed to reflect the expectations of a
new user community without having to

modify its executable code.

Internationalization is the process of designing a program from the ground up so
that it can be changed to reflect the expectations of a new user community without
having to modify its executable code.

San Jose, CA, August-September 199915th International Unicode Conference 5

Developing Global Applications in Java

Internationalization
The process of designing a program from the
ground up…
• Retrofitting an existing application to be

internationalized can be extremely difficult
…so that it can be changed to reflect the
expectations of a new user community…
• Different user populations, particularly those speaking

different languages or living in different countries, have
widely varying expectations for how a computer
program interact with them

…without having to modify its executable code.
• Translators are not programmers. Everything that is

affected by localization should be in a data file
somewhere: to create a localized version, one should
not have to change source code, recompile, re-link, etc.

Let’s explore that long definition a little more closely. I’ve purposely used the
vague phrase “reflect the expectations of a new user community” because I don’t
want to suggest that the whole process is about transating programs into other
languages. This is the biggest part of it, of course, but it’s equally important that a
program follow local conventions for things such as how a number or date is
written. And, of course, the granularity there isn’t always by country. In the U.S.,
for example, civilians and military personnel write dates and times differently.

Designing the program from the ground up with this kind of customization in mind
is vital. Trying to customize a program that hasn’t been designed for it is extremely
time-consuming and error-prone.

And since most programmers aren’t experts on the various communities where their
software is used, the translators aren’t likely to be the original development team.
In fact, they’re not likely to be computer programmers at all. Providing translators
a way to do their job that doesn’t involve recompiling or re-linking the program is
essential.

San Jose, CA, August-September 199915th International Unicode Conference 6

Developing Global Applications in Java

More definitions
Translation
• The process of converting text in one language to text

in another language.
Localization
• The process of modifying a program to conform to the

expectations of a given user community.
This can involve not only translating text, but also altering
pictures, colors, and window layouts and changing the
program’s behavior

Internationalization
• The process of designing a program from the ground up

so that it can be localized with no modifications to the
executable code.

This does not involve localization– it’s a technique that greatly
simplifies the localization process

Internationalization is one of the terms you’ll hear lot when talking about global
software. The other two are translation and localization. Localization is more than
merely translating between languages– it also involves changing everything else
about a program’s appearance or behavior that might be affected by a country or
other population’s customs, beliefs, and preferences. Pictures may have to change–
mailboxes tend to look different in different countries, for example. Colors may
have different connotations in different countries. And so on.

Localization is distinct from internationalization. Localization (which includes
translation) is what translation houses do to software to prepare it for a particular
market. Internationalization is what programmers do to make sure the program can
be localized easily.

San Jose, CA, August-September 199915th International Unicode Conference 7

Developing Global Applications in Java

The Case for
Internationalization

If you’re at this conference, you probably already know why internationalization is
important, but let’s take a few minutes to look at that issue. Even if I’m preaching
to the choir, I might be able to supply you with more ammunition to convince other
people.

San Jose, CA, August-September 199915th International Unicode Conference 8

Developing Global Applications in Java

GDP By Region

China

Asia/
 Pacific

L. America

North
America

European
Union

Japan

Europe

This is a graph of the world GDP distribution. North America is the single largest
part, but it still represents only a third of the world’s economy. The European
Union is actually just as big as North America, representing another third of the
world’s economy. Obviously, people in most of the EU countries either don’t speak
English at all or don’t speak it natively. Japan represents another fifth of the
world’s economy, and again most Japanese don’t speak English.

The rest of the world accounts for a little over a fourth of the world’s economy, so
while any one country or region may be small, the whole thing still represents lots
of dollars. (And parts of it, such as the rest of Europe, the rest of Asia, and
especially Latin America, don’t represent that much incremental work.) As you can
see, two-thirds of the dollars to be made out there comes from places other than the
U.S. and Canada.

San Jose, CA, August-September 199915th International Unicode Conference 9

Developing Global Applications in Java

World Population Distribution

China

Asia/Pacific

India

Africa

Latin
America

North America

EU

Middle East Japan

Europe

The small slivers also don’t tell the whole story. This is a graph of world
population distribution. Notice how radically the rankings change. First, notice
how small a sliver North America is on this graph. Second, notice that more than
half of the world’s population is in Asia.

Also notice that China and India, which barely showed up on the previous graph,
dominate this graph. Countries with small slivers of the GDP graph and big
sections of the population graph represent large potential markets. Of course, much
depends on how the economies in these countries are growing and how
technological they’re becoming, but China and India are both making big pushes to
modernize right now.

San Jose, CA, August-September 199915th International Unicode Conference 10

Developing Global Applications in Java

Internet Use in India

130,000

1,500,000

5,000,000

1998 1999 2000

In India, for example, the number of people having user accounts on the Internet is
exploding. At the end of last year, analysts estimated that there were about 130,000
registered Internet users in India. By the end of this year, thanks to loosening
telecommunications regulation, that number will grow to a million and half. By the
end of next year, they’re expecting it to grow to five million. Furthermore, these
numbers represent only registered Internet users. Analysts estimate that the
130,000 number for last year represents about a million actual users due to doubling
up of accounts.

As you can probably imagine, these are the kinds of figures that cause dollar signs
to light up in CEOs’ eyes.

San Jose, CA, August-September 199915th International Unicode Conference 11

Developing Global Applications in Java

The Programming Community
1,340 books on Java have been published:

English
German
Japanese
French
Spanish
Chinese
Italian
Dutch
Portuguese
Korean

761
172

89
68
58
52
39
29
23
22

Finnish
Russian
Swedish
Czech
Polish
Croatian
Danish
Hebrew
Indonesian
Norwegian

7
6
5
2
2
1
1
1
1
1

Finally, just as another point of reference, this graph shows the number of books on
Java that have been published in various languages. Java books have been
published in twenty languages, and while more than half of them were in English,
the number of non-English books is still striking. This gives you a rough idea of the
size of the developer community speaking languages other than English, and that in
turn gives you a rough idea of the sizes of the user communities represented by the
developer communities. (Of course, there are also many English-speaking
developers who primarily produce software for use in other countries and
languages, too.)

San Jose, CA, August-September 199915th International Unicode Conference 12

Developing Global Applications in Java

What’s this got to do with me?
Internationalization is not a feature!
• People expect your product to “just work”
• Many users will not accept a program that doesn’t let

them work in their native language
• Even if they can handle a program with an English user

interface, users will not accept a program that doesn’t
let them process data that’s in their own language

If you’re thinking to yourself “But none of my clients has asked for
internationalization,” you’re right. A phrase I liked from the last Java tutorial is
“Internationalization isn’t a feature.” It isn’t. You’re never going to have a client
come up to you and say “I want internationalization.” You may not even have the
client say “I want this program to work in Japanese.”

Clients just expect the software to “work right.” They might not even be able to
define that unless they’re looking at something that “doesn’t work right,” but it’s
too late if you wait until then. An English-only product closes you off to a great
many users. Even English-speaking users will have their productivity undermined
by being forced to operate the product in something other than their native
language. Making sure the product is localized is just part of designing a good user
interface.

And, of course, even they can accept an English user interface, an overseas business
will likely be processing data that’s in the language where the company is located.
If your product can’t handle data in a particular language, you’re dead in the water
in the countries that speak that language.

San Jose, CA, August-September 199915th International Unicode Conference 13

Developing Global Applications in Java

What’s this got to do with me?
It pays to think ahead
• What if you want to sell to a foreign customer in the

future?
Two thirds of your potential market is outside the English-
speaking world

• What if your company opens a foreign branch office, or
wants to extends its eBusiness connections with foreign
business partners?

• What if your company’s Web site is getting hits from
outside the English-speaking world?

And if you’re thinking this material doesn’t apply to you because you don’t expect
to have anyone in foreign countries using the software you’re producing, be careful.
It pays to think ahead.

What if you land a new client in the future that’s based in a foreign country? What
if one of your existing clients expands his operation to a foreign country? What if
you wind up with suppliers or other business partners in other countries and you
want to be able to do electronic commerce with them? What if your Web site is
getting lots of hits from overseas, or what if you want your Web site to get lots of
hits from overseas? The thing you definitely don’t want to do is write your
application in such a way as to prevent translating it into other languages in the
future. Making sure your program is internationalized doesn’t mean you have to
localize it right away.

San Jose, CA, August-September 199915th International Unicode Conference 14

Developing Global Applications in Java

What’s this got to do with me?
A stitch in time saves nine
• Translation can be complicated
• Retrofitting an application so it can be translated can be

incredibly difficult
• Designing the program from the start with eventual

localization in mind can save considerable time down
the road

Again, it pays to think ahead. You may not have to worry about this stuff now, but
if in three years one of your customers comes back to you and says “we’re opening
a branch office in France. Can you make your application work in French?” you’re
in a lot of trouble if you haven’t prepared.

We’ve been getting a lot of hype about the Year 2000 Problem lately, and a big part
of what has made this so difficult for IT people to deal with is that they can only
deal with it by going through their program’s source code line by line looking for
problems. This is incredibly time consuming and error-prone. Retrofitting a
program to support foreign-language data or to allow translation of its user interface
is exactly the same kind of problem. You want to avoid this as much as possible.

Again, internationalization is not a feature. It’s often an unspoken requirement.

San Jose, CA, August-September 199915th International Unicode Conference 15

Developing Global Applications in Java

How Java helps
The Java platform is internationalized
• Java supplies an extensive library of classes and

functions to help you internationalize your programs
• Some I18N support comes “for free” or at very little

cost
This often includes partial support for some languages your
program doesn’t explicitly support

• The built-in Java I18N functions support over 70
language-country combinations

• Avoid ad-hoc solutions in favor of the standard ones
whenever possible

The Java libraries are more thorough and more thoroughly
tested than most ad-hoc solutions would be
Bug fixes and support for new languages come “for free”

You’re already several steps into the game if you’re writing in Java. The Java
platform is itself internationalized, so you get some degree of internationalization in
your code “for free” or for very little incremental work. One good thing this means
is that you can get partial support even for languages and countries you haven’t
specifically localized for. In fact, the internationalized functions in Java currently
support over 70 language-country combinations.

Java provides you with almost everything you need to write properly
internationalized software. The main thing you have to remember is to use the right
APIs in the right way. Be sure to keep this in mind if you find yourself writing your
own international support. If there’s a way to do it with the standard libraries in
Java, you’ll save a lot of work and pick up bug fixes and additions of new languages
“for free.”

San Jose, CA, August-September 199915th International Unicode Conference 16

Developing Global Applications in Java

Rules of internationalization
Separate program code from user interface
Rely on external libraries whenever possible
Watch out for hidden assumptions

So let’s go back and look at just what you have to do to make sure your program is
internationalized. The basic idea is to keep your program’s internal logic separated
from your program’s user interface: keep user-interface data (labels and messages,
pictures, window layouts, etc.) out of program code, keep UI code separate from
internal processing code, take advantage of all the UI code your operating
environment and external libraries give you, and be careful to keep hidden
assumptions about locale and UI out of your internal processing code.

San Jose, CA, August-September 199915th International Unicode Conference 17

Developing Global Applications in Java

Rules of internationalization
Separate program code from user interface
• Avoid hard-coded character strings in program code

(unless you’re sure the strings aren’t user-visible)
• Allow for customization of icons and other pictorial

elements
• Allow for customization of colors
• Avoid making assumptions about window layout

Text elements may grow or shrink dramatically when
translated
Overall arrangement of UI elements may change depending on
writing direction of text
UI elements themselves may change shape or arrangement
depending on writing direction of text

Separating program from UI is the first cardinal rule of internationalization. As
much as humanly possible, keep the data driving the UI separate from the code.

In particular, be very careful about using hard-coded strings in your program code.
This is only legal when the strings are completely internal, such as identifiers and
tags the user doesn’t see. Along the same lines, don’t use hard-coded references to
icons and pictures, and avoid hard-coded colors.

Window layout can also change based on language. The two big reasons for this
are text growing or shrinking when translated and layout being affected by writing
direction. An English message can get much smaller when translated into Japanese
and much larger when translated into Italian, for example, requiring resizing or
rearrangement of various UI elements. Hebrew and Arabic are written from right to
left, so speakers of those languages usually expect windows to be arranged in a
mirror-image fashion compared to the normal English layout.

San Jose, CA, August-September 199915th International Unicode Conference 18

Developing Global Applications in Java

Rules of internationalization
Rely on external libraries whenever possible
• Avoid writing locale-sensitive code whenever possible;

rely instead on locale-sensitive code provided to you by
the OS, the language libraries, an external i18n library,
etc.

• In Java, this means using routines and classes in
java.text and java.util whenever possible

• If you must write locale-sensitive code (and this
includes almost all UI code), separate it from your
program’s internal logic and try to make the behavior
data-driven when feasible

Proper support for various languages can often be quite involved, so it’s usually
best to take advantage of whatever international support is provided to you by your
operating environment. In Java, think very hard before not using the locale-
sensitive APIs for something, and think especially hard before using Java’s locale-
independent APIs (e.g., Integer.toString(), Integer.valueOf(String),
String.compare(), String.equals(), String.indexOf(), etc.).

If you need locale-specific capabilities that Java doesn’t provide you and find
yourself implementing them yourself, keep them separate from the rest of your
program logic, and allow for graceful degradation when you’re operating in a
language they weren’t designed for. Whenever feasible, use a data-driven model:
make the code flexible and locale-independent, and have it look to external data for
instructions on how to behave.

