Developing Globa Applicationsin Java

Developing Global Applications
In Java
Richard Gillam

Unicode Technology group
Center for Java Technology, Cupertino

I’'m Richard Gillam from the Unicode Technology group in IBM’s Center for Java
Technology in Silicon Valley, and I'm here today to talk about developing global
applications, a procedure that's generally known as “internationalization.”

Our group at IBM designed much of the internationalization support in the Java
Class Libraries under contract to Sun. What | want to do today is give you a guided
tour through these classes, what they do, and how to use them.

15th International Unicode Conference 1 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

INTERNATIONALIZATION

o W

The first thing we should probably do is look at the term “internationalization” and
what we mean by it. One of the interesting things about it is that it's the only 20-
letter word I've seen that seems like a “normal word”.

15th International Unicode Conference 2 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

NTERNATIONALIZATION

118N

IEM

Because it's such a long word, you'll often see it abbreviated as 118N (pronounced
as “eye eighteen en”). You have an I, 18 other letters, and an N. You'll also se this
type of approach used with other words in this field, such as “localization” (L10N).

15th International Unicode Conference 3 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

INTERNATIONALIZATION

The process of designing a program
from the ground up so that it can be
changed to reflect the expectations of a
new user community without having to
modify its executable code.

o W

Internationalization is the process of designing a program from the ground up so
that it can be changed to reflect the expectations of a new user community without
having to modify its executable code.

15th International Unicode Conference 4 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

| nter nationalization

X T o o A
» The process of designing a program from the
ground up...
* Retrofitting an existing application to be
internationalized can be extremely difficult
» ...so that it can be changed to reflect the
expectations of a new user community...

 Different user populations, particularly those speaking
different languages or living in different countries, have
widely varying expectations for how a computer
program interact with them

» ...without having to modify its executable code.

* Translators are not programmers. Everything that is
affected by localization should be in a data file
somewhere: to create a localized version, one should
not have to change source code, recompile, re-link, etc.

k-2 T Jd
o W

Let’'s explore that long definition a little more closely. I've purposely used the
vague phrase “reflect the expectations of a new user community” because | don’t
want to suggest that the whole process is about transating programs into other
languages. This is the biggest part of it, of course, but it's equally important that a
program follow local conventions for things such as how a number or date is
written. And, of course, the granularity there isn’t always by country. Inthe U.S.,
for example, civilians and military personnel write dates and times differently.

Designing the program from the ground up with this kind of customization in mind
Is vital. Trying to customize a program that hasn’t been designed for it is extremely
time-consuming and error-prone.

And since most programmers aren’t experts on the various communities where their
software is used, the translators aren’t likely to be the original development team.

In fact, they’re not likely to be computer programmers at all. Providing translators

a way to do their job that doesn’t involve recompiling or re-linking the program is
essential.

15th International Unicode Conference 5 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

M or e definitions

X T o o A
» Trandation
* The process of converting text in one language to text
in another language.

» L ocalization
* The process of modifying a program to conform to the
expectations of a given user community.
= Thiscaninvolve not only tranglating text, but also atering
pictures, colors, and window layouts and changing the
program’s behavior
» | nter nationalization
* The process of designing a program from the ground up
so that it can be localized with no modifications to the
executable code.

= Thisdoes not involve localization— it's a technique that greatly
simplifies the localization process

k-2 T Jd
o W

Internationalization is one of the terms you’ll hear lot when talking about global
software. The other two are translation and localization. Localization is more than
merely translating between languages— it also involves changing everything else
about a program’s appearance or behavior that might be affected by a country or
other population’s customs, beliefs, and preferences. Pictures may have to change—
mailboxes tend to look different in different countries, for example. Colors may

have different connotations in different countries. And so on.

Localization is distinct from internationalization. Localization (which includes
translation) is what translation houses do to software to prepare it for a particular
market. Internationalization is what programmers do to make sure the program can
be localized easily.

15th International Unicode Conference 6 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

The Case for
| nter nationalization

If you're at this conference, you probably already know why internationalization is

important, but let's take a few minutes to look at that issue. Even if I'm preaching

to the choir, | might be able to supply you with more ammunition to convince other
people.

15th International Unicode Conference 7 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

GDP By Region

North
America

L. America

European

Union

IEM

Thisisagraph of the world GDP distribution. North Americaisthe single largest

part, but it still represents only a third of the world’s economy. The European
Union is actually just as big as North America, representing another third of the
world’s economy. Obviously, people in most of the EU countries either don’t speak
English at all or don’t speak it natively. Japan represents another fifth of the
world’s economy, and again most Japanese don’t speak English.

The rest of the world accounts for a little over a fourth of the world’s economy, so
while any one country or region may be small, the whole thing still represents lots

of dollars. (And parts of it, such as the rest of Europe, the rest of Asia, and
especially Latin America, don’t represent that much incremental work.) As you can
see, two-thirds of the dollars to be made out there comes from places other than the
U.S. and Canada.

15th International Unicode Conference 8 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

World Population Distribution

I O O B O B
Middle East A~ Japan

North America ~)
EU i E

Europe

Latin
America

Africa Asia/Pacific

IEM

The small slivers also don’t tell the whole story. This is a graph of world
population distribution. Notice how radically the rankings change. First, notice
how small a sliver North America is on this graph. Second, notice that more than
half of the world’s population is in Asia.

Also notice that China and India, which barely showed up on the previous graph,
dominate this graph. Countries with small slivers of the GDP graph and big
sections of the population graph represent large potential markets. Of course, much
depends on how the economies in these countries are growing and how

technological they’re becoming, but China and India are both making big pushes to
modernize right now.

15th International Unicode Conference 9 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

|nternet Usein India

A O
5,000,000

1,500,000

130,000

1998 1999 2000

IEM

In India, for example, the number of people having user accounts on the Internet is
exploding. At the end of last year, analysts estimated that there were about 130,000
registered Internet usersin India. By the end of thisyear, thanks to loosening
telecommunications regulation, that number will grow to amillion and half. By the

end of next year, they’re expecting it to grow to five million. Furthermore, these
numbers represent only registered Internet users. Analysts estimate that the
130,000 number for last year represents about a million actual users due to doubling
up of accounts.

As you can probably imagine, these are the kinds of figures that cause dollar signs
to light up in CEOSs’ eyes.