San Jose, CA, August-September 199915th International Unicode Conference 19

Developing Global Applications in Java

Rules of internationalization
Watch out for hidden assumptions
• Store everything in a locale-independent manner
• Be careful when converting a piece of data from its

internal representation to a human-visible representation:
use locale-sensitive APIs whenever possible

Numeric values
Currency and other denominated numeric values
Dates and times

• Watch for internal-processing assumptions as well:
Date and time arithmetic
String comparison
Case mapping
Character-property tests

• Watch for text-manipulation assumptions
Counting and indexing characters
What’s a “word”?
Not always 1-1 mapping: character, code point, glyph, keystroke

The trickiest internationalization rule is to be on guard against hidden assumptions
in your program’s internal processing logic. Make sure your internal storage
formats are locale-independent. Be careful when converting between internal
storage formats and human-readable formats (and don’t confuse the two). Watch
out for naive algorithms for case conversion, string comparison, date arithmetic,
and so on. Don’t build up user-visible message by concatenating strings together.
And when processing text, keep in mind that there often isn’t a one-to-one mapping
between what the user sees as a single character (a “grapheme”), a shape that gets
drawn on the screen (a “glyph”), a single input keystroke, and a single storage
location within a String. Also keep in mind that units of text such as “words,”
“sentences,” and “characters” have definitions that are language-specific.

The most common trouble spots are multilingual text, numbers (especially numbers
that carry implicit denominations with them), and dates and times, but there are
many potential others. It’s likely you won’t see some of hidden assumptions until
somebody complains about them, but avoid the common cases do your best to
minimize the others.

San Jose, CA, August-September 199915th International Unicode Conference 20

Developing Global Applications in Java

Handling Multilingual Data

As I said in the introduction, probably the most important barrier to international
use of a computer program is its incompatibility with the data used in a particular
place. Let’s talk a little about handling multilingual data properly.

San Jose, CA, August-September 199915th International Unicode Conference 21

Developing Global Applications in Java

The code-page problem
In most environments, streams of text have
ambiguous semantics
• There are hundreds of character encoding schemes,

including multiple ones for practically every language
• Can’t tell how big the basic unit of text is
• Can’t tell how big a particular character is
• Can’t tell whether a byte is a single character or a

particular byte of a multi-byte character
• wchar_t doesn’t help

Because of this…
• Many systems make assumptions about the text
• Many systems use some kind of tagging mechanism
• Mixing languages can be difficult

In most operating environments, character strings have ambiguous semantics. Since
most character encodings are based on single-byte values, you have to have a
different encoding (or “code page” in many environments) for every language.
There are hundreds of code pages and other encodings in use out there. In fact,
there are probably at least three or four for every single language. It may be okay
to assume that most of them are compatible with 7-bit ASCII, but that’s certainly
not true of all of them.

To most processes, especially language compilers, that means a character string is
just a sequence of arbitrary bytes. This usually means that programs make
assumptions as to which character set they’re using and expect everything they’re
communicating with to use the same character set. The way around this is to have
some sort of tagging mechanism to identify the character set for a group of
characters.

This is a major hindrance to mixing languages in a single file or database. Making
assumptions just plain prevents this, and tagging mechanisms add a lot of
bookkeeping or limit the granularity of the taggable units (e.g., a whole field might
have to be in one language).

San Jose, CA, August-September 199915th International Unicode Conference 22

Developing Global Applications in Java

Unicode
A universal character-encoding standard
• Encodes all of the characters in all popular encoding

standards and all (or nearly all) living languages
• 45,000 assigned code points, more than 1,000,000 total

code points
• Encodes semantics, not just glyph shapes (not just a

pile of code charts)
• All code points are unambiguous (no escaping, no

DBCS ambiguity issues)
• Can be used as a pivot point for converting between

other encodings
• Eliminates need for code-page tagging
• In widespread and growing use
• Native character-string type in Java and JavaScript

Unicode, of course, was designed mainbly to solve this very problem. Unicode is a universal
character encoding standard, comprising numeric values for some 45,000 characters (with
room for more than a million more). All characters in all commonly-used (and most not-so-
commonly-used) character encodings are included, as are the characters needed to write
virtually all living languages. All are unambiguously encoded, so there’s never a question as
to which character a particular pattern of bits represents: there are strict limits on how much
context a process has to look at to process a particular character--usually it’s just that
character. Unicode isn’t just a pile of code charts; it also includes an extensive set of rules
defining what well-formed Unicode text looks like and exactly how a particular code point is
to be interpreted: it encodes semantics, not just glyph shapes.

Unicode text is generally easier to process than text in other encodings, and because it
includes a huge multitude of characters, it eliminates the need to keep track not only of the
characters themselves, but of which encoding scheme was used to encode them.

Unicode is in widespread and growing use. Most newer programming languages (including
both Java and JavaScript) are being designed with Unicode as their native character-string
format, and Unicode support is appearing in more and more operating systems and
applications. Microsoft Windows NT 4.0 and Office 97, for example, support Unicode well.
All IBM products, both OSes and applications, are being upgraded to handle Unicode
correctly as well.

San Jose, CA, August-September 199915th International Unicode Conference 23

Developing Global Applications in Java

Unicode
The buzzword syndrome
• Unicode is not a feature, either
• “I support Unicode” and “I conform to the Unicode

standard” are virtually meaningless by themselves
• “Supporting Unicode” is not the same thing as

internationalization
• Internationalization is completely possible without

Unicode
• But internationalization is much easier with Unicode:

No need for character-set tagging
Easier to implement language-specific processes
Easier to handle multilingual text

The computer industry often falls prey to the “buzzword syndrome”: people starting
hearing some word or phrase a lot and they join a frenzy to do something with the
word or phrase without bothering to figure out what it means first. Java is a classic
example of this. Everybody has been jumping up with some way to tie their
products to all of the Java hype, even when Java had nothing to do with them
(JavaScript is a favorite example of mine).

Unicode is also a buzzword, although not the kind of über-buzzword that Java is.
So it’s important to remember that Unicode is not a feature any more than
internationalization is. It’s a means to an end: Unicode is a technology which eases
many of the problems involved in implementation good internationalization
support. It makes programs easier to internationalize, although internationalization
is completely possible without it.

The phrase “This technology supports Unicode” is relatively meaningless. The
conformance requirements in the Unicode standard are relatively simple: the main
key is that the Unicode standard doesn’t require support for any particular character
or set of characters. It basically requires that you follow the rules for any character
that you’re claiming to support, and that you not mess up Unicode text you’re
passing through to another process. The key is which characters and languages you
support. Making sure your string elements are 16 bits wide is far from a complete
internationalization solution.

San Jose, CA, August-September 199915th International Unicode Conference 24

Developing Global Applications in Java

Unicode
Unicode introduces some complexities of its own
• Because it makes it easy to handle multilingual text,

proper support of multilingual text is much more
important

• Characters with similar appearance
Å
' ` ´ ‘ ’ ’

• Multiple “spellings” for one character
 â + � a + � + �

 + +
• Surrogate pairs

Of cuorse, because Unicode makes it possible to mix text in different languages
freely, people will start mixing text in different languages freely, increasing the
challenge of doing certain things to the text.

In addition, to maintain compatibility with various other encodings, Unicode often
has several ways of saying the same thing. In many cases, for example, there are
groups of Unicode characters with the same or similar visual appearances. In the
first line, for example, the first character is an A with a ring over it. The second
character is the symbol for the Angstrom unit.

In the second line, we have a selection of marks that look kind of like apostrophes
and quote marks. The first mark is the ASCII straight single quote, which has often
been used as a substitute for all these other characters. The second and third
characters are acute and grave accent marks. The fourth and fifth are opening and
closing quotation marks. The sixth is an apostrophe (although it’s only supposed to
be used when the character’s being used as a letter). The last character is the
mathematical prime mark. Some types of searches might want to level out these
differences.

Some characters can be represented either as a single code point value, or as
multiple code point values that combine together into the same character. The
different combinations and the single code points that can all used to mean the same
thing are supposed to be treated identically. Unicode also has a special kind of
combining character sequence called a “surrogate pair” where the individual units
don’t have meaning by themselves, but they combine to form a single character.

San Jose, CA, August-September 199915th International Unicode Conference 25

Developing Global Applications in Java

Java and Unicode
All text in a running Java program is Unicode
• The primitive type char is a single Unicode character
• The String type is a collection of char
• All internal processing on text assumes the text is in

Unicode
• The java.io package can do conversion

However…
• Not all methods on String are totally Unicode-aware

A few slides ago, I mentioned why all this information is relevant: Java’s native
character encoding is Unicode. Not only is the char type a 16-bit quantity; it’s
specifically required to represent a Unicode character. This eliminates all the
headaches of handling mu8ltiple encodings in a program…

…except, of course, dealing with text coming from outside (or going outside), such
as when you’re reading a disk file that contains text or receiving text over a network
connection. The Java I/O framework automatically handles these kinds of
conversions so the rest of the program doesn’t have to worry about it.

I should point out, however, that many of the methods on String aren’t Unicode
aware and just treat the string as a sequence of unsigned 16-bit values. This is fine,
but you have to remember to avoid these functions when you’re dealing with
multilingual text (or make sure you use them right).

San Jose, CA, August-September 199915th International Unicode Conference 26

Developing Global Applications in Java

Handling User-Visible Text

San Jose, CA, August-September 199915th International Unicode Conference 27

Developing Global Applications in Java

User-visible text

Okay, having gotten a bird’s-eye view of everything now, let’s delve in and take a
close look at internationalization. Say we want our program to display a dialog that
looks like this...

San Jose, CA, August-September 199915th International Unicode Conference 28

Developing Global Applications in Java

User-visible text
Dialog dialog = new Dialog(

rootWindow, "Search results", true);

dialog.add("Center",
new Label("The search found " + hits
+ " files containing \"" + searchString
+ "\" on disk \"" + searchRoot + "\"."));

Container container;
container = new Panel();
dialog.add("South", container);

container.setLayout(
new FlowLayout(FlowLayout.RIGHT));

container.add(new Button("OK"));
container.add(new Button("Cancel"));

dialog.pack();
dialog.show();

The code to do this usually looks something like this. Now remember that we said
in the introduction that hard-coded strings in the source code are a Bad Thing. We
have a lot of hard-coded strings here...

San Jose, CA, August-September 199915th International Unicode Conference 29

Developing Global Applications in Java

User-visible text
Dialog dialog = new Dialog(

rootWindow, "Search results", true);

dialog.add("Center",
new Label("The search found " + hits
+ " files containing \"" + searchString
+ "\" on disk \"" + searchRoot + "\"."));

Container container;
container = new Panel();
dialog.add("South", container);

container.setLayout(
new FlowLayout(FlowLayout.RIGHT));

container.add(new Button("OK"));
container.add(new Button("Cancel"));

dialog.pack();
dialog.show();

If you have to go back and translate this program into French, you would have to go
through many functions like this one, manually searching for hard-coded strings,
then translate all of them and recompile the program.

This is painstakingly difficult. It’d be much better if the program source code could
stay the same and the strings could actually come from some kind of data file
somewhere else. This also has the advantage of collecting everything that needs to
be translated into one place.

San Jose, CA, August-September 199915th International Unicode Conference 30

Developing Global Applications in Java

User-visible text
Dialog dialog = new Dialog(

rootWindow, "Search results", true);

dialog.add("Center",
new Label("The search found " + hits
+ " files containing \"" + searchString
+ "\" on disk \"" + searchRoot + "\"."));

Container container;
container = new Panel();
dialog.add("South", container);

container.setLayout(
new FlowLayout(FlowLayout.RIGHT));

container.add(new Button("OK"));
container.add(new Button("Cancel"));

dialog.pack();
dialog.show();

But do we really want to do that with every string in this example? Consider
“Center” and “South” in our example code and look at the title of the slide. The
stuff we need to worry about, and the stuff we need to translate, is user-visible text.
These two strings aren’t user-visible. They’re internal program IDs used to tell the
layout manager here to position a new component that’s being added. You’ll run
into this kind of thing in a fair number of places in an average Java program.
Strings are often used as internal identifiers to allow an open-ended set of
identifiers, something which is very difficult with integers or other types. You
definitely don’t want to translate these strings; if you do, the program won’t work
anymore. So these get left alone.

San Jose, CA, August-September 199915th International Unicode Conference 31

Developing Global Applications in Java

User-visible text
Dialog dialog = new Dialog(

rootWindow, "Search results", true);

dialog.add("Center",
new Label("The search found " + hits
+ " files containing \"" + searchString
+ "\" on disk \"" + searchRoot + "\"."));

Container container;
container = new Panel();
dialog.add("South", container);

container.setLayout(
new FlowLayout(FlowLayout.RIGHT));

container.add(new Button("OK"));
container.add(new Button("Cancel"));

dialog.pack();
dialog.show();

All of the other strings, on the other hand, are user-visible text: “Search results” is
the window title, “OK” and “Cancel” are the button labels, and the others make up
the message the dialog box displays. All of these must be translated in order to
make the dialog box intelligible to a non-English speaker. These are the strings you
want to get out of your program code and into some central external repository.

San Jose, CA, August-September 199915th International Unicode Conference 32

Developing Global Applications in Java

Resource bundles

User input

Resource
bundles

UI code

Processing
code

Program output

In Java, that repository is called a resource bundle. This is similar to a message
catalog in C, but much more flexible. Resource bundles can contain not only
messages and other user-visible strings, but icons and pictures, actual UI elements
like menus and buttons, and even whole window layouts. The program’s UI code
draws on the items stored in a resource bundle to produce the program’s output and
user interface.

Java provides an abstract ResourceBundle object that represents a resource bundle.
Subclasses of ResourceBundle provide interfaces to different types of storage for
the actual resource data: disk files, database repositories, network resources, or even
data embedded into the ResourceBundle code itself.

San Jose, CA, August-September 199915th International Unicode Conference 33

Developing Global Applications in Java

PropertyResourceBundle
File MyResources.properties:

WindowTitle=Search Results
OKLabel=OK
CancelLabel=Cancel
ResultMessage1=The search found
ResultMessage2= files containing “
ResultMessage3=” on disk “
ResultMessage4=”.

Java provides two concrete subclasses of ResourceBundle. The simpler of these is
PropertyResourceBundle. PropertyResourceBundle provides an interface to access
resource data in a properties file. A properties file is simply a text file containing a
series of key-value pairs. The keys are separated from the values by = signs, and
the key-value pairs are separated by carriage returns.

For all types of resource bundles, you give the bundle a name (it’s up to you
whether you want to keep all of your program’s resources in a single resource
bundle or spread across several). Then you assign each individual resource a
programmatic ID (such as “WindowTitle” or “CancelLabel” in the example above).
This ID is how the program will access the bundle (this is another case of a hard-
coded string that is for internal use and must not be translated). The ID is the key
and the actual resource data is the value.

Properties files are very simple, but have some serious limitations: The first is that
you can only put text into a properties file, meaning there’s no way to have
resources of any other type. Second, there are issues with the character encoding of
the file (it isn’t Unicode) that make it cumbersome for text in languages that don’t
use the standard Western European Latin alphabet. Generally, we don’t
recommend using property resource bundles.

San Jose, CA, August-September 199915th International Unicode Conference 34

Developing Global Applications in Java

ListResourceBundle
File MyResources.java

public class MyResources extends ListResourceBundle {
public Object[][] getContents() {

return contents;
}

static final Object[][] contents = {
{ "WindowTitle", "Search Results" },
{ "OKLabel", "OK" },
{ "CancelLabel", "Cancel" },
{ "ResultMessage1", "The search found " },
{ "ResultMessage2", " files containing \"" },
{ "ResultMessage3", "\" on disk \"" },
{ "ResultMessage4", "\"." }

};
}

The other built-in subclass of ResourceBundle is ListResourceBundle.
ListResourceBundles contain the resource data as static class members. This means
each list resource bundle is a new class. In essence, the resource-data file the
translators mess with is the source code file itself. That means there’s some extra
cruft here that the translators don’t need to worry about, but the file format is still
pretty simple (you only mess with the contents of “contents”), and it can
accommodate any character encoding and can contain any type of resource data.
Again, the key-value-pair structure of a ListResourceBundle is evident here.

San Jose, CA, August-September 199915th International Unicode Conference 35

Developing Global Applications in Java

User-visible text
ResourceBundle resources =

ResourceBundle.getBundle("MyResources");
Dialog dialog = new Dialog(

rootWindow, resources.getString("WindowTitle"),
true);

dialog.add("Center", new Label(
resources.getString("ResultMessage1") + hits
+ resources.getString("ResultMessage2") + searchString
+ resources.getString("ResultMessage3") + searchRoot
+ resources.getString("ResultMessage4")));

Container container = new Panel();
dialog.add("South", container);
container.setLayout(new FlowLayout(FlowLayout.RIGHT));
container.add(

new Button(resources.getString("OKLabel")));
container.add(

new Button(resources.getString("CancelLabel")));

dialog.pack();
dialog.show();

Whichever type of resource bundle you’re using, your code accesses it the same
way. Our original code snippet putting up the dialog box would look like this
whether the resource data is in a PropertyResourceBundle, a ListResourceBundle,
or some program-defined type of resource bundle. The red parts are the parts that
changed from the original version of this snippet. Instead of having hard-coded
strings, we have calls to fetch a particular value from the resource bundle. We also
have to add a line at the beginning of the function to fetch the resource bundle itself.

I ran out of room to show it here, but the ResourceBundle APIs can throw
exceptions (what if the resource bundle isn’t there, or a particular resource isn’t in
it?), so this code snippet would normally be enclosed in a try-catch construct.

This code is obviously somewhat longer and harder to read, but it completely
separates the code from the resource data.

San Jose, CA, August-September 199915th International Unicode Conference 36

Developing Global Applications in Java

Translated ListResourceBundle
File MyResources_fr.java
public class MyResources_fr

extends ListResourceBundle {

public Object[][] getContents() {
return contents;

}

static final Object[][] contents = {
{ "WindowTitle", "Résultant de la recherche" },
{ "CancelLabel", "Annuler" },
{ "ResultMessage1", "La recherche a trouvé " },
{ "ResultMessage2",

" fichiers ayant le mot \"" },
{ "ResultMessage3", "\" sur le disque \"" },
{ "ResultMessage4", "\"." }

};
}

So what happens now when you want to translate the text? Instead of going through
the program source code with a fine-toothed comb looking for strings that need
translating, all of those strings are collected here in one place. The translator
simply copies the untranslated file and translates all the strings into his language.

Notice that we’ve given the resource bundle a new name. This allows a program to
carry around resources for several different languages or countries with the same
executable, and allows the program to dynamically select the right resources for
whatever language a particular user is using at the moment. For each variant of the
same resource bundle, the new one has the original one’s name tagged with a locale
ID (a Locale is a Java object that identifies a particular combination of language
and country [and sometimes other distinguishing characteristics]).

Notice that the definition of “OKLabel” is missing here. That’s because “OK” is
still “OK” when translated into French. Resource bundles are arranged in a
hierarchy going from least specific to most specific. Any bundle can omit a
resource and the resource-loading mechanism will automatically fall back on the
more general bundle for that resource’s value. In order for this “inheritance”
mechanism to work right (which is especially important when you don’t have a
resource for some locale), there are certain rules you have to follow about which
bundles you provide and which resources go into which ones.

San Jose, CA, August-September 199915th International Unicode Conference 37

Developing Global Applications in Java

The Java Internationalization
Architecture

Now that we’ve taken a few minutes to look at one of the major steps in
internationalizing a program and introduced ResourceBundle, I’d like to stop and
look at the overall architecture of the Java internationalization frameworks.

San Jose, CA, August-September 199915th International Unicode Conference 38

Developing Global Applications in Java

java.text architecture

Application programApplication program

FormattingFormatting CollationCollation Boundary
Detection
Boundary
Detection

Resource BundlesResource Bundles LocalesLocales

There are three major frameworks in the java.text package: formatting, collation,
and boundary detection. The application uses them for certain tasks. The
application also uses ResourceBundle in the manner we just examined. But the
other three frameworks use ResourceBundle in exactly the same way. Each of these
frameworks depends on data stored in resource bundles to tell it how to behave and
what to produce as output. Java comes with over 120 different resource bundles
(often mistakenly called “locales”) for various combinations of language and
country. The application program can specify which resource bundle an
international API should use by using a Locale object.

San Jose, CA, August-September 199915th International Unicode Conference 39

Developing Global Applications in Java

java.text architecture
Data-driven model
• The class is a pure execution engine
• Its actual behavior is specified by a description (usually

a String) that is supplied from outside
The application supplies it at construction time
Or the framework loads one from a resource bundle

This dependence on resource bundles is one of the central design characteristics of
the Java i18n frameworks. That is, they all use a data-driven model. Most of the
i18n classes are pure execution engines that derive their exact behavior from some
kind of textual description supplied by the caller or fetched from a resource bundle.
This allows changes in behavior without touching code. (Some capabilities do
require different code, but this approach keeps these situations to a minimum.)

San Jose, CA, August-September 199915th International Unicode Conference 40

Developing Global Applications in Java

java.text architecture
Abstract classes and factory methods
• The main API classes are all abstract; many of the

implementation classes are internal
Collator.getInstance(Locale.FRANCE);
Framework instantiates a subclass based on parameters
Some classes can be instantiated directly by the user: more
control, less flexibility
Most classes have multiple factory methods:

– DateFormat.getInstance()
– DateFormat.getTimeInstance()
– DateFormat.getTimeInstance(style)
– DateFormat.getTimeInstance(style, locale)
– DateFormat.getDateInstance()
– DateFormat.getDateInstance(style)
– DateFormat.getDateInstance(style, locale)
– DateFormat.getDateTimeInstance()
– DateFormat.getDateTimeInstance(dateStyle,
timeStyle)

– DateFormat.getDateTimeInstance(dateStyle,
timeStyle, locale)

Sometimes, different code is required to support certain locales. To allow for this,
the Java i18n frameworks are based on abstract classes and factory methods. That
is, the primary API class for a framework is abstract. The implementation class (or
classes) can then be made internal to the package. The implementation classes are
instantiated by calling a static method on the abstract class instead. This allows us
to use different classes in some cases without changing the API.

Of course, many of the implementation classes are also public. The application
program can use them when it requires more control over the result, but only at the
expense of not being able to use the other implementation classes to handle the
special cases.

Most classes that supply factory methods supply more than one. This allows the
user to achieve a fair amount of control over the result without having to call the
implementation class directly.

San Jose, CA, August-September 199915th International Unicode Conference 41

Developing Global Applications in Java

Locale
A Locale object is an identifier for a particular
user community
• A Locale has three parts:

Language ID (drawn from ISO 639): e.g. “de” = German
Country/Region ID (drawn from ISO 3166): e.g. “AT” = Austria
Variant code (ad-hoc): used right now to specify Euro currency

• Locale objects don’t contain data
Resource bundles contain data; Locales are used to identify
resource bundles

A Locale object is the key that’s used to specify a particular user community. The
community is identified by a language code, a region or country code, and an
optional variant code. Locale objects don’t contain data; they just identify user
communities. The data resides in resource bundles, and the Locales are used to
locate appropriate resource bundles. This approach allows different subsystems to
support different sets of locales (in particular, it means that an application doesn’t
have to support all of the locales the i18n library supports, nor is it limited to just
the locales the i18n library supports.

San Jose, CA, August-September 199915th International Unicode Conference 42

Developing Global Applications in Java

Locale
Java doesn’t follow the POSIX setlocale()
model
• The setlocale() model breaks down badly in a

multithreaded environment
• Instead of setting a locale and then doing something, a

Locale object is passed to an i18n object’s constructor
• i18n objects for several locales can coexist easily
• There is, however, a default locale:

Used when the user doesn’t supply a locale
Used as a fallback when looking for resource bundles
Picked up from the underlying environment or specified on the
command line
(e.g., java -Dlanguage=fr -Dregion=CA
MyProgram)
Can be changed (Locale.setDefault()), but not
multithread safe

If you’ve done work in C, you’ve probably run into the POSIX locale model, where
the locale does contain data, and where there’s only a single active locale in effect
for a process at any one time.

This model breaks down badly in a multithreaded environment, because all i18n
operations may have to be wrapped in setlocale() calls, and because multiple
threads all share the same locale setting (possibly requiring a locking scheme of
some kind).

Instead setting a locale each time you do something, you instantiate one of the i18n
objects with a locale, and then use that object every time you want that locale’s
behavior. There is no global setting.

There is a default locale, and it can be set with locale.setDefault(), but you
shouldn’t use this function the same way you’d use setlocale() in C. The default
locale is what locale gets used anywhere you don’t specify a locale. It’s either
picked up from the OS or supplied by the user on the command line. You should
pretty much never change the default locale. When you feel the temptation to call
Locale.setDefault() a lot, switch to specifying the locale explicitly everywhere
you’re asked for it and keep track of the locale(s) yourself.

Another reason not to use Locale.setDefault() is that it also isn’t multithread safe.
This means you’re not allowed to use it in an applet at all.

Most applications just want to “work right” for the user, and thus never need to set
the locale explicitly or think about the default locale.

San Jose, CA, August-September 199915th International Unicode Conference 43

Developing Global Applications in Java

ResourceBundle
…is the cornerstone of the Java
internationalization frameworks
• All of the built-in i18n classes have behavior that’s

determined by data in resource bundles
• The JRE includes support for over 70 locales

…allows for various ways of storing the actual
resource data
• ListResourceBundles
• Property files
• User-defined data sources

…provides a graceful fallback mechanism for
handling missing data

Most of the information on this slide we’ve already talked about: the whole i8n
library is resource-bundle-driven, and ResourceBundle provides a generic interface
to any type of actual repository of resource data.

The other main thing ResourceBundle gives you is a graceful fallback in case
information for a particular locale isn’t there.

San Jose, CA, August-September 199915th International Unicode Conference 44

Developing Global Applications in Java

ResourceBundle

MyResourcesMyResources

MyResources_
en

MyResources_
en

MyResources_
fr

MyResources_
fr

MyResources_
de

MyResources_
de

MyResources_
ja

MyResources_
ja

en_USen_US en_CAen_CA en_GBen_GB

fr_FRfr_FR fr_CAfr_CA

de_DEde_DE de_ATde_AT de_CHde_CH

fr_FR_
EURO

fr_FR_
EURO

de_DE_
EURO

de_DE_
EURO

de_AT_
EURO

de_AT_
EURO

de_CH_
EURO

de_CH_
EURO

This is a resource bundle hierarchy. You have a family of resource bundles called
“MyResources”. At the top, with no locale name appended, is the root resource
bundle. The next level down includes all the resource bundles qualified only with a
language code. The tier below that is all the resource bundles tagged with both
language and country codes, and the bottom tier is all the resource bundles with
language, country, and variant codes.

San Jose, CA, August-September 199915th International Unicode Conference 45

Developing Global Applications in Java

ResourceBundle

MyResourcesMyResources

MyResources_
en

MyResources_
en

MyResources_
fr

MyResources_
fr

MyResources_
de

MyResources_
de

MyResources_
ja

MyResources_
ja

en_USen_US en_CAen_CA en_GBen_GB

fr_FRfr_FR fr_CAfr_CA

de_DEde_DE de_ATde_AT de_CHde_CH

fr_FR_
EURO

fr_FR_
EURO

de_DE_
EURO

de_DE_
EURO

de_AT_
EURO

de_AT_
EURO

de_CH_
EURO

de_CH_
EURO

This hierarchy is used to define a search path. This diagram shows how the
resource bundle engine would search the hierarchy for the resource bundle for a
particular locale. The red line shows the search path for the requested locale (in this
case, “de_AT_EURO”). It starts at the bottom of the hierarchy and works its way
up, progressing to more and more general bundles, until it finds a bundle. If it can’t
find one, then it tries the chain leading upward from the default locale (“en_US”
here). The root resource bundle is the bundle of last resort. Since the bundle we
were looking for (MyResources_de_AT_EURO) is actually here, the search just
stops there.