15th International Unicode Conference 10 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

The Programming Community
» 1,340 books on Java have been published:

English 761 Finnish 7
German 172 Russian 6
Japanese 89 Swedish 5
French 68 Czech 2
Spanish 58 Polish 2
Chinese 52 Croatian 1
Italian 39 Danish 1
Dutch 29 Hebrew 1
Portuguese 23 Indonesian 1
Korean 22 Norwegian 1

o W

Finally, just as another point of reference, this graph shows the number of books on
Javathat have been published in various languages. Java books have been
published in twenty languages, and while more than half of them were in English,
the number of non-English booksis still striking. This gives you arough idea of the
size of the developer community speaking languages other than English, and that in
turn gives you arough idea of the sizes of the user communities represented by the
developer communities. (Of course, there are also many English-speaking
developers who primarily produce software for use in other countries and

languages, t00.)

15th International Unicode Conference

11

San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

What's this got to do with me?

1N T O
» | nternationalization isnot a feature!

* People expect your product to “just work”

* Many users will not accept a program that doesn’t let
them work in their native language

* Even if they can handle a program with an English user
interface, users will not accept a program that doesn’t
let them procesdata that’s in their own language

k-2 T Jd
o W

If you're thinking to yourself “But none of my clients has asked for
internationalization,” you're right. A phrase | liked from the last Java tutorial is
“Internationalization isn’t a feature.” Itisn’t. You're never going to have a client
come up to you and say “I want internationalization.” You may not even have the
client say “I want this program to work in Japanese.”

Clients just expect the software to “work right.” They might not even be able to
define that unless they’re looking at something that “doesn’t work right,” but it's

too late if you wait until then. An English-only product closes you off to a great
many users. Even English-speaking users will have their productivity undermined
by being forced to operate the product in something other than their native
language. Making sure the product is localized is just part of designing a good user
interface.

And, of course, even they can accept an English user interface, an overseas business
will likely be processing data that’s in the language where the company is located.

If your product can’t handle data in a particular language, you're dead in the water

in the countries that speak that language.

15th International Unicode Conference 12 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

What's this got to do with me?

R T O o
» It paysto think ahead

* What if you want to sell to a foreign customer in the

future?
= Two thirds of your potential market is outside the English-
speaking world

* What if your company opens a foreign branch office, or
wants to extends its eBusiness connections with foreign
business partners?

* What if your company’s Web site is getting hits from
outside the English-speaking world?

k-2 T Jd
o W

And if you're thinking this material doesn’t apply to you because you don’t expect
to have anyone in foreign countries using the software you're producing, be careful.
It pays to think ahead.

What if you land a new client in the future that’s based in a foreign country? What
if one of your existing clients expands his operation to a foreign country? What if
you wind up with suppliers or other business partners in other countries and you
want to be able to do electronic commerce with them? What if your Web site is
getting lots of hits from overseas, or what if you want your Web site to get lots of
hits from overseas? The thing you definitely don’t want to do is write your
application in such a way as to prevent translating it into other languages in the
future. Making sure your program is internationalized doesn’'t meahax@.to

localize it right away.

15th International Unicode Conference 13 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

What's this got to do with me?

IIlIIIIIIIII-.---.---.----IIII I
» A stitch in time saves nine
* Translation can be complicated

* Retrofitting an application so it can be translated can be
incredibly difficult

» Designing the program from the start with eventual
localization in mind can save considerable time down
the road

o W

Again, it paysto think ahead. Y ou may not have to worry about this stuff now, but

if in three years one of your customers comes back to you and says “we’re opening
a branch office in France. Can you make your application work in French?” you're
in a lot of trouble if you haven't prepared.

We've been getting a lot of hype about the Year 2000 Problem lately, and a big part
of what has made this so difficult for IT people to deal with is that they can only
deal with it by going through their program’s source code line by line looking for
problems. This is incredibly time consuming and error-prone. Retrofitting a
program to support foreign-language data or to allow translation of its user interface
Is exactly the same kind of problem. You want to avoid this as much as possible.

Again, internationalization is not a feature. It's often an unspoken requirement.

15th International Unicode Conference 14 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

How Java helps

X T o o A
» The Java platform isinternationalized

» Java supplies an extensive library of classes and
functions to help you internationalize your programs
* Some I18N support comes “for free” or at very little
cost
= This often includes partial support for some languages your
program doesn’t explicitly support
* The built-in Java 118N functions support over 70
language-country combinations
* Avoid ad-hoc solutions in favor of the standard ones
whenever possible

= The Javalibraries are more thorough and more thoroughly
tested than most ad-hoc solutions would be

= Bug fixes and support for new languages come “for free”

k-2 T Jd
o W

You're already several steps into the game if you're writing in Java. The Java
platform is itself internationalized, so you get some degree of internationalization in
your code “for free” or for very little incremental work. One good thing this means
is that you can get partial support even for languages and countries you haven't
specifically localized for. In fact, the internationalized functions in Java currently
support over 70 language-country combinations.

Java provides you with almost everything you need to write properly
internationalized software. The main thing you have to remember is to use the right
APIs in the right way. Be sure to keep this in mind if you find yourself writing your
own international support. If there’s a way to do it with the standard libraries in
Java, you'll save a lot of work and pick up bug fixes and additions of new languages
“for free.”

15th International Unicode Conference 15 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Rules of inter nationalization

X T O e
» Separate program code from user interface

» Rely on external librarieswhenever possible
» Watch out for hidden assumptions

o W

So let’s go back and look at just what you have to do to make sure your program is
internationalized. The basic idea is to keep your program’s internal logic separated
from your program’s user interface: keep user-interface data (labels and messages,
pictures, window layouts, etc.) out of program code, keep Ul code separate from
internal processing code, take advantage of all the Ul code your operating
environment and external libraries give you, and be careful to keep hidden
assumptions about locale and Ul out of your internal processing code.

15th International Unicode Conference 16 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Rules of inter nationalization

X T o o A
» Separate program code from user interface
» Avoid hard-coded character strings in program code
(unless you're sure the strings aren’t user-visible)
 Allow for customization of icons and other pictorial
elements

« Allow for customization of colors

* Avoid making assumptions about window layout
= Text elements may grow or shrink dramatically when
translated
= Overall arrangement of Ul elements may change depending on
writing direction of text
= Ul elements themselves may change shape or arrangement
depending on writing direction of text

k-2 T Jd
o W

Separating program from Ul isthefirst cardinal rule of internationalization. As
much as humanly possible, keep the data driving the Ul separate from the code.