San Jose, CA, August-September 199915th International Unicode Conference 46

Developing Global Applications in Java

ResourceBundle

MyResourcesMyResources

MyResources_
en

MyResources_
en

MyResources_
fr

MyResources_
fr

MyResources_
de

MyResources_
de

MyResources_
ja

MyResources_
ja

en_USen_US en_CAen_CA en_GBen_GB

fr_FRfr_FR fr_CAfr_CA

de_DEde_DE de_ATde_AT de_CHde_CH

fr_FR_
EURO

fr_FR_
EURO

de_DE_
EURO

de_DE_
EURO

de_AT_
EURO

de_AT_
EURO

de_CH_
EURO

de_CH_
EURO

But here, MyResources_de_AT_EURO and MyResources _de_AT are both
missing. Since we don’t have information specifically for Austrian German using
the Euro currency symbol, we fall back on generic German-language information.

San Jose, CA, August-September 199915th International Unicode Conference 47

Developing Global Applications in Java

ResourceBundle

MyResourcesMyResources

MyResources_
en

MyResources_
en

MyResources_
fr

MyResources_
fr

MyResources_
de

MyResources_
de

MyResources_
ja

MyResources_
ja

en_USen_US en_CAen_CA en_GBen_GB

fr_FRfr_FR fr_CAfr_CA

de_DEde_DE de_ATde_AT de_CHde_CH

fr_FR_
EURO

fr_FR_
EURO

de_DE_
EURO

de_DE_
EURO

de_AT_
EURO

de_AT_
EURO

de_CH_
EURO

de_CH_
EURO

Here, we’re missing de_AT, but not de_AT_EURO. We can go straight to the
requested bundle, but this is still a malformed hierarchy. This is because if you ask
for de_AT, you’ll just get de instead of de_AT_EURO. For any bundle you have in
your hierarchy, you must have all the bundles that should appear above it in the
hierarchy. Things won’t work right otherwise.

In other words, any time you have a resource bundle that’s specific to a particular
language and country (for example), you must also supply one that has generic
information for just the language (this prevents the fallback mechanism from
unnecessarily falling back on a different language). You must always supply a root
resource bundle. (In fact, if you only support one locale, you may have only a root
resource bnudle.)

San Jose, CA, August-September 199915th International Unicode Conference 48

Developing Global Applications in Java

ResourceBundle

MyResourcesMyResources

MyResources_
en

MyResources_
en

MyResources_
fr

MyResources_
fr

MyResources_
de

MyResources_
de

MyResources_
ja

MyResources_
ja

en_USen_US en_CAen_CA en_GBen_GB

fr_FRfr_FR fr_CAfr_CA

de_DEde_DE de_ATde_AT de_CHde_CH

fr_FR_
EURO

fr_FR_
EURO

de_DE_
EURO

de_DE_
EURO

de_AT_
EURO

de_AT_
EURO

de_CH_
EURO

de_CH_
EURO

In this example, we don’t have any German-language data at all, and we also don’t
have a specific bundle for U.S. English (the default locale). Here, if we look for
Austrian German, we’ll end up falling back to generic English data.

San Jose, CA, August-September 199915th International Unicode Conference 49

Developing Global Applications in Java

ResourceBundle

MyResourcesMyResources

MyResources_
en

MyResources_
en

MyResources_
fr

MyResources_
fr

MyResources_
de

MyResources_
de

MyResources_
ja

MyResources_
ja

en_USen_US en_CAen_CA en_GBen_GB

fr_FRfr_FR fr_CAfr_CA

de_DEde_DE de_ATde_AT de_CHde_CH

fr_FR_
EURO

fr_FR_
EURO

de_DE_
EURO

de_DE_
EURO

de_AT_
EURO

de_AT_
EURO

de_CH_
EURO

de_CH_
EURO

And if we have neither English nor German data, we fall back on the root resource
bundle. The root resource bundle can contain data in any language whatsoever (or
data that’s language-independent). The choice is up o the programmer. The only
thing to keep in mind is that this is the resource bundle of last resort, and you want
to make sure it contains reasonable last-resort data.

If you support more than one language, you should generally have a resource
bundle explicitly tagged for that language as well as the root bundle. This will keep
you from falling back on the default locale when the language you want is actually
stored in the root.

San Jose, CA, August-September 199915th International Unicode Conference 50

Developing Global Applications in Java

ResourceBundle

MyResourcesMyResources

MyResources_
en

MyResources_
en

MyResources_
fr

MyResources_
fr

MyResources_
de

MyResources_
de

MyResources_
ja

MyResources_
ja

en_USen_US en_CAen_CA en_GBen_GB

fr_FRfr_FR fr_CAfr_CA

de_DEde_DE de_ATde_AT de_CHde_CH

fr_FR_
EURO

fr_FR_
EURO

de_DE_
EURO

de_DE_
EURO

de_AT_
EURO

de_AT_
EURO

de_CH_
EURO

de_CH_
EURO

Resource bundles can inherit from one another. Once a bundle has been located,
this is the hierarchy that’s followed when looking for resources in that bundle. The
search starts in the specified bundle (or the closest one to it that was found) and
proceeds from there up the hierarchy until it reaches the root (it doesn’t fall back on
the default locale first; instead, it throws an error).

This means bundles on the second tier of the h8ierarchy really only need to specify
values for resources that differ from the value for that resource in the root resource
bundle. Likewise, bundles further down the chain only have to specify values that
deviate from the values in their parents.

HOWEVER, all of the resource must be present in the root resource bundle. You
can’t add new resources as you move down the chain.

San Jose, CA, August-September 199915th International Unicode Conference 51

Developing Global Applications in Java

ResourceBundle
If you have a resource bundle with a language
and a country, DO NOT omit the bundle with
just the language
• i.e., If you have “MyResources_fr_BE”, you must have

“MyResources_fr” too.
NEVER omit the root resource bundle!
Generally, omit country-specific information
from resource bundles that only specify a
language
Root resource bundle can be in any language
Take advantage of inheritance to avoid
repetition
Resource bundles don’t all have to be the same
class– the inheritance chain is based on names

This is just a recap of the things we’ve already talked about.

One additional point to highlight is that the resource-bundle and resource lookup
mechanisms both operate using only name lookup. There is no requirement that all
of the bundles in the hierarchy be of the same class, nor that resource bundles
inheriting data from other resource bundles have to be subclasses of them.

Generally, just make all of your resource bundles descend directly from
ListResourceBundle and not from each other.

San Jose, CA, August-September 199915th International Unicode Conference 52

Developing Global Applications in Java

Display names
Don’t confuse programmatic IDs with display
names
Real programmatic IDs should be shown to the
user only as a last resort

Use getDisplayName(), not getName()
for user-visible text

PRT
EST
IET
CST
MST
PNT
PST

Atlantic Standard Time
Eastern Standard Time
Eastern Standard Time
Central Standard Time
Mountain Standard Time
Mountain Standard Time
Pacific Standard Time

PST Pacific Standard Time

Another important design feature is the distinction between programmatic IDs and
display names. For time zones in particular, a programmatic ID can be mistaken for
a display name. You don’t want to present programmatic IDs to the user, except as
a last resort, even if the display name and the internal ID are the same.

This is because they’re not always the same. In the example above, IET isn’t a real
time zone abbreviation; it’s just an ID for the version of Eastern Standard Time
used in Indiana, where they don’t observe daylight savings time.

Display names can also be translated, so they’re looked up in resource bundles. Just
as with resource names, locale IDs and time zone IDs (and so forth) are meant only
for internal programmatic use. Don’t use getName() to get user-visible text; use
getDisplayName() instead.

San Jose, CA, August-September 199915th International Unicode Conference 53

Developing Global Applications in Java

Formatting Text Messages

Okay, now back to issues you encounter while internationalizing.

San Jose, CA, August-September 199915th International Unicode Conference 54

Developing Global Applications in Java

Formatting messages
dialog.add("Center",
new Label("The search found " + hits
+ " files containing \"" + searchString
+ "\" on disk \"" + searchRoot + "\"."));

Putting user-visible text (and other UI elements) into resources is the single largest
thing you can do to make your program easier to translate. But it’s far from the
only thing that must be done. Look at this line here from our ResorceBundle code
snippet. This is an example of a hidden assumption. Let’s take a look at where the
assumption is.

In the previous exercise, we had to take each fixed fragment of this message and
translate it individually. But that’s not the way the user would be thinking of this
message-- he’d be thinking of it as a single sentence with “blanks” that get filled in.

San Jose, CA, August-September 199915th International Unicode Conference 55

Developing Global Applications in Java

Formatting messages

The search found 23 files containing
“hello” on disk “MyDisk”.

In other words, the user will see this: a complete sentence. There are a few
dynamic parts of this sentence, but the “fill in the blank” quality doesn’t change the
fact that this message is a single unit. Why does this matter?

San Jose, CA, August-September 199915th International Unicode Conference 56

Developing Global Applications in Java

Formatting messages

The search found 23 files containing
“hello” on disk “MyDisk”.

Es gibt 23 Dateien auf Platte
„MyDisk“, die „Hello“ enthalten.

Well, consider what would happen to this sentence if we translated it into German.
The sentence structure is totally different. The different parts of the sentence go in
different places relative to the “blanks,” which means a translator would have to
consider the whole sentence together when translating, not just translate the
individual fragments. In this case, that’d work, but if you left out a static text string
between two “blanks” and in some other language there needed to be a word there,
the translator would be stuck. This is one of the hidden assumptions in the
example.

San Jose, CA, August-September 199915th International Unicode Conference 57

Developing Global Applications in Java

Formatting messages

The search found 23 files containing
“ hello ” on disk “ MyDisk ”.

Es gibt 23 Dateien auf Platte
„ MyDisk “, die „ Hello “ enthalten.

The more serious hidden assumption in the code is that the “blanks” will come in
the same order in every language. That isn’t true here. The dynamic parts of the
sentence go in a very different order once the sentence is translated into German.

Code that builds up messages needs to take this into account. Therefore, it’s a Bad
Idea to build up user-visible messages using string concatenation.

San Jose, CA, August-September 199915th International Unicode Conference 58

Developing Global Applications in Java

Formatting messages
dialog.add("Center",

new Label("The search found " + hits
+ " files containing \"" + searchString
+ "\" on disk \"" + searchRoot
+ "\"."));

So how do you do it? Well, let’s take another look at our code snippet. This is how
it looked originally. How do we fix it to output the message in a way that doesn’t
make any assumptions about sentence structure? Java provides a class called
MessageFormat for this.

San Jose, CA, August-September 199915th International Unicode Conference 59

Developing Global Applications in Java

Formatting messages
dialog.add("Center",
new Label(MessageFormat.format(

"The search found {0} files containing "
+ "\"{1}\" on disk \"{2}\".",
new Object[] {

new Integer(hits),
searchString,
searchRoot

}
)

));

With MessageFormat, the code changes to look like this. The static format()
method on MessageFormat takes two arguments: a pattern string and an array of
arguments. The argument array contains the values that get filled into the “blanks”
in the message, in a program-specified order.

The pattern string includes tokens indicating where the “blanks” are: these are the
numerals in braces. The numeral tells the formatter which value from the argument
array to put in at a particular “blank” position. In every language, “{0}” will
always refer to the number of hits, “{1}” will always refer to the search pattern, and
“{2}” will always refer to the name of the search root. The program will always
supply these arguments in this order. But the pattern string doesn’t have to use
them in this order. It can rearrange them at will, leave some out, use some twice,
and so on.

In other words, the localizable part of this statement is the pattern string.

San Jose, CA, August-September 199915th International Unicode Conference 60

Developing Global Applications in Java

Formatting messages
dialog.add("Center",
new Label(MessageFormat.format(

resources.getString("ResultMessage"),
new Object[] {

new Integer(hits),
searchString,
searchRoot

}
)

));

So to make this line language-independent, all you have to do is pull the pattern
string out of a resource. So the statement ends up looking like this.

San Jose, CA, August-September 199915th International Unicode Conference 61

Developing Global Applications in Java

Formatting messages
{ "ResultMessage",
"The search found {0} files "
+ "containing \"{1}\" on disk "
+ "\"{2}\"." }

{ "ResultMessage",
"Es gibt {0} Dateien "
+ "auf Platte „ {2} “, "
+ "die „ {1} “ enthalten." }

In the resource-bundle definition, we can now replace the four resources containing
fragments of the message with a single resource containing the pattern string. The
first line shows the English version of the pattern string, and the second line shows
the German version. Note how the German version uses the arguments in a
different order than the English version did.

San Jose, CA, August-September 199915th International Unicode Conference 62

Developing Global Applications in Java

Handling plurals

The search found 1 files containing “hello”
on disk “MyDisk”.

We’re still left with one pesky problem every programmer has encountered many
times: Here’s what you get when the number of hits is 1. There are a number of
ways programmers deal with this. One is to just leave it this way and forget about
it. This produces wrong output, of course, but most users will either ignore it or
kind of sneer and keep going. It doesn’t impair understanding. This isn’t
necessarily true in other languages.

San Jose, CA, August-September 199915th International Unicode Conference 63

Developing Global Applications in Java

Handling plurals

The search found 1 file(s) containing
“hello” on disk “MyDisk”.

Then there’s the classic dodge for the problem. I’ve always thought this looks
pretty stupid too, and this definitely won’t work in a lot of languages.

The third approach is to just break down and include an “if” statement to select
between the singular and plural forms of “file”. But this includes a hidden
assumption: that your only choices are singular and plural. In some languages, you
have singular, dual, and plural, for example. A fixed “if” will leave users of these
languages out of luck.

San Jose, CA, August-September 199915th International Unicode Conference 64

Developing Global Applications in Java

Handling plurals

The search found {0} files
containing "{1}" on disk "{2}".

MessageFormat is a lot more flexible than it looks at first sight. Each of these
substitutions (the numbers in the braces) can contain more than just a number in the
brace. They can also extra arguments that tell the formatter what kind of argument
it is, and to supply more information on how to format that argument.

One of our options is to tell the formatter to format a numeric argument as a choice
rather than a number. Formatting a number as a choice uses the number to select
among several different pattern strings.

San Jose, CA, August-September 199915th International Unicode Conference 65

Developing Global Applications in Java

Handling plurals

The search found {0} files
containing "{1}" on disk "{2}".

The search found {0,choice, 0#no
files|1#one file|2#{0} files}
containing "{1}" on disk "{2}".

So here we can deal with the plural problem by having argument 0 be a choice
argument. We supply three different pattern strings, separated by vertical bars.
The numbers at the beginning of the choice specify the range of values that
correspond to that choice. So for 0 or more, the expression evaluates to “no files”.
For 1 or more, the expression evaluates to “one file”, and for 2 or more we get “{0}
files”. Note that we can re-use the {0} inside the choices, letting us still format the
value as a number when the value is 2 or more. Again, this lets us put all the
information on the alternative forms of this message into a single pattern string that
can be localized all at once.

San Jose, CA, August-September 199915th International Unicode Conference 66

Developing Global Applications in Java

Handling plurals

The search found {0,choice, 0#no
files|1#one file|2#{0} files}
containing "{1}" {3,choice,0#on
disk "{2}" |1#in folder "{2}"}.

Choice formats are useful for some other things, too. Let’s say the root of the
search could either be a whole disk or a single folder. Then we’d like to be able to
change the message to say either “disk” or “folder” instead of just “disk” all the
time. We can use a choice to select between the two (or more) different words.

However, you can’t format a string as a choice– there’s no obvious way for the
formatter to look at a string and tell which choice it goes with. We’d have to add
another argument to the formatter (argument 3) that’s a selector code. This does
involve changes to the code, but those changes can apply across all locales.

San Jose, CA, August-September 199915th International Unicode Conference 67

Developing Global Applications in Java

Handling Numbers and
Currency

San Jose, CA, August-September 199915th International Unicode Conference 68

Developing Global Applications in Java

Handling Numbers

1,234

Now the whole reason we need something like MessageFormat is so that we can
intersperse static text with dynamically-generated text. We’ve now fixed it so that
the static text is off in a separate place where it can be translated, but what about the
dynamically-generated text?

Take numbers, for example. What number is this?

San Jose, CA, August-September 199915th International Unicode Conference 69

Developing Global Applications in Java

Handling Numbers

1,234

one thousand two hundred thirty-four

Well, if you’re an American, you probably looked at this number and saw one
thousand two hundred thirty-four. But that’s not what everybody would see.

San Jose, CA, August-September 199915th International Unicode Conference 70

Developing Global Applications in Java

Handling Numbers

1,234

one thousand two
hundred thirty-four

un point deux
trois quatre

If you’re French, you’ll see this as one point two three four. That’s because in
France, the decimal point is a comma instead of a period. In fact, the comma is
used in many European countries, including Great Britiain.

Obviously, there’s a thousandfold difference between the American and European
interpretations of this sequence of characters. This could obviously lead to some
serious misunderstandings if you’re operating across country boundaries. Clearly,
your program needs to worry about this kind of thing if it displays numbers.

San Jose, CA, August-September 199915th International Unicode Conference 71

Developing Global Applications in Java

Handling Numbers

The decimal-point character isn’t the only character that can vary. This slide shows
five different ways the same numeric value can be rendered. The first is the
American format. The second is French and the third is Swiss German. So here we
have three different combinations of decimal-point and thousands-separator
characters. In Arabic, the characters for all the digits have changed as well, and in
Japanese, the whole way a number is written is different.

San Jose, CA, August-September 199915th International Unicode Conference 72

Developing Global Applications in Java

Handling Currency

Handling currency can be even more difficult than handling other kinds of numbers.
Now you have to worry about currency symbols and where they get placed relative
to the number, alternate decimal-point characters, how many decimal places to
show, and how much to round the value.

As if all that weren’t complicated enough, you may also have to worry about the
exchange rates between different currencies. This is particularly true when an
application has to display monetary values in more than one currency.

San Jose, CA, August-September 199915th International Unicode Conference 73

Developing Global Applications in Java

Handling Numbers
DO NOT use toString() to format user-
visible numbers!
DO NOT use parseInt() or other similar
functions to parse numeric user input!
Use NumberFormat.format() and
NumberFormat.parse() instead

instead of...
lbl = new Label(Double.toString(milesTraveled));

write...
NumberFormat fmtr = NumberFormat.getInstance();
lbl = new Label(fmtr.format(milesTraveled));

Java’s built-in number formatting engine will handle this for you, but only if you
call the right APIs. The main thing to remember is not to use toString() or similar
methods to convert numbers into strings that the user will see, and not to use
parseInt() or similar methods to parse user input. (toString() and what-not are
useful, but only internally and for printing debugging messages.)

Instead of using these APIs, use the NumberFormat object. This will automatically
format numbers in a way that’s appropriate for the user’s locale.

The example shows that you have to go through the extra hassle of creating a
number formatter to use, but in real life, you’d probably just create a single number
formatter and let it sit around in a static variable where everyone can get to it.

San Jose, CA, August-September 199915th International Unicode Conference 74

Developing Global Applications in Java

NumberFormat
All formatters both format and parse
00001111 “31” 00001111
• public final String format(Object obj);
• public Object parseObject(String source);

Most formatters provide convenience methods
• public final String format(long number);
• public final String format(double number);

NumberFormat provides four factory methods
• NumberFormat.getInstance()
• NumberFormat.getNumberInstance()
• NumberFormat.getPercentInstance()
• NumberFormat.getCurrencyInstance()

NumberFormat and all other formatting objects are designed both to format
(convert data from the internal format into user-readable text) and parse (convert
user-readable text back into the internal format). There is a family of format() and
parse() functions to do these things.

Note that parsing will often, but not always, produce the same value you passed into
the formatter when you parse its output. It generally depends on whether all of the
information in the original value is still present in the formatted output.

Most formatters will provide convenience methods that take parameters more
specific than Object. NumberFormat has methods that take a long and a double (the
other types are all automatically upconverted).

There are four factory methods on NumberFormat: One formats numbers in a
generic format, one formats them as currency values, and one formats them as
percentages. getInstance() does the same thing as getNumberInstance().

San Jose, CA, August-September 199915th International Unicode Conference 75

Developing Global Applications in Java

DecimalFormat
Exercising more control
• The DecimalFormat object gives you more control over

the formatting process
• The DecimalFormat object only formats numbers using

Western positional notation in the decimal system
Need new class to do other radices
Need new class to write out a number in Chinese characters
Need new class to write out number in words

• Parameters that can be controlled
Min/max digits to the left of the decimal point
Mix/max digits to the right of the decimal point
Whether to parse strings as integers or decimal numbers
Whether to use grouping (“thousands”) separators
Distance between grouping separators
Multiplier
Prefixes and suffixes for positive and negative numbers
Whether to show the decimal point after an integer

If you want more control over the result than just the generic format for a given
type and locale, you can use DecimalFormat, the main implementation class for
NumberFormat directly. This class is used to format numbers using standard
Western positional notation and the decimal numeration system. This covers
almost all languages.

DecimalFormat lets you control many aspects of the output, including the minimum
and maximum number of digits on either side of the decimal point, whether to
separate thousands, ten-thousands, or nothing, whether to add prefixes or suffixes to
numbers, whether to use a scaling factor (percentage formatters use a scaling factor
of 100), and many other things.

You’ll need a different subclass of NumberFormat to do some things, such as
formatting in non-decimal radices, formatting numbers in Chinese characters, or
formatting numbers into words.

San Jose, CA, August-September 199915th International Unicode Conference 76

Developing Global Applications in Java

DecimalFormat
DecimalFormat provides a pattern language as
a shortcut way to specify many options at once
• 0 specifies a required digit position
0000

• # specifies an optional digit position
0.###

• , specifies the use and position of a grouping separator
#,##0.00

• Prefixes and suffixes can be added
$#,##0.00

• ; separates positive and negative patterns
$#,##0.00;($#,##0.00)

You can also change many of these settings in a single call by using a pattern: a
template describing the desired result. In fact, the built-in number formatters
produced by NumberFormat’s factory methods all load patterns from resource
bundles to get their behavior.

This slide shows a sampling of the most important pattern characters and how they
work together to specify different formats.

San Jose, CA, August-September 199915th International Unicode Conference 77

Developing Global Applications in Java

DecimalFormatSymbols
Contains all of the localizable characters and
strings that DecimalFormat uses
• Decimal point character
• Grouping separator character
• Range of characters to use as digits
• Minus sign
• Percent/per mille signs (e.g., “%” and “‰”)
• Local currency symbol (e.g., “$” or “¥”)
• International currency symbol (e.g., “USD” or “JPY”)
• Decimal point character to use in currency values
• Strings to use for infinity and NaN

The actual characters to use in the output are specified using a
DecimalFormatSymbols object, which is also usually loaded from a resource. This
slide shows the various parameters stored in a DecimalFormatSymbols object.

San Jose, CA, August-September 199915th International Unicode Conference 78

Developing Global Applications in Java

The Euro
Java 1.1.6 and later versions support the Euro
• Unicode character database updated to Unicode 2.1
• Fonts and keyboard maps updated
• Character code converters updated
• New locales added

Currently, unmodified programs work as they always have
If you want to format a value in Euros, you have to specifically
ask for it

Support for the Euro currency was added to Java in version 1.1.6. This involved
updating fonts and keyboard layouts so you could display and type it, updating
character converters to support other encodings that support the Euro, and updating
the internal Unicode tables to conform to Unicode version 2.1, which added the
Euro to Unicode.

In addition, new resource bundles were added for the countries using the Euro
currency. You can get a currency formatter that formats numbers as numbers of
Euros by specifying a locale ID with a variant code of “EURO.” Currently, we only
support those countries actually using the Euro; we don’t yet support those (such as
the UK) that might support it in the future.

San Jose, CA, August-September 199915th International Unicode Conference 79

Developing Global Applications in Java

Multiple currencies
Handling multiple currencies at the same time
can be tricky
• You may need to keep track of the units for each value
• You may need to perform currency conversions
• You may need to mix two formatters to get the right

effect (e.g., “1.23 F” instead of “1,23 F”)
• You may want to use the international currency

symbols instead (e.g., “FRF 1.23” instead of “1,23 F”)

Some applications may want to format currency values denominated in different
units. The values may all be stored in the same currency and just translated on
output, or they may also be stored in different currencies. In either case, you have
to do a currency conversion, something Java can’t do for you.

If different values are denominated in different currencies, you’ll probably also
need to tag each value with the currency it’s in. You may want to mix two currency
formats (to show a value in French francs to an American user using the American
decimal-point character, for example), or you may just want to fall back on the ISO
three-letter currency symbols. This is all possible, but requires some extra work:
there are no convenience methods to help with this.

San Jose, CA, August-September 199915th International Unicode Conference 80

Developing Global Applications in Java

Possible futures
We’ve done some improved number formatters
that may make it into future JDKs
• Enhanced DecimalFormat

Adds new features to DecimalFormat
– Space padding
– Nickel rounding
– Scientific notation
– Support for BigInteger and BigDecimal

• RuleBasedNumberFormat
A rule-driven engine that allows for more advanced
formatting:

– Numbers written out in words (“twenty-three”)
– Numbers written in Chinese characters
– Non-decimal radices
– Special handling of fractions (“46 2/3”)
– Changing denominations (“1000K” and “976 Mb”)

Our group at IBM has done two new number formatters of our own. One is an
enhanced version of DecimalFormat that adds space padding, scientific notation,
nickel rounding, and support for BigInteger and BigDecimal to the current version
of DecimalFormat. We’re still negotiating to get this into the JDK.

We also have something called RuleBasedNumberFormat, a more complicated
formatting engine that allows for more exotic formats such as Chinese characters,
words, alternate radices, special handling of fractions, and values with changing
denominations, among other things. We’re still not sure of the ultimate fate of this
object.

Trial versions of both formatters are available at IBM’s AlphaWorks Web site.

San Jose, CA, August-September 199915th International Unicode Conference 81

Developing Global Applications in Java

Handling Dates and Times

San Jose, CA, August-September 199915th International Unicode Conference 82

Developing Global Applications in Java

Handling Dates & Times

Today is Friday, July 2, 1999.

Displaying dates and times has many of the same challenges as displaying numbers.
Consider a message like this. Again, it consists of both a static and a dynamic
part...

San Jose, CA, August-September 199915th International Unicode Conference 83

Developing Global Applications in Java

Handling Dates & Times

Today is Friday, July 2, 1999.

Heute ist Friday, July 2, 1999.

...and it doesn’t work to just translate the static part.

San Jose, CA, August-September 199915th International Unicode Conference 84

Developing Global Applications in Java

Handling Dates & Times

Today is Friday, July 2, 1999.

Heute ist Friday, July 2, 1999.

Heute ist Freitag, 2. Juli 1999.

What a German speaker would really like to see is this, with both the message and
the date itself translated into German.

San Jose, CA, August-September 199915th International Unicode Conference 85

Developing Global Applications in Java

Handling Dates & Times

Today is Friday, July 2, 1999.

Heute ist Friday, July 2, 1999.

Heute ist Freitag, 2. Juli 1999.

Today is Freitag, 2. Juli 1999.