In particular, be very careful about using hard-coded stringsin your program code.
Thisisonly legal when the strings are completely internal, such as identifiers and

tags the user doesn’'t see. Along the same lines, don't use hard-coded references to
icons and pictures, and avoid hard-coded colors.

Window layout can also change based on language. The two big reasons for this
are text growing or shrinking when translated and layout being affected by writing
direction. An English message can get much smaller when translated into Japanese
and much larger when translated into Italian, for example, requiring resizing or
rearrangement of various Ul elements. Hebrew and Arabic are written from right to
left, so speakers of those languages usually expect windows to be arranged in a
mirror-image fashion compared to the normal English layout.

15th International Unicode Conference 17 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Rules of inter nationalization

X T o o A
» Rely on external librarieswhenever possible

* Avoid writing locale-sensitive code whenever possible;
rely instead on locale-sensitive code provided to you by
the OS, the language libraries, an external i18n library,
etc.

* In Java, this means using routines and classes in
java.text andjava. util whenever possible

* If you must write locale-sensitive code (and this
includes almost all Ul code), separate it from your
program’s internal logic and try to make the behavior
data-driven when feasible

k-2 T Jd
o W

Proper support for various languages can often be quite involved, so it's usually
best to take advantage of whatever international support is provided to you by your
operating environment. In Java, think very hard before not using the locale-
sensitive APIs for something, and think especially hard before using Java’s locale-
independent APIs (e.g., Integer.toString(), Integer.valueOf(String),
String.compare(), String.equals(), String.indexOf(), etc.).

If you need locale-specific capabilities that Java doesn’t provide you and find
yourself implementing them yourself, keep them separate from the rest of your
program logic, and allow for graceful degradation when you're operating in a
language they weren’t designed for. Whenever feasible, use a data-driven model:
make the code flexible and locale-independent, and have it look to external data for
instructions on how to behave.

15th International Unicode Conference 18 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Rules of inter nationalization

R T O o
» Watch out for hidden assumptions
» Store everything in a locale-independent manner

* Be careful when converting a piece of data from its
internal representation to a human-visible representation:
use locale-sensitive APIs whenever possible

= Numeric values
= Currency and other denominated numeric values
= Dates and times

* Watch for internal-processing assumptions as well:
= Date and time arithmetic
= String comparison
= Case mapping
= Character-property tests
* Watch for text-manipulation assumptions
= Counting and indexing characters
= What's a “word”?
= Not always 1-1 mapping: character, code point, glyph, keystroke

k-2 T Jd
o W

The trickiest internationalization rule isto be on guard against hidden assumptions

in your program’s internal processing logic. Make sure your internal storage
formats are locale-independent. Be careful when converting between internal
storage formats and human-readable formats (and don’t confuse the two). Watch
out for naive algorithms for case conversion, string comparison, date arithmetic,
and so on. Don't build up user-visible message by concatenating strings together.
And when processing text, keep in mind that there often isn’t a one-to-one mapping
between what the user sees as a single character (a “grapheme”), a shape that gets
drawn on the screen (a “glyph”), a single input keystroke, and a single storage
location within a String. Also keep in mind that units of text such as “words,”
“sentences,” and “characters” have definitions that are language-specific.

The most common trouble spots are multilingual text, numbers (especially numbers
that carry implicit denominations with them), and dates and times, but there are
many potential others. It's likely you won't see some of hidden assumptions until
somebody complains about them, but avoid the common cases do your best to
minimize the others.

15th International Unicode Conference 19 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling Multilingual Data

As| said in the introduction, probably the most important barrier to international
use of acomputer program is its incompatibility with the data used in a particul ar
place. Let’s talk a little about handling multilingual data properly.

15th International Unicode Conference 20 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

The code-page problem
R T O o
» In most environments, streams of text have

ambiguous semantics

* There are hundreds of character encoding schemes,
including multiple ones for practically every language

» Can't tell how big the basic unit of text is

» Can't tell how big a particular character is

» Can't tell whether a byte is a single character or a
particular byte of a multi-byte character

 wchar _t doesn't help

» Because of this...
* Many systems make assumptions about the text
* Many systems use some kind of tagging mechanism
* Mixing languages can be difficult

k-2 T Jd
o W

In most operating environments, character strings have ambiguous semantics. Since
most character encodings are based on single-byte values, you have to have a

different encoding (or “code page” in many environments) for every language.
There are hundreds of code pages and other encodings in use out there. In fact,
there are probablgt least three or four for every single language. It may be okay
to assume that most of them are compatible with 7-bit ASCII, but that’s certainly
not true of all of them.

To most processes, especially language compilers, that means a character string is
just a sequence of arbitrary bytes. This usually means that programs make
assumptions as to which character set they’re using and expect everything they're
communicating with to use the same character set. The way around this is to have
some sort of tagging mechanism to identify the character set for a group of
characters.

This is a major hindrance to mixing languages in a single file or database. Making
assumptions just plain prevents this, and tagging mechanisms add a lot of
bookkeeping or limit the granularity of the taggable units (e.g., a whole field might
have to be in one language).

15th International Unicode Conference 21 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Unicode

R T O o
» A universal character-encoding standard
* Encodes all of the characters in all popular encoding
standards and all (or nearly all) living languages

» 45,000 assigned code points, more than 1,000,000 total
code points

* Encodes semantics, not just glyph shapes (not just a
pile of code charts)

 All code points are unambiguous (no escaping, no
DBCS ambiguity issues)

» Can be used as a pivot point for converting between
other encodings

» Eliminates need for code-page tagging
* In widespread and growing use
* Native character-string type in Java and JavaScript

k-2 T Jd
o W

Unicode, of course, was designed mainbly to solve this very problem. Unicodeisauniversa
character encoding standard, comprising numeric values for some 45,000 characters (with

room for more than amillion more). All charactersin all commonly-used (and most not-so-
commonly-used) character encodings are included, as are the characters needed to write

virtually all living languages. All are unambiguously encoded, so there’s never a question as
to which character a particular pattern of bits represents: there are strict limits on how much
context a process has to look at to process a particular character--usually it’s just that
character. Unicode isn’t just a pile of code charts; it also includes an extensive set of rules
defining what well-formed Unicode text looks like and exactly how a particular code point is
to be interpreted: it encodes semantics, not just glyph shapes.

Unicode text is generally easier to process than text in other encodings, and because it
includes a huge multitude of characters, it eliminates the need to keep track not only of the
characters themselves, but of which encoding scheme was used to encode them.