In fact, if you’re a German and you’re running a program that hasn’t actually been
translated into German, it’s probably more desirable to see this.

San Jose, CA, August-September 199915th International Unicode Conference 86

Developing Global Applications in Java

Handling Dates & Times

Again, the displayed forms of the dates can vary quite a bit from language to
language. Not only do the words for the days and months change, but so does the
order of the fields themselves and the punctuation around them. In fact, in some
countries, the calendar system in use also changes: In Hebrew, for example, April 2,
1999 is the 16th of Nisan, 5759. Japan has changed to use our Gregorian calendar,
but they number their years by the reigns of the emperors: 1999 is 11 Heisei in
Japan.

So, just as with numbers, you don’t want to do date and time formatting on your
own. Again, Java provides an extensive framework of tools to let you handle dates
and times properly.

San Jose, CA, August-September 199915th International Unicode Conference 87

Developing Global Applications in Java

Handling Dates & Times
Formatting and parsing dates
• DO NOT use Date.toString() or
Date.toLocaleString()!

• DO NOT use Date.getMonth(), Date.getDate(),
Date.getYear(), etc. and format them with
NumberFormat

• Use DateFormat:
DateFormat fmt =

DateFormat.getDateTimeInstance(
DateFormat.FULL, DateFormat.DEFAULT);

System.out.println(fmt.format(new Date()));

• Use MessageFormat:
MessageFormat.format(

"It is {0,time,medium} on {0,date,full}.",
new Object[] { new Date() }

);

So you want to avoid using functions like toString(). Even more importantly, you
don’t want to decompose the date into fields using the methods on Date and then
format each field individually.

Instead, use DateFormat. Again, it has factory methods you call to get appropriate
DateFormat objects for your locale. A DateFormat actually formats both dates and
times (which are stored together in a Date object), so there are separate factory
methods to get objects that control whether you see just the date, just the time, or
both. DateFormat also offers a selection of formats (short, medium, long, and full),
and you can set them independently for the date and time.

Again, you can also access all these features through MessageFormat by specifying
extra options in the {} sequences. In the example, we’re using the same parameter
(a Date object that has been initialized to “now”) in two different substitutions: the
first shows just the time and the second shows just the time.

Just as with NumberFormat, there is extensive API on DateFormat and its concrete
subclass SimpleDateFormat for customizing the output or behavior of the formatter.

San Jose, CA, August-September 199915th International Unicode Conference 88

Developing Global Applications in Java

DateFormat
Provides four factory methods:
• getInstance()
• getDateInstance()

“August 26, 1999”
• getTimeInstance()

“12:47 PM”
• getDateTimeInstance()

“August 26, 1999 12:47 PM”

The abstract DateFormat class has four factory methods, that produce formatters
that show either the “date” part of the date value (a Date specifies a point of time
within a range of millennia with millisecond resolution, meaning it contains both
date and time information), the “time” part of the value, or both. (getInstance() is
the same as getDateTimeInstance().)

San Jose, CA, August-September 199915th International Unicode Conference 89

Developing Global Applications in Java

DateFormat
Four time styles:
• Short: Omits seconds (“12:54 PM”)
• Medium/Default: Includes seconds (“12:54:56 PM”)
• Long: Includes time zone (“12:54:56 PM PDT”)
• Full: Same as full, or includes milliseconds

(“12:54:56.034 PM PDT”)
Four date styles:
• Short: In numerals, 2-digit year (“8/26/99”)
• Medium/Default: In numerals or abbreviations, 4-digit

year (“8/26/1999” or “Aug 26, 1999”)
• Long: In words (“August 26, 1999”)
• Full: Includes day of week

(“Thursday, August 26, 1999”)

Each factory method lets you specify a style for the time part and a separate style
for the date part. The meanings of the various styles are shown above. (“Medium”
and “Default” are always the same.)

San Jose, CA, August-September 199915th International Unicode Conference 90

Developing Global Applications in Java

SimpleDateFormat
Only concrete subclass of DateFormat
Output controlled by a pattern string
• Groups of letters mark positions of elements:

G=era (e.g., BC or AD), y=year, M=month, d=day, E=day of
week, h=hour (12-hour clock), H=hour (24-hour clock),
m=minute, s=second, a=AM/PM, z=time zone, etc.

• Literal characters enclosed in single quotes
• Number of letters in group controls size

For a numeric value, # of letters is minimum # of digits
For a textual value, 4 letters means spell it out in words, less
than 4 uses abbreviation
For a value that be rendered either way, 1 or 2 letters means
digits and 3 or more letters means text

“h:mm:ss a zzzz, EEEE, MMMM d, yyyy G” produces
“9:04:36 AM Pacific Daylight Time, Sunday, August 1,

1999 AD”

Again, the implementation class of DateFormat, SimpleDateFormat, is also public,
allowing finer-grained control over date/time formatting than the DateFormat
factory methods give you.

SimpleDateFormat’s behavior is controlled by a pattern string that acts as a
template for the desired result. The pattern string includes tokens specifying
different possible “fields” of the date, such as day or month or hour of day (there
are many to choose from), punctuation or boilerplate text, and their relative orders.
The tokens also usually allow for several alternative representations for their value.

The canned date formats are all based on pattern strings in resources.

San Jose, CA, August-September 199915th International Unicode Conference 91

Developing Global Applications in Java

DateFormatSymbols
Holds text for:
• Era names
• AM and PM
• Month names and abbreviations
• Day-of-the-week names and abbreviations
• Time zone names and abbreviations

SimpleDateFormat has a DateFormatSymbols object associated with it that contains
the actual words and abbreviations used for certain field values. The symbols
object is also usually loaded from a resource bundle.

San Jose, CA, August-September 199915th International Unicode Conference 92

Developing Global Applications in Java

Handling Dates & Times
Storing and manipulating dates & times
• java.util.Date

of milliseconds since midnight, January 1, 1970 GMT
(signed 64-bit integer)

• Now
System.currentTimeMillis()
new Date()

• Composing and decomposing
DO NOT use Date.getMonth(), Date.getDate(),
Date.getYear(), etc.
Use java.util.Calendar:
Calendar cal = Calendar.getInstance();
cal.setTime(myDate);
myDay = cal.get(Calendar.DAY_OF_MONTH);
myMonth = cal.get(Calendar.MONTH) + 1;
myYear = cal.get(Calendar.YEAR);

• Performing arithmetic
Calendar.add()
Calendar.roll()

With dates, you also have the additional problem of making sure your internal
processing code doesn’t contain any hidden locale assumptions when manipulating
the values.
Java provides a built-in class called Date that’s used for storing dates and times. Be
sure you use this for all date storage, not some ad-hoc format. The Java Date
format is completely locale-independent and Y2K-proof. All it is is the number of
milliseconds before or since midnight, January 1, 1970 GMT. Notice that dates are
always stored internally as GMT regardless of time zone.
There are two APIs for obtaining the current date and time. One,
System.currentTimeMillis(), returns a number of milliseconds, and this can’t be
formatted without converting it into a date (the raw value is useful for things like
timing tests, but not for displayable dates and times). The default constructor on the
Date object, on the other hand, creates a Date object using
System.currentTimeMillis().
Date provides a pretty good API for decomposing a date into individual fields and
the reverse. DON’T USE IT. This is because Date contains the hidden assumption
that all countries use the Gregorian calendar. Instead, use the Calendar object to
convert between fields and millis. The API is better, and it’ll work with multiple
calendar systems.
You also don’t want to do arithmetic directly on a number of millis. Consider
adding a month. You have no way of knowing how long any particular month is.
Non-Gregorian calendars also have this type of problem, but in different fields and
in different ways. Calendar provides add() and roll() methods for altering
individual fields, and also provides API to do things like time zone conversions.

San Jose, CA, August-September 199915th International Unicode Conference 93

Developing Global Applications in Java

Calendar
Abstract class defining a family of classes that
perform operations on dates
• Can translate millis value to individual fields
• Can build millis value from individual fields
• Can normalize field values (e.g., January 78th becomes

March 19th in a non-leap year)
• Supports date arithmetic:

Jan 30 + 1 month = Feb 28
Jan 30 + 2 months = March 30

• Can perform time-zone conversions

The Calendar class defines the algorithms to be used for deriving field values (such
as hour of day or day or month) from a number of millis (a raw date value), or
deriving a number of millis from a set of field values. These capabilities can be
used to perform accurate date arithmetic., including time zone conversions.

San Jose, CA, August-September 199915th International Unicode Conference 94

Developing Global Applications in Java

TimeZone
Carries a raw offset from GMT (in seconds)
Carries rules for determining whether a date is
in standard time or daylight savings time
• JDK has canned rules for all current world time zones
• No historical data
• Versions prior to JDK 1.1.6 miss many zones

Zones have programmatic IDs
• JDK 1.1.6 and later use the form

“America/Los_Angeles” or “Europe/London”
• pre-JDK 1.1.6 uses three-letter abbreviations (“PST”,

“BST”)
• API provided in JDK 1.2 to get display names and

abbreviations (available through DateFormat pre-1.2)
DateFormat time zone bug fixed in 1.1.6

Calendar also uses an auxiliary object called TimeZone to specify a time zone (the
internal value is always in GMT). A TimeZone object carries not only an offset (in
seconds) from GMT, but also rules for calculating the beginning and end of
Daylight Savings Time (and an additional offset to use during Daylight Savings
Time). In JDK 1.1.6, we provide a complete set of canned TimeZones representing
all the current world time zones (there’s a different TimeZone for every jurisdiction
with different DST rules). These TimeZones all have standard internal identifiers,
and many aliases are also supplied (for example, “Asia/Tokyo” and “Asia/Seoul”,
although they have the same offset and DST rules, are both valid identifiers).

Prior to 1.1.6, a lot of time zones were missing, causing some weird behavior,
contrived three-letter IDs were used (they’re still supported for compatbility), and
there was a bug in DateFormat that caused it to format everything according to an
arbitrary default time zone for the default locale. This bug was fixed, so that
TimeZone.getDefault(), which returns the current time zone setting from the
underlying host environment, is used instead.

In JDK 1.2, we also added a getDisplayName() function to TimeZone. In prior
versions, the display names could be accessed through SimpleDateFormat, but that
wasn’t obvious to anyone.

San Jose, CA, August-September 199915th International Unicode Conference 95

Developing Global Applications in Java

International calendars
JDK supports only Gregorian calendar
We’ve written classes to support:
• Hebrew calendar
• Islamic calendar
• Japanese imperial calendar
• Thai Buddhist calendar

The only concrete subclass of Calendar in the JDK is GregorianCalendar, which is
fine for most things, but it’s not the only calendar system in use in the world (it’s
not even the only one in use in business). We’ve put together classes that handle
several other calendar systems, including the Hebrew, Islamic, and Japense
calendars. There are also available on AlphaWorks.

San Jose, CA, August-September 199915th International Unicode Conference 96

Developing Global Applications in Java

More on MessageFormat
Substitutions in MessageFormat patterns
may include additional formatting info
• First field specifies data type

Can be number, date, time, or choice
• For number, second field can be

integer
currency
percent
DecimalFormat pattern

• For date or time, second field can be
short
medium
long
full
SimpleDateFormat pattern

• For choice, second field is ChoiceFormat pattern

Now that we’ve had a chance to look at NumberFormat and DateFormat, I’d like to
take another look at MessageFormat.

As I mentioned briefly before, the substitutions in a MessageFormat pattern can be
qualified with information as to their type and desired output format. The type can
be number, date, time, or choice. (Strings are always formatted as themselves.)

For “number,” you can specify the format to be integer, currency, or percent, or you
can specify a DecimalFormat pattern string. Likewise, “date” and “time” can both
be qualified with short, medium, long, or full, or with a SimpleDateFormat pattern
string.

San Jose, CA, August-September 199915th International Unicode Conference 97

Developing Global Applications in Java

More on MessageFormat
Be careful when using MesssageFormat with
DateFormat or NumberFormat
• If you use the static format() method or don’t

specifically say something, all NumberFormats and
DateFormats are based on the default locale

• To use a different locale, you must:
Instantiate a MessageFormat
Call MessageFormat.setLocale() to set the locale
Re-apply the pattern using applyPattern()

• Or…
Make sure your pattern doesn’t specify anything as number,
date, or time
Instantiate a MessageFormat based on this pattern
Manually set up all its sub-formatters using setFormats()

But you have to be careful sometimes when you have number or date/time fields in
a MessageFormat pattern. If you just specify the formats in the pattern, you always
get the default locale’s behavior. If you want some other locale’s behavior instead,
you have call setLocale() on the MessageFormat (which precludes using the static
format() function), and then call applyPattern() to set the pattern (you can’t do this
in the opposite order).

Or you can simply manually create the subformatters yourself and pass them to the
MessageFormat using its setFormats() method (this is useful in more exotic cases,
such as when the fields aren’t all going to use the same locale).

San Jose, CA, August-September 199915th International Unicode Conference 98

Developing Global Applications in Java

FieldPosition and ParsePosition
Two auxiliary classes used by all formatters:
• FieldPosition is used to locate the position of a

particular field in the output
If you pass DateFormat.format() a FieldPosition
containing DateFormat.MONTH_FIELD, format() will
fill in the FieldPosition with the starting and ending
offsets of the month in the output text
Can’t be used to find more than one field in a single call to
format()

• ParsePosition is used to return some state
information to the user after a call to a parse()
method

Filled in with offset of first character in the string not
consumed by the parse operation
If an error occurred, also filled in with location of error

The formatting framework also defines two auxiliary classes.

The client can use a FieldPosition object in conjunction with a formater’s format()
methods to locate a particular “field” in the formatted result (the “month” field in a
date format, or the integral part of a number).

The client can also use a ParsePosition object in conjunction with a formatter’s
parse() methods to specify the starting parse location in a string and keep track of
how many characters from the string were consumed by the parse. If there’s a parse
error, the ParsePosition also shows where in the string the error occurred.

San Jose, CA, August-September 199915th International Unicode Conference 99

Developing Global Applications in Java

Searching and Sorting Text

San Jose, CA, August-September 199915th International Unicode Conference 100

Developing Global Applications in Java

Searching & Sorting
String comparison is very language-specific
• Different definitions of “letter”

In English, “a” “ä” and “v” “w”
In Swedish, “a” “ä” and “v” “w”
In Spanish, “ch” and “ll” are considered single letters, not pairs
of letters

• Expanding character sequences
In German, “ä” “ae” and “ß” “ss”

• Ignorable characters
“e-mail” and “email” are the same word

Just as it’s important to watch for hidden assumptions about language when
displaying text on the screen, it’s important to watch for hidden assumptions when
analyzing or manipulating text internally. The most important analysis operations
done on text are searching and sorting, which both rely on string comparison and
have highly language-dependent behavior.

For example, in English, a-umlaut is just an a with an umlaut added to it, while v
and w are completely different letters. In Swedish, on the other hand, a-umlaut is a
completely different letter from an unadorned a, and actually sorts after z. v and w,
on the other hand, are variant forms of the same letter in Swedish.

Some languages treat sequences of characters as though they were one character:
for instance “ch” and “ll” are considered single letters, not pairs of letters, in
Spanish.

Some languages treat some single letters as though they were sequences of
characters: for instance, a-umlaut in German is equivalent to “ae”, and the sharp S
is equivalent to “ss”.

Most languages also have the concept of characters that are “ignorable” for
searching or sorting purposes: for instance, in English, “email” is the same word
whether or not it’s spelled with a hyphen.

San Jose, CA, August-September 199915th International Unicode Conference 101

Developing Global Applications in Java

Searching & Sorting
DO NOT use String.compareTo(),
String.equals(), etc. to compare natural-
language strings:

boolean didSwap = true;
while (didSwap) {

didSwap = false;
int top = list.length;
for (int i = 0; i < --top; i++) {

if (list[i].compareTo(list[i + 1]) > 0) {
String temp = list[i];
list[i] = list[i + 1];
list[i + 1] = temp;
didSwap = true;

}
}

}

The bottom line, therefore, is that you shouldn’t use String.compareTo(),
String.equals(), or similar functions to compare natural-language text. These
functions can be fine for things like internal IDs, but not for natural-language text.
The problem is that these functions perform a bitwise lexicographic compare, which
is not language-sensitive (and, in fact, doesn’t conform to any language’s sort order
with Unicode values).

San Jose, CA, August-September 199915th International Unicode Conference 102

Developing Global Applications in Java

Searching & Sorting
Instead, use a Collator:

Collator coll = Collator.getInstance();
boolean didSwap = true;
while (didSwap) {

didSwap = false;
int top = list.length;
for (int i = 0; i < --top; i++) {

if (coll.compare(list[i], list[i+1]) > 0) {
String temp = list[i];
list[i] = list[i + 1];
list[i + 1] = temp;
didSwap = true;

}
}

}

Instead, Java provides a class called Collator that knows how to compare strings in
a language-sensitive way. When comparing natural-language strings, create a
Collator object and use its compare() method to compare strings.

San Jose, CA, August-September 199915th International Unicode Conference 103

Developing Global Applications in Java

CollationKey
For long lists, use CollationKeys:
Collator coll = Collator.getInstance();
CollationKey[] keys = new CollationKey[list.length];
for (int i = 0; i < list.length; i++)

keys[i] = coll.getCollationKey(list[i]);
boolean didSwap = true;
while (didSwap) {

didSwap = false;
int top = list.length;
for (int i = 0; i < --top; i++) {

if (keys[i].compareTo(keys[i + 1]) > 0) {
String temp = list[i];
list[i] = list[i + 1];
list[i + 1] = temp;
CollationKey temp2 = keys[i];
keys[i] = keys[i + 1];
keys[i + 1] = temp2;
didSwap = true;

}
}

}

The previous two examples showed a simple snippet of code doing a bubble sort on
a list of strings. As you might imagine, it’s significantly slower to do a language-
sensitive comparison than it is to do a bitwise comparison. Internally, each
compare operation partially translates the strings it’s comparing into sort keys--
sequences of integers that can be compared with a bitwise compare. You can speed
up a sort operation (or any other operation that compares the same strings
repeatedly) by creating sort keys for all of your strings before doing the sort.

Java has a class called CollationKey that represents a sort key. It’s a sequence of
integers based on a String that can be bitwise compared with another CollationKey
created by the same Collation and will yield the same result for the same two strings
as calling Collator.compare() itself. So to do a faster sort on a long list, you’d
create a temporary array of CollationKeys using Collator.getCollationKey() and
then do the sort by doing bitwise comparison on the keys. For long lists, the time
savings in the sort loop swamps the extra time spent building the key list.

San Jose, CA, August-September 199915th International Unicode Conference 104

Developing Global Applications in Java

RuleBasedCollator
The only built-in concrete subclass of Collator
is RuleBasedCollator
Sort order is controlled by a “pattern” that
describes it
• Pattern is an ordered list of the collation elements (i.e.,

characters or sequences of characters that get treated as
one) separated by symbols that specify the strength of the
difference:
… c , C < ch , cH , Ch , CH < d , D …

• Behavior can be modified by appending text to the end of
a pattern, using the & symbol to indicate where to insert
the changes:
& C < ch , cH , Ch , CH

• Modifying the behavior of a collator involves creating it,
fishing out the pattern, appending the new rules to the
end, and creating a new Collator from the new pattern

The implementation class for Collator is called RuleBasedCollator, and it can be
used directly when the programmer wants to specify a particular sort order. Again,
a pattern string specifies the collator’s behavior.

The pattern string just consists of the various tokens (either single characters or
groups of characters to treat as a single character) separated by characters that
specify the level of difference (see next slide) between them. You can also modify
an existing set of rule by appending rules at the end that start with &. The &
symbol allows you to insert new rules at arbitrary positions earlier in the rules.

San Jose, CA, August-September 199915th International Unicode Conference 105

Developing Global Applications in Java

Searching & Sorting
There are various levels of equivalence for
searching
• Primary differences

Different letters: “resume” vs “repeat”
• Secondary differences

Different diacritics: “résumé” vs “resume”
• Tertiary differences

Different case: “RESUME” vs “resume”
• “Whole word” searches

Definition of “word” varies with language

When you’re doing a search or comparing two strings for equality, you also care
about the degree of equivalence; for example, you may or may not want to take case
differences into account.
Java’s Collator class defines three levels of equivalence:
- Two strings have a “primary difference” if somewhere they have different
“letters” (according to the language) in corresponding positions
- Two strings have a “secondary difference” if they don’t have a primary difference,
but do have two corresponding letters with a diacritic or variant-form difference.
- Two strings have a “tertiary difference” if they don’t have a primary or secondary
difference, but two corresponding letters have different case.
There’s also a fourth level of difference, “identity difference,” which is when there
are no tertiary differences, but the strings still are different in terms of the actual
hex codes. This usually happens when you have two otherwise equal strings that
contain characters from outside the language-- those characters sort after everything
else and are sorted relative to each other based on their hex value (this helps ensure
there’s always a well-defined ordering in a list).
When you’re searching, you may also only be interested in search hits that are
“whole words,” i.e., whose ends both fall on word boundaries. But the definition of
“word” also varies between languages.
There are many types of searches that require other more complicated types of
equivalence, but there isn’t much built-in support for these fancier processes in
Java.

San Jose, CA, August-September 199915th International Unicode Conference 106

Developing Global Applications in Java

CollationElementIterator
DO NOT use String.indexOf() to search natural-
language text. Use CollationElementIterator instead:
public int nlIndexOf(String searchFor, String searchIn,

Collator coll) {
CEI p = coll.getCEI(searchIn);
CEI q = coll.getCEI(searchFor);
int e1 = p.last();
int e2 = q.last();
boolean triedOnce = false;
while (e1 != CEI.DONE && e2 != CEI.DONE) {

if (e1 == e2)
e1 = q.previous(); e2 = p.previous();

else if (!triedOnce)
e2 = q.last(); triedOnce = true;

else
e1 = p.previous(); triedOnce = false;

}
if (e2 == CEI.DONE)

p.next(); return p.getOffset();
else

return -1;
}

So again, you don’t want to use String.indexOf() or any of its brothers when you’re
searching natural-language text (although again it may be just fine for internal IDs
and other things like that).

Instead, Java provides a class called CollationElementIterator that can be used to
perform language-sensitive searching. A CollationKey is a sequence of integers.
These individual integers are called collation elements, and there isn’t a one-to-one
mapping of characters to collation elements. To do a natural-language search, you
have to match collation elements, not characters. CollationElementIterator provides
you a way to obtain collation elements one at a time and a way to map back from a
collation-element position to an actual character position in the original string.

This example (which I’ve had to squoosh terribly to get on one slide) shows one
simple way of doing a search using a CollationElementIterator. Instead of pulling
characters from the strings, you use the iterator to get collation elements (which are
ints) one at a time. Then you use getOffset() at the end to tell where the hit is. This
algorithm does it backwards so that we’re sitting at the beginning of the hit when
we drop out of the loop. Unfortunately, that means this function really matches
lastIndexOf(). Doing indexOf() correctly is more complicated. This example also
ignores strength differences and ignorable characters, both of which complicate
things somewhat.

San Jose, CA, August-September 199915th International Unicode Conference 107

Developing Global Applications in Java

Searching
CollationElementIterator pre-JDK 1.2
doesn’t have setOffset() and
getOffset()
Clients of CollationElementIterator
must supply code to handle ignorable
characters
We have a class called StringSearch that
aids in the searching process

A few other random points: CollationElementIterator doesn’t have getOffset() and
setOffset() in pre-1.2 Java implementations. Searching can be done without them,
but only with difficulty and slowly.

CollationElementIterator also leaves handling of some of the details, such as
ignorable characters, to you. The example on the previuos slide omits this because
I ran out of room.

We have a convenience class called StringSearch that handles all the extra
bookkeeping for you and also implements a fast-search algorithm. It’s also
available via AlphaWorks.

San Jose, CA, August-September 199915th International Unicode Conference 108

Developing Global Applications in Java

Locating Word and Character
Boundaries

San Jose, CA, August-September 199915th International Unicode Conference 109

Developing Global Applications in Java

Locating text boundaries

Locating boundaries between words isn’t as simple as it seems. The definition of
“word” varies from language to language. In fact, the definition of “word” depends
on what you’re doing. In this example, we’re looking for positions where it’d be
legal to wrap text onto the next line. In English you can (generally, but not always),
break the line at the boundary between a run of whitespace characters and a run of
non-whitespace characters. But in Thai, spaces aren’t used between words, o you
have to do a lot more work to determine the word boundaries.

In Chinese, there also aren’t spaces between words, but lines can be broken almost
anywhere, not just on actual word boundaries. The only restriction is that certain
punctuation marks must be kept with the character before or after them.

San Jose, CA, August-September 199915th International Unicode Conference 110

Developing Global Applications in Java

Locating text boundaries
DON’T do this by hand:
public int countWords(String text) {

int count = 0;
char last = ’ ’;
char current;
for (int i = 1; i < text.length(); i++) {

current = text.charAt(i);
if (Character.isWhitespace(last)
 && !Character.isWhitespace(current))

++count;
last = current;

}
return count;

}

Clearly, then, if you try to locate word boundaries using a simple algorithm such as
this, you’ll break down in some languages and occasionally get wrong results in all
languages.

San Jose, CA, August-September 199915th International Unicode Conference 111

Developing Global Applications in Java

Locating text boundaries
Instead, use a BreakIterator:
public int countWords(String text) {

int count = 0;
bi = BreakIterator.getLineInstance();
bi.setText(text);
int pos = bi.first();
while (pos != BreakIterator.DONE) {

pos = bi.next();
++count;

}
return count;

}

Java provides a class called BreakIterator to take care of this problem. This how
the code from the preceding slide looks if you use a BreakIterator. Note that it’s
totally different, but similar to code that iterates across a collection using an
Enumeration object.

San Jose, CA, August-September 199915th International Unicode Conference 112

Developing Global Applications in Java

BreakIterator
Uses an “iteration” model to locate unit
boundaries
• Iterator is always positioned at a single known

boundary position
• next() and previous() leap from one boundary

position to another
• following() and preceding() can be used to

locate the boundary position nearest some random
position in the text

• Performance considerations
next() is faster than previous()
preceding() is faster than following()

That iteration idiom is the one that BreakIterator uses to return boundary positions
to the client. The BreakIterator just jumps from boundary to boundary, returning
their positions in order. You can move through them forward or backward (although
forward is faster).

You can also use preceding() and following() to locate the nearest boundary to
some arbitrary position in the text (preceding() is faster than following()).

San Jose, CA, August-September 199915th International Unicode Conference 113

Developing Global Applications in Java

BreakIterator
Provides four factory methods:
• getCharacterInstance()

Locates “grapheme” boundaries (boundaries between chunks
of Unicode characters that are seen as single “characters” by
the user)

• getWordInstance()
Locates word boundaries for the purpose of supporting a
“whole words” search

• getLineInstance()
Locates word boundaries for the purpose of word-wrapping

• getSentenceInstance()
Locates sentence boundaries

Behavior not customizable
Current JDK versions don’t support Thai
We have a version that solves these problems

BreakIterator isn’t restricted to just finding word boundaries. It provides factory
methods for locating boundaries between four different types of units (including
two different types of word boundaries). Others are possible.

Currently, BreakIterator’s behavior is not customizable (although the canned
behavior is correct for almost all languages), and Thai (which requires a more
sophisticated algorithm) isn’t supported.