Unicode is in widespread and growing use. Most newer programming languages (including
both Java and JavaScript) are being designed with Unicode as their native character-string
format, and Unicode support is appearing in more and more operating systems and
applications. Microsoft Windows NT 4.0 and Office 97, for example, support Unicode well.
All IBM products, both OSes and applications, are being upgraded to handle Unicode
correctly as well.

15th International Unicode Conference 22 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Unicode

X T o o A
» The buzzword syndrome
* Unicode is not a feature, either
“I support Unicode” and “I conform to the Unicode
standard” are virtually meaningless by themselves
* “Supporting Unicode” is not the same thing as
internationalization
* Internationalization is completely possible without
Unicode
* But internationalization is much easier with Unicode:
= No need for character-set tagging
= Easier to implement language-specific processes
= Easier to handle multilingual text

k-2 T Jd
o W

The computer industry often falls prey to the “buzzword syndrome”: people starting
hearing some word or phrase a lot and they join a frenzy to do something with the
word or phrase without bothering to figure out what it means first. Java is a classic
example of this. Everybody has been jumping up with some way to tie their
products to all of the Java hype, even when Java had nothing to do with them
(JavaScript is a favorite example of mine).

Unicode is also a buzzword, although not the kind of Gber-buzzword that Java is.
So it's important to remember that Unicode is not a feature any more than
internationalization is. It's a means to an end: Unicode is a technology which eases
many of the problems involved in implementation good internationalization

support. It makes programs easier to internationalize, although internationalization
Is completely possible without it.

The phrase “This technology supports Unicode” is relatively meaningless. The
conformance requirements in the Unicode standard are relatively simple: the main
key is that the Unicode standard doesn’t require support for any particular character
or set of characters. It basically requires that you follow the rules for any character
that you're claiming to support, and that you not mess up Unicode text you're
passing through to another process. The key is which characters and languages you
support. Making sure your string elements are 16 bits wide is far from a complete
internationalization solution.

15th International Unicode Conference 23 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Unicode

R T O o
» Unicode introduces some complexities of itsown
* Because it makes it easy to handle multilingual text,
proper support of multilingual text is much more
important
. Ch/z;racters with similar appearance
= AA

11111 I3

* Multiple “spellings” for one character
Bi=4+ =a+°+"
m3=s+] +vo

e Surrogate pairs

k-2 T Jd
o W

Of cuorse, because Unicode makesit possible to mix text in different languages
freely, people will start mixing text in different languages freely, increasing the
challenge of doing certain things to the text.

In addition, to maintain compatibility with various other encodings, Unicode often
has several ways of saying the same thing. In many cases, for example, there are
groups of Unicode characters with the same or similar visual appearances. Inthe
first line, for example, the first character isan A with aring over it. The second
character isthe symbol for the Angstrom unit.

In the second line, we have a selection of marks that look kind of like apostrophes

and quote marks. Thefirst mark isthe ASCII straight single quote, which has often

been used as a subgtitute for all these other characters. The second and third

characters are acute and grave accent marks. The fourth and fifth are opening and

closing quotation marks. The sixth is an apostrophe (although it's only supposed to
be used when the character’s being used as a letter). The last character is the
mathematical prime mark. Some types of searches might want to level out these
differences.

Some characters can be represented either as a single code point value, or as
multiple code point values that combine together into the same character. The
different combinations and the single code points that can all used to mean the same
thing are supposed to be treated identically. Unicode also has a special kind of
combining character sequence called a “surrogate pair” where the individual units
don’'t have meaning by themselves, but they combine to form a single character.

15th International Unicode Conference 24 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Java and Unicode
X T o o A
» All text in arunning Java program is Unicode
* The primitive typechar is a single Unicode character
* TheStri ng type is a collection athar

* All internal processing on text assumes the text is in
Unicode

* Thej ava. i o package can do conversion
» However...
* Not all methods oi%t r i ng are totally Unicode-aware

k-2 T Jd
o W

A few slides ago, | mentioned why all this information is relevant: Java’'s native
character encoding is Unicode. Not only is the char type a 16-bit quantity; it's
specifically required to represent a Unicode character. This eliminates all the
headaches of handling mu8ltiple encodings in a program...

...except, of course, dealing with text coming from outside (or going outside), such
as when you're reading a disk file that contains text or receiving text over a network
connection. The Java I/0O framework automatically handles these kinds of
conversions so the rest of the program doesn’t have to worry about it.

| should point out, however, that many of the methods on String aren’t Unicode
aware and just treat the string as a sequence of unsigned 16-bit values. This is fine,
but you have to remember to avoid these functions when you're dealing with
multilingual text (or make sure you use them right).

15th International Unicode Conference 25 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling User-Visible Text

15th International Unicode Conference 26 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

User-visible text

[=: Search results
The search found 23 files containing “hello" an disk "mMyDisk".

Cancel |

o W

Okay, having gotten a bird’s-eye view of everything now, let’'s delve in and take a
close look at internationalization. Say we want our program to display a dialog that
looks like this...

15th International Unicode Conference 27 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

User-visible text

1
Di al og di al og = new Di al og(
root Wndow, "Search results", true);

di al og. add(" Center",
new Label ("The search found " + hits
+ " files containing \"" + searchString
+ "\" on disk \"" + searchRoot + "\"."));

Cont ai ner contai ner;
cont ai ner = new Panel ();
di al og. add(" Sout h", contai ner);

cont ai ner. set Layout (

new Fl owLayout (Fl owLayout . Rl GHT)) ;
cont ai ner. add(new Button("COK"));
cont ai ner. add(new Button("Cancel "));

di al og. pack();
==apdi @l 0g. show();

o W

The code to do this usually looks something like this. Now remember that we said
in the introduction that hard-coded strings in the source code are aBad Thing. We
have alot of hard-coded strings here...

15th International Unicode Conference 28 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

1 OO O
Di al og di al og = new Di al og(

di al og. add(" Center",
new Label (" The search found "

Cont ai ner contai ner;
cont ai ner = new Panel ();
di al og. add(" Sout h", contai ner);

cont ai ner . set Layout (
cont ai ner. add(new Button("OK"));

di al og. pack();
==apdi @l 0g. show();

o W

User-visible text

root Wndow, "Search results", true);

+ hits
+ " files containing \"" + searchString
+ "\" on disk \"" + searchRoot +

)

new Fl owLayout (Fl owLayout . Rl GHT)) ;

cont ai ner. add(new Button("Cancel "));

If you have to go back and translate this program into French, you would have to go
through many functions like this one, manually searching for hard-coded strings,

then translate all of them and recompile the program.

This is painstakingly difficult. I1t'd be much better if the program source code could
stay the same and the strings could actually come from some kind of data file
somewhere else. This also has the advantage of collecting everything that needs to

be translated into one place.

15th International Unicode Conference 29

San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

User-visible text

1 OO O
Di al og di al og = new Di al og(
root Wndow, "Search results", true);

di al og. add(" Center",
new Label ("The search found " + hits
+ " files containing \"" + searchString
+ "\" on disk \"" + searchRoot + "\"."));

Cont ai ner contai ner;
cont ai ner = new Panel ();
di al og. add(" Sout h", contai ner);

cont ai ner. set Layout (

new Fl owLayout (Fl owLayout . Rl GHT)) ;
cont ai ner. add(new Button("COK"));
cont ai ner. add(new Button("Cancel "));

di al og. pack();
==apdi @l 0g. show();

o W

But do we really want to do that with every string in this example? Consider

“Center” and “South” in our example code and look at the title of the slide. The
stuff we need to worry about, and the stuff we need to translate, is user-visible text.
These two strings aren’t user-visible. They’re internal program IDs used to tell the
layout manager here to position a new component that's being added. You'll run
into this kind of thing in a fair number of places in an average Java program.
Strings are often used as internal identifiers to allow an open-ended set of
identifiers, something which is very difficult with integers or other types. You
definitely don’t want to translate these strings; if you do, the program won’t work
anymore. So these get left alone.

15th International Unicode Conference 30 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Di al og dialo

di al og. add("

Cont ai ner co
contai ner =

-

r oot W ndow,

di al og. add(" Sout h",

User-visible text

11 O O
g = new Di al og(
"Search resul ts",

Center",

new Label (" The search found "
+ " files containing \""
+ "\" on disk \""

nt ai ner;
new Panel ();

cont ai ner. set Layout (
new Fl owLayout (Fl owLayout . Rl GHT)) ;

cont ai ner. add(new Button("OK"));

cont ai ner. add(new Button("Cancel "));

di al og. pack();
==apdi @l 0g. show();

+ searchString
+ searchRoot +

cont ai ner) ;

true);

+ hits

)

All of the other strings, on the other hand, are user-visible text: “Search results” is
the window title, “OK” and “Cancel” are the button labels, and the others make up
the message the dialog box displays. All of these must be translated in order to
make the dialog box intelligible to a non-English speaker. These are the strings you
want to get out of your program code and into some central external repository.

15th International Unicode Conference

31

San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Resour ce bundles

—_———
Resource
bundles
i
S
Y
Processing
code

k-2 T Jd
o W

In Java, that repository is called aresource bundle. Thisissimilar to a message

catalog in C, but much more flexible. Resource bundles can contain not only

messages and other user-visible strings, but icons and pictures, actual Ul elements

like menus and buttons, and even whole window layouts. The program’s Ul code
draws on the items stored in a resource bundle to produce the program’s output and

user interface.

Java provides an abstract ResourceBundle object that represents a resource bundle.
Subclasses of ResourceBundle provide interfaces to different types of storage for

the actual resource data: disk files, database repositories, network resources, or even
data embedded into the ResourceBundle code itself.

15th International Unicode Conference 32 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

PropertyResour ceBundle

X T o o A
File MyResour ces.properties:

W ndowTi t | e=Search Results
OKLabel =CK

Cancel Label =Cancel

Resul t Messagel=The search found
ResultMessage2= files containing “
ResultMessage3=" on disk “
ResultMessage4=".

k-2 T Jd
o W

Java provides two concrete subclasses of ResourceBundle. The simpler of theseis
PropertyResourceBundle. PropertyResourceBundle provides an interface to access
resource datain apropertiesfile. A propertiesfileissimply atext file containing a
series of key-value pairs. The keys are separated from the values by = signs, and
the key-value pairs are separated by carriage returns.

For all types of resource bundles, you give the bundle a name (it's up to you
whether you want to keep all of your program’s resources in a single resource
bundle or spread across several). Then you assign each individual resource a
programmatic ID (such as “WindowTitle” or “CancelLabel” in the example above).
This ID is how the program will access the bundle (this is another case of a hard-
coded string that is for internal use and must not be translated). The ID is the key
and the actual resource data is the value.

Properties files are very simple, but have some serious limitations: The first is that
you can only put text into a properties file, meaning there’s no way to have

resources of any other type. Second, there are issues with the character encoding of
the file (it isn’'t Unicode) that make it cumbersome for text in languages that don’t

use the standard Western European Latin alphabet. Generally, we don’t

recommend using property resource bundles.

15th International Unicode Conference 33 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

X T O e
File MyResour ces.java

return contents;

}

static fina
"W ndowTi t | e",
"OKLabel ",
"Cancel Label ",
"Resul t Messagel”,
"Resul t Message?2",
"Resul t Message3"”,
"Resul t Message4"

Lt Nt Nt W e Wasn Woen Woa)

k-2 T Jd
o W

ListResour ceBundle

public class MyResources extends ListResourceBundle {
public Qoject[][] getContents() {

bject[][] contents
"Search Results" },
K}
"Cancel " },

" files containing \"" },
" \ n
n \ n

{

The search found "

}

on disk \"" 1},
"}

The other built-in subclass of ResourceBundleis ListResourceBundle.
ListResourceBundles contain the resource data as static class members. This means

each list resource bundle isanew class. In essence, the resource-data file the

translators mess with is the source code file itself. That means there’s some extra
cruft here that the translators don’'t need to worry about, but the file format is still
pretty simple (you only mess with the contents of “contents”), and it can
accommodate any character encoding and can contain any type of resource data.
Again, the key-value-pair structure of a ListResourceBundle is evident here.