IBM’s JDK 1.2 release includes a version of BreakIterator that is customizable and
supports Thai, and this is also available now on AlphaWorks. Thai support is also
planned for future JDKs from Sun.

San Jose, CA, August-September 199915th International Unicode Conference 114

Developing Global Applications in Java

Low-level Operations on
Characters

San Jose, CA, August-September 199915th International Unicode Conference 115

Developing Global Applications in Java

Character property queries
API for this on java.lang.Character
• isDefined()
• isDigit()
• isLetter()
• isSpace()/isSpaceChar()/isWhitespace()
• isLetterOrDigit()
• isUpperCase()/isLowerCase()/isTitleCase()
• isJavaIdentifierStart()
• isJavaIdentifierPart()
• isUnicodeIdentifierStart()
• isUnicodeIdentifierPart()
• isISOControl()

• getType()
• getNumericValue()

The java.lang.Character class provides a whole variety of functions to query various
properties on a character. getType() returns a code representing one of the types
defined in the Unicode Character Database. getNumericValue() returns the numeric
value of a character according to the Unicode Character Database.

San Jose, CA, August-September 199915th International Unicode Conference 116

Developing Global Applications in Java

Case conversion
Not always the same numeric offset
• A = U+0041 and a = U+0061,

but = U+0100 and = U+0101
Not always round trip
• s and ? both uppercase to S

Not always one to one
• ß uppercases to “SS”

Not always context-independent
• lowercases to either or depending on the position

in the word
Not always locale-independent
• In Turkish, I uppercases to ø and I lowercases to Õ

Converting a character from lowercase to uppercase and vice versa also isn’t
straightforward. Case pairs aren’t all positioned in the same way relative to each
other (again, because of compatibility issues with other encodings). Some times
there are mappings between a character in one case and multiple counterparts in the
other case. Sometimes a character will expand into two when converted to a
different case. And sometimes the conversion is locale-dependent.

San Jose, CA, August-September 199915th International Unicode Conference 117

Developing Global Applications in Java

“Titlecase”
Some Unicode characters have a “titlecase”
form
• The Serbian letter maps either a single code point for

“NJ” or a single code point for “Nj” depending on
context

Then there’s “titlecase”, which is used with some single character codes that really
represent two characters and represents the situation where the first “character” is
uppercase and the second “character” is lowercase.

San Jose, CA, August-September 199915th International Unicode Conference 118

Developing Global Applications in Java

Case conversion
toUpperCase(), toLowerCase(), and
toTitleCase() on String handle the
complicated situations
toUpperCase(), toLowerCase() and
toTitleCase() on Character just do the
raw one-to-one mappings

There’s API on both String and Character to perform case conversions. The String
API takes into account all the complicated situations discussed before. The
Character API only handles the simple one-to-one mappings.

San Jose, CA, August-September 199915th International Unicode Conference 119

Developing Global Applications in Java

Displaying and Editing
Multilingual Text

San Jose, CA, August-September 199915th International Unicode Conference 120

Developing Global Applications in Java

Displaying multilingual text
Display order may not be the same as storage
order

Displaying multilingual text can also be quite complicated. When mixing English
and Hebrew text, which have opposite writing directions, on the same line, extra
work must be done to keep the various character runs in the right visual positions
relative to each other.

San Jose, CA, August-September 199915th International Unicode Conference 121

Developing Global Applications in Java

Displaying multilingual text
Characters may change shape depending on
their context

Sometimes, characters change their shape depending on the surrounding characters.
Here, we show three of the same Arabic letter. When positioned next to one
another, they assume three different shapes, none of which is the same as the form
the letter takes when it stands alone.

San Jose, CA, August-September 199915th International Unicode Conference 122

Developing Global Applications in Java

Displaying multilingual text
Characters can join together into ligatures:

Sometimes, adjacent characters join together into a whole new shape called a
“ligature.” This slide shows two examples (one in Arabic, one in Hindi) of how
characters stored adjacently in memory appear on screen.

San Jose, CA, August-September 199915th International Unicode Conference 123

Developing Global Applications in Java

Displaying multilingual text
Support for Arabic and Hebrew “comes for
free” in JDK 1.2
• In Swing, all of the components descending from
JTextComponent will draw, select, and hit-test
Arabic and Hebrew correctly

• In AWT, text editing depends on the host environment
• Graphics.drawString() handles a single line of

Arabic or Hebrew correctly
• The new TextLayout and LineBreakMeasurer

classes in java.awt.font can be used by
programmers who want to write their own text-editing
engines

Support for other languages may come in
future versions of the JDK
• The IBM JDK 1.2 release supports Hindi and Thai

The text-rendering engine in JDK 1.2 properly supports Arabic and Hebrew. All of
the Swing text components have been updated, so support comes “for free.” AWT,
on the other hand, relies on the underlying host, so support for various languages
doesn’t depend on the JDK. The low-level Graphics.drawString() call also handles
Arabic and Hebrew correctly.

The Java 2D framework now includes new classes, TextLayout and
LineBreakMeasurer, which allow programmers writing their own text editors to
draw and hit-test multilingual text correctly.

The IBM JDK 1.2 release will also support Hindi and Thai, and we are negotiating
to get this into the next Sun JDK as well.

San Jose, CA, August-September 199915th International Unicode Conference 124

Developing Global Applications in Java

Entering multilingual text

sa
shi

mi

Some languages require multiple keystrokes to
enter a single character

Languages such as Japanese and Chinese with many different characters require
special procedures (usually involving multiple keystrokes) to enter the text. These
are called “input methods.”

San Jose, CA, August-September 199915th International Unicode Conference 125

Developing Global Applications in Java

Entering multilingual text
JDK 1.2 introduces the Java Input Method
Framework, which allows text editors written
in Java low-level access to various input
methods
In JDK 1.2, JTextComponent and its subclasses
use the Input Method Framework
In JDK 1.3, the Input Method Framework will
add an SPI to allow developers to write input
methods in Java

Pre-1.2 Java versions relied on the underlying host for input method support and
didn’t provide a way for application programs to access the host’s input method
engine. JDK 1.2 introduced the Java Input Method Framework, which does provide
low-level access to the input method engine (allowing text editors written in Java to
provide a better UI for interacting with input methods). In JDK 1.3, the Input
Method Framework will add an SPI to allow programmers to write new input
methods in Java.

San Jose, CA, August-September 199915th International Unicode Conference 126

Developing Global Applications in Java

Translating Window Layouts

San Jose, CA, August-September 199915th International Unicode Conference 127

Developing Global Applications in Java

Translating window layout
Writing direction of text may also affect layout
of objects on the screen
• Arabic and Hebrew users prefer to see everything laid

out from right to left

Writing direction usually can affect window layout. Arabic and Hebrew speakers
usually prefer for the whole UI to be the mirror image of its English layout:
Individual UI widgets gets reversed relative to each other, and the UI widgets
themselves also reverse: for example, the check box now appears to the right of its
label.

San Jose, CA, August-September 199915th International Unicode Conference 128

Developing Global Applications in Java

ComponentOrientation
Added to java.awt API in JDK 1.2
Describes the layout direction for a component
The Component class has a getter and a setter
for a ComponentOrientation object
• In JDK 1.2, most layout managers honored the

orientation, but only if asked
• In JDK 1.2, some Swing UI widgets were updated to

respond to their orientations
• In JDK 1.3, all of Swing has been updated to honor
ComponentOrientation

• The peer-based AWT UI widgets will never honor
ComponentOrientation

JDK 1.2 was updated to handle this by adding a new object called Component
Orientation that specifies a UI widget’s layout direction. Some layout managers
and UI widgets were updated to respond to this setting in JDK 1.2, and the rest will
be updated in JDK 1.3. The AWT UI widgets depend on the host environment for
this support and are unaffected by changes in the JDK.

San Jose, CA, August-September 199915th International Unicode Conference 129

Developing Global Applications in Java

Handling Non-Unicode text

San Jose, CA, August-September 199915th International Unicode Conference 130

Developing Global Applications in Java

Handling non-Unicode text
Most text files will not be in Unicode
Those that are can be in many flavors of
Unicode:
• UTF-16BE
• UTF-16LE
• UTF-8
• UCS-4

The java.io framework includes classes to
handle this

It’s nice that Java uses Unicode for text storage, but the whole world hasn’t seen the
light yet, so there has to be a way for a Java program to read files and receive data
that’s in other character encodings (in fact, various flavors of Unicode also count as
foreign character encodings). Support for character code conversion is in the
java.io package.

San Jose, CA, August-September 199915th International Unicode Conference 131

Developing Global Applications in Java

Character code conversion
java.io.InputStreamReader and
java.io.OutputStreamWriter
• Wrap input and output streams and automatically

convert between the file format and Unicode in their
read() and write() methods

• Readers and writers are initialized with the name of the
file’s character encoding (no built-in tagging
mechanism)

java.lang.String
• Has constructors that take an array of byte and convert

its contents from the specified encoding to Unicode
• Has getBytes() methods to get arrays of byte

containing the string text in a specified encoding

The Java I/O library has classes called “readers” and “writers” that can be wrapped
around streams to perform the conversions transparently. The String class also has
API to convert from Unicode to something else and back.

San Jose, CA, August-September 199915th International Unicode Conference 132

Developing Global Applications in Java

Limitations
No direct access to the conversion engine
• No naming standard for converters
• No converters are guaranteed to be available on all JDKs
• No way to find out which converters are installed
• No display-name support
• No SPI for writing new converters

There’s no direct access to the converters in the API, which limits the control an
application has. You can’t write your own converters for the I/O framework to use,
and since there’s no way to get a list of available converters and no Java
implementation is required to support any particular converter, the conversion
library is only useful if you don’t need to have the user pick an encoding and you
either have control over all of the environments where your program will be run or
can use the exception-handling mechanism to deal with situations where the desired
converter isn’t available.

San Jose, CA, August-September 199915th International Unicode Conference 133

Developing Global Applications in Java

Server-Side
Internationalization

San Jose, CA, August-September 199915th International Unicode Conference 134

Developing Global Applications in Java

Multi-locale programs
Most programs just operate in the default
locale
Some applications support two locales
simultaneously
• One for the UI
• One for the data being processed

Some applications need to support an arbitrary
number of simultaneous locales
• Again, one UI locale and various pieces of data tagged

with locales
Some applications support changing the UI
locale on the fly
• This is rarely necessary

There are a few issues related to supporting multiple locales at the same time that
are worth commenting on. Most applications don’t need to worry about locale; they
can just use the default locale (which is picked up from the host environment) and
never explicitly deal with locales.

Sometimes, it’s nice if you can use one locale for the UI and a different UI for the
data you’re working on. In fact, maybe the data itself will need multiple locales (all
specified in the data somewhere). Again, you’d use the default locale for the UI
and explicitly specify the locale when dealing with the data.

It’s usually not necessary to support multiple UI locales. Some applications allow
the user to change the UI locale on the fly while the program is running. This
makes for a cool demo, but usually isn’t necessary in real life. The big exception to
this is a program that is never shut down but may be used at different times by
different users.

San Jose, CA, August-September 199915th International Unicode Conference 135

Developing Global Applications in Java

Server-side issues
Server-side applications need to support
multiple UI locales
• Each user may be operating in a different locale
• Most server-side applications need to have their own

ad-hoc protocol to communicate locale information
between client and server

• Servlets can use the accept_language parameter
But not all browsers support this

• When possible, delegate the UI work to the client side
Not possible when client is a generic Web browser

• Some work can’t be delegated to the client
Searching and sorting usually can’t
Server must be able to do these correctly according to the
user’s locale

…which is a great description for a server-side application. If you’re writing an
application that runs on a server and deals with remote users, then it has to be able
to handle multiple simultaneous users that may all be operating in different locales.
This requires some kind of protocol for the client and the server to exchange locale
information. Java doesn’t provide a built-in way to do this, because the protocol is
so application-specific. (If the communication protocol is HTTP, you can use its
accept_language tag, but not all browsers support this properly.)

Generally, as much locale-specific processing as possible (number and date
formatting, for example) should be performed on the client side (the protocol
between client and serve is locale-independent). But this isn’t always possible. For
some operations, such as searching and sorting, it’s very rarely possible. Here, the
locale-specific code has to reside on the server.

San Jose, CA, August-September 199915th International Unicode Conference 136

Developing Global Applications in Java

Other talks to hear
For useful tips on using the Java I18N APIs
• Helena Shih, Thursday,10:00 AM, Track A

For more on the text-editing APIs
• Brian Beck, Wednesday, 2:05 PM, Track C
• Doug Felt & John Raley, Wednesday, 4:50 PM, Track C

For more on the Input Method Framework
• Norbert Lindenberg, Thursday, 3:50 PM, Track C

For more on searching in Unicode text
• Laura Werner, Wednesday, 10:00 AM, Track B

For more on international calendars
• Laura Werner, Thursday, 10:45 AM, Track A

For more on BreakIterator
• Richard Gillam, Wednesday, 10:45 AM, Track B

San Jose, CA, August-September 199915th International Unicode Conference 137

Developing Global Applications in Java

For More Info...
JDK class and method documentation
• http://www.java.sun.com/products/jdk/1.2/docs/api/

index.html
• http://www.java.sun.com/products/jdk/1.2/docs/guide/

internat/index.html

Java internationalization tutorial
• http://java.sun.com/docs/books/tutorial/i18n/index.html

Additional IBM classes for internationalization
• http://www.alphaworks.ibm.com/tech (click on “International”)

IBM’s Classes for Unicode
• http://www.ibm.com/java/tools/international-classes/

Various internationalization-related IBM papers
• http://www.ibm.com/java/education/papers.html
• http://www2.software.ibm.com/developer/papers.nsf/

java-papers-bytopic (click on “Unicode”)
Unicode home page
• http://www.unicode.org

Me (rgillam@us.ibm.com)