15th International Unicode Conference

34

San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

User-visible text

TN O 0 o e

Resour ceBundl e resources =
Resour ceBundl e. get Bundl e(" MyResour ces") ;

Di al og di al og = new Di al og(
root Wndow, resources.getString("WndowTitle"),
true);

di al og. add(" Center", new Label (
resources. get String("Resul t Messagel”) + hits
+ resources. get String("Resul t Message2") + searchString
+ resources. get String("Resul t Message3") + searchRoot
+ resources. get String("Resul t Message4")));

Cont ai ner contai ner = new Panel ();
di al og. add(" Sout h", contai ner);
cont ai ner. set Layout (new Fl owLayout (Fl owLayout . Rl GHT)) ;
cont ai ner. add(
new Button(resources. getString("OKLabel ")));
cont ai ner. add(
new Button(resources. getString("Cancel Label ")));

di al og. pack();
=50l @l 0g. show() ;

o W

Whichever type of resource bundle you're using, your code accesses it the same
way. Our original code snippet putting up the dialog box would look like this
whether the resource data is in a PropertyResourceBundle, a ListResourceBundle,
or some program-defined type of resource bundle. The red parts are the parts that
changed from the original version of this snippet. Instead of having hard-coded
strings, we have calls to fetch a particular value from the resource bundle. We also
have to add a line at the beginning of the function to fetch the resource bundle itself.

| ran out of room to show it here, but the ResourceBundle APIs can throw
exceptions (what if the resource bundle isn’t there, or a particular resource isn’t in
it?), so this code snippet would normally be enclosed in a try-catch construct.

This code is obviously somewhat longer and harder to read, but it completely
separates the code from the resource data.

15th International Unicode Conference 35 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Trandated ListResourceBundle

File MyResources fr.java
public class MyResources fr
ext ends Li st ResourceBundl e {

public Object[][] getContents() {
return contents;

}
static final Object[][] contents = {
{ "WndowTitle", "Résultant de la recherche" 1
{"CancelLabel", "Annuler* },
{ "ResultMessagel", "La recherche a trouvé " }
{ "ResultMessage?2",
" fichiers ayant le mot \"" }
{ "ResultMessage3", "\" sur le disque \"" 1,
{ "ResultMessage4", o}
¥

So what happens now when you want to trand ate the text? Instead of going through
the program source code with a fine-toothed comb looking for strings that need
trandating, all of those strings are collected here in one place. The trandator

simply copies the untrandated file and transates all the strings into his language.

Notice that we’ve given the resource bundle a new name. This allows a program to
carry around resources for several different languages or countries with the same
executable, and allows the program to dynamically select the right resources for
whatever language a particular user is using at the moment. For each variant of the
same resource bundle, the new one has the original one’s name tagged with a locale
ID (a Locale is a Java object that identifies a particular combination of language

and country [and sometimes other distinguishing characteristics]).

Notice that the definition of “OKLabel” is missing here. That's because “OK” is
still “OK” when translated into French. Resource bundles are arranged in a
hierarchy going from least specific to most specific. Any bundle can omit a
resource and the resource-loading mechanism will automatically fall back on the
more general bundle for that resource’s value. In order for this “inheritance”
mechanism to work right (which is especially important when you dhand a
resource for some locale), there are certain rules you have to follow about which
bundles you provide and which resources go into which ones.

15th International Unicode Conference 36 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

The Java | nter nationalization
Architecture

Now that we've taken a few minutes to look at one of the major steps in
internationalizing a program and introduced ResourceBundle, I'd like to stop and
look at the overall architecture of the Java internationalization frameworks.

15th International Unicode Conference 37 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

] ava. t ext architecture

Application program

.......... II

Formatting

Collation |

Boundary
Detection

A 4

Resource Bundles

I'— Locales I

IEM

There are three major frameworks in the java.text package: formatting, collation,
and boundary detection. The application uses them for certain tasks. The
application also uses ResourceBundle in the manner we just examined. But the
other three frameworks use ResourceBundle in exactly the same way. Each of these
frameworks depends on data stored in resource bundles to tell it how to behave and
what to produce as output. Java comes with over 120 different resource bundles
(often mistakenly called “locales”) for various combinations of language and
country. The application program can specify which resource bundle an
international API should use by using a Locale object.

15th International Unicode Conference

38

San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

] ava. t ext architecture
"> Data-driven model
* The class is a pure execution engine

* Its actual behavior is specified by a description (usually
aSt ri ng) that is supplied from outside
= The application suppliesit at construction time
= Or the framework |oads one from a resource bundle

o W

This dependence on resource bundlesis one of the central design characteristics of
the Javail8n frameworks. That is, they all use a data-driven model. Most of the
118n classes are pure execution engines that derive their exact behavior from some
kind of textual description supplied by the caller or fetched from aresource bundle.
This allows changes in behavior without touching code. (Some capabilities do
require different code, but this approach keeps these situations to a minimum.)

15th International Unicode Conference 39 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

tineStyl e)

k-2 T Jd
o W

ti meStyl e,

— Dat eFor mat .

] ava. t ext architecture

X T o o A
» Abstract classes and factory methods

* The main API classes are all abstract; many of the
implementation classes are internal

= Col | at or. get I nst ance(Local e. FRANCE) ;

= Framework instantiates a subclass based on parameters

= Some classes can be instantiated directly by the user: more

control, less flexibility

= Most classes have multiple factory methods:
— Dat eFor mat .
— Dat eFor mat .
— Dat eFor mat .
— Dat eFor mat .
— Dat eFor mat .
— Dat eFor mat .
— Dat eFor mat .
— Dat eFor mat .
— Dat eFor mat .

get I nstance()

get Ti nel nst ance()

get Ti nel nst ance(styl e)
get Ti nel nst ance(styl e,
get Dat el nst ance()

get Dat el nst ance(styl e)
get Dat el nst ance(styl e,
get Dat eTi nel nst ance()
get Dat eTi nel nst ance(dat eStyl e,

| ocal e)

| ocal e)

get Dat eTi nel nst ance(dat eStyl e,
| ocal e)

Sometimes, different code is required to support certain locales. To allow for this,
the Java i18n frameworks are based on abstract classes and factory methods. That
is, the primary API classfor aframework is abstract. The implementation class (or
classes) can then be made internal to the package. The implementation classes are
instantiated by calling a static method on the abstract classinstead. This allows us
to use different classes in some cases without changing the API.

Of course, many of the implementation classes are also public. The application
program can use them when it requires more control over the result, but only at the
expense of not being able to use the other implementation classes to handle the
special cases.

Most classes that supply factory methods supply more than one. This allowsthe
user to achieve afair amount of control over the result without having to call the
implementation class directly.

15th International Unicode Conference 40 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Locale
1 OO O
» A Local e object isan identifier for a particular

user community
* A Local e has three parts:

= Language ID (drawn from ISO 639): e.g. “de” = German

= Country/Region ID (drawn from 1SO 3166): e.g. “AT” = Austria

= Variant code (ad-hoc): used right now to specify Euro currency
* Local e objects don't contain data

= Resource bundles contain data; Locales are used to identify
resource bundles

k-2 T Jd
o W

A Locale object is the key that's used to specify a particular user community. The
community is identified by a language code, a region or country code, and an
optional variant code. Locale objects don’t contain data; they just identify user
communities. The data resides in resource bundles, and the Locales are used to
locate appropriate resource bundles. This approach allows different subsystems to
support different sets of locales (in particular, it means that an application doesn’t
have to support all of the locales the i18n library supports, nor is it limited to just
the locales the i18n library supports.

15th International Unicode Conference 41 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

L ocale

» Java doesn’t follow the POSIXset | ocal e()

model
* Theset | ocal e() model breaks down badly in a
multithreaded environment
* Instead of setting a locale and then doing something, a
Locale object is passed to an i18n object’s constructor
* i18n objects for several locales can coexist easily
* There is, however, a default locale:
= Used when the user doesn’t supply a locale
= Used as a fallback when looking for resource bundles
= Picked up from the underlying environment or specified on the
command line
(e.g.,j ava - Dl anguage=fr -Dregi on=CA
MyPr ogr am
= Can be changed.¢cal e. set Def aul t ()), but not
multithread safe

k-2 T Jd
o W

If you've done work in C, you've probably run into the POSIX locale model, where
the localedoes contain data, and where there’s only a single active locale in effect
for a process at any one time.

This model breaks down badly in a multithreaded environment, because all i18n
operations may have to be wrapped in setlocale() calls, and because multiple
threads all share the same locale setting (possibly requiring a locking scheme of
some kind).

Instead setting a locale each time you do something, you instantiate one of the i18n
objects with a locale, and then use that object every time you want that locale’s
behavior. There is no global setting.

Thereis a default locale, and it can be set with locale.setDefault(), but you
shouldn’t use this function the same way you’d use setlocale() in C. The default
locale is what locale gets used anywhere you don’t specify a locale. It's either
picked up from the OS or supplied by the user on the command line. You should
pretty much never change the default locale. When you feel the temptation to call
Locale.setDefault() a lot, switch to specifying the locale explicitly everywhere
you're asked for it and keep track of the locale(s) yourself.

Another reason not to use Locale.setDefault() is that it also isn’t multithread safe.
This means you're not allowed to use it in an applet at all.

Most applications just want to “work right” for the user, and thus never need to set
the locale explicitly or think about the default locale.

15th International Unicode Conference 42 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

ResourceBundle
X o o
» ...is the cornerstone of the Java
internationalization frameworks
« All of the built-in i18n classes have behavior that's
determined by data in resource bundles
* The JRE includes support for over 70 locales
» ...allows for various ways of storing the actual
resource data
* Li st Resour ceBundl es
* Property files
» User-defined data sources
» ...provides a graceful fallback mechanism for
handling missing data

o W

Most of the information on this slide we’ve already talked about: the whole i8n
library is resource-bundle-driven, and ResourceBundle provides a generic interface

to any type of actual repository of resource data.

The other main thing ResourceBundle gives you is a graceful fallback in case
information for a particular locale isn’t there.

15th International Unicode Conference 43 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Resour ceBundle

MyResources I

IEM

MyResources_ MyResources_ MyResources_ | | MyResources
en fr de ja
| |
I I | I I |
en_US I en_CA I en_GB I de_DE de_ AT de_CH
de DE_ j de_AT_ jj de_CH_
fr_FR ff| fr_CA I EURO || EURO || EURO

Thisisaresource bundle hierarchy. You have afamily of resource bundles called
“MyResources”. At the top, with no locale name appended, isotii@esource

bundle. The next level down includes all the resource bundles qualified only with a
language code. The tier below that is all the resource bundles tagged with both
language and country codes, and the bottom tier is all the resource bundles with
language, country, and variant codes.

15th International Unicode Conference

San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Resour ceBundle

MyResourcej
|

| —_— ! |
MyResources_ MyResources_ MyResources_ I | MyResources
en fr de ja

en_US I| en_CA I en_GB I
——

IEM

This hierarchy is used to define a search path. This diagram shows how the

resource bundle engine would search the hierarchy for the resource bundle for a

particular locale. Thered line shows the search path for the requested locale (in this

case, “de_AT_EUROQO?"). It starts at the bottom of the hierarchy and works its way
up, progressing to more and more general bundles, until it finds a bundle. If it can’'t
find one, then it tries the chain leading upward from the default locale (“en_US”
here). The root resource bundle is the bundle of last resort. Since the bundle we
were looking for (MyResources_de_AT_EURO) is actually here, the search just
stops there.

15th International Unicode Conference 45 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Resour ceBundle

MyResourcej
|

| —_— ! |
MyResources_ MyResources_ MyResources_ I | MyResources
en fr de ja

~—— |

en_US I| en_CA I en_GB I de_DE ‘ de AT I de_CH I
de DE_|§ de AT _pglde_CH_
fr_CA I EURO I EURO ||| EURO

IEM

But here, MyResources de AT_EURO and MyResources _de AT are both
missing. Since we don’t have information specifically for Austrian German using
the Euro currency symbol, we fall back on generic German-language information.

15th International Unicode Conference 46 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Resour ceBundle

MyResourcej
|

| —_— ! |
MyResources_ MyResources_ MyResources_ I | MyResources
en fr de ja

en_US I| en_CA I en_GB I
——

IEM

Here, we’re missing de_AT, but not de_ AT_EURO. We can go straight to the
requested bundle, but this is still a malformed hierarchy. This is because if you ask
for de_AT, you'll just get de instead of de_ AT_EURO. For any bundle you have in
your hierarchy, younust have all the bundles that should appear above it in the
hierarchy. Things won’t work right otherwise.

In other words, any time you have a resource bundle that’s specific to a particular
language and country (for example), you must also supply one that has generic
information for just the language (this prevents the fallback mechanism from
unnecessarily falling back on a different language). You must always supply a root
resource bundle. (In fact, if you only support one locale, you maydmhya root
resource bnudle.)

15th International Unicode Conference 47 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Resour ceBundle

MyResourcej
|

MyResources__ MyResources__ MyResources_ || | MyResources_
en fr de ja

~—— |

en_US Il en_CA I en_GB I de_DE ‘ de AT I de_CH I
de DE_|§ de AT _pglde_CH_
fr_CA I EURO I EURO ||| EURO

IEM

In this example, we don’'t have any German-language data at all, and we also don’t
have a specific bundle for U.S. English (the default locale). Here, if we look for
Austrian German, we’ll end up falling back to generic English data.

15th International Unicode Conference 48 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Resour ceBundle

MyResourcej
|

MyResources__ MyResources_ MyResources_ MyResources_
en fr de ja
~— |
I |
en_US Il en_CA I en_GB I de_DE de AT I de_CH I
de DE_|§ de AT _pglde_CH_
fr_CA I EURO EURO EURO

IEM

And if we have neither English nor German data, we fall back on the root resource

bundle. The root resource bundle can contain data in any language whatsoever (or

data that's language-independent). The choice is up o the programmer. The only
thing to keep in mind is that this is the resource bundle of last resort, and you want
to make sure it contains reasonable last-resort data.

If you support more than one language, you should generally have a resource
bundle explicitly tagged for that language as well as the root bundle. This will keep
you from falling back on the default locale when the language you want is actually
stored in the root.

15th International Unicode Conference 49 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Resour ceBundle

LMyResources I\
!

MyResources_ MyResources_ MyResources_ | | MyResources
en fr de ja

en_US I en_CA I

|
de_CH

de CH_
EURO

IEM

Resource bundles can inherit from one another. Once a bundle has been located,

this is the hierarchy that’s followed when looking for resources in that bundle. The
search starts in the specified bundle (or the closest one to it that was found) and
proceeds from there up the hierarchy until it reaches the rafutg@n’tfall back on

the default locale first; instead, it throws an error).

This means bundles on the second tier of the h8ierarchy really only need to specify
values for resources that differ from the value for that resource in the root resource
bundle. Likewise, bundlesfurther down the chain only have to specify values that
deviate from the valuesin their parents.

HOWEVER, al of the resource mustbe present in the root resource bundle. You
can’t add new resources as you move down the chain.

15th International Unicode Conference 50 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Resour ceBundle

X T o o A
» I f you have a resour ce bundle with a language
and a country, DO NOT omit the bundle with
just the language

* i.e., If you have “MyResources_fr BE”, you must have
“MyResources_fr” too.

» NEVER omit theroot resource bundle!

» Generally, omit country-specific infor mation
from resour ce bundlesthat only specify a
language

» Root resour ce bundle can bein any language

» Take advantage of inheritance to avoid
repetition

» Resource bundles don’t all have to be the same
class— the inheritance chain is based on names

o W

This is just a recap of the things we’ve already talked about.

One additional point to highlight is that the resource-bundle and resource lookup
mechanisms both operate using only name lookup. There is no requirement that all
of the bundles in the hierarchy be of the same class, nor that resource bundles
inheriting data from other resource bundles have to be subclasses of them.

Generally, just make all of your resource bundles descend directly from
ListResourceBundle and not from each other.

15th International Unicode Conference 51 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

names

Display names
» Don’'t confuse programmatic IDs with display

» Real programmatic IDs should be shown to the
user only as a last resort

PST v

Pacific Standard Time

PRT
EST
IET

CSsT
MST
PNT
PST

Atlantic Standard Time
Eastern Standard Time
Eastern Standard Time
Central Standard Time
Mountain Standard Time
Mountain Standard Time
Pacific Standard Time

for user-visible text

k-2 T Jd
o W

» Useget D spl ayNane(), notget Nane()

Another important design feature is the distinction between programmatic |1Ds and

display names. For time zonesin particular, a programmatic 1D can be mistaken for

a display name. You don’t want to present programmatic IDs to the user, except as
a last resort, even if the display name and the internal ID are the same.

This is because they’re not always the same. In the example above, IET isn't a real
time zone abbreviation; it’s just an ID for the version of Eastern Standard Time
used in Indiana, where they don’t observe daylight savings time.

Display names can also be translated, so they’re looked up in resource bundles. Just
as with resource names, locale IDs and time zone IDs (and so forth) are meant only
for internal programmatic use. Don’t use getName() to get user-visible text; use

getDisplayName() instead.

15th International Unicode Conference

52

San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Formatting Text M essages

Okay, now back to issues you encounter while internationalizing.

15th International Unicode Conference 53 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

For matting messages

X T o o A
di al og. add(" Center",

new Label ("The search found " + hits
+ " files containing \"" + searchString
+ "\" on disk \"" + searchRoot + "\"."));

k-2 T Jd
o W

Putting user-visible text (and other Ul elements) into resourcesis the single largest
thing you can do to make your program easier to translate. But it's far from thg
only thing that must be done. Look at this line here from our ResorceBundle gode

snippet. This is an example of a hidden assumption. Let’s take a look at whefe the
assumption is.

In the previous exercise, we had to take each fixed fragment of this message and
translate it individually. But that's not the way the user would be thinking of thjs
message-- he’d be thinking of it as a single sentence with “blanks” that get filled in.

15th International Unicode Conference 54 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

For matting messages

The search found 23 files containing
“hello” on disk “MyDisk”.

o W

In other words, the user will see this: acomplete sentence. There are afew
dynamic parts of this sentence, but the “fill in the blank” quality doesn’t change the
fact that this message is a single unit. Why does this matter?

15th International Unicode Conference 55 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

For matting messages

The search found 23 files containing
“hello” on disk “MyDisk”.

Es gibt 23 Dateien auf Platte
.MyDisk®, die ,Hello* enthalten.

o W

WEell, consider what would happen to this sentence if we trandated it into German.
The sentence structure is totally different. The different parts of the sentence go in
different places relative to the “blanks,” which means a translator would have {o
consider the whole sentence together when translating, not just translate the
individual fragments. In this case, that'd work, but if you left out a static text s{ring

between two “blanks” and in some other language there needed to be a word there,

the translator would be stuck. This is one of the hidden assumptions in the
example.

15th International Unicode Conference 56 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

For matting messages

The search found 23 files containing
“hello” on disk “ MyDisk .

Es gibt 23 Dateien auf Platte
» MyDisk “, die ,, Hello“ enthalten.

o W

The more serious hidden assumption in the code is that the “blanks” will come in
the same order in every language. That isn’'t true here. The dynamic parts of|the
sentence go in a very different order once the sentence is translated into German.

Code that builds up messages needs to take this into account. Therefore, it's|a Bad
Idea to build up user-visible messages using string concatenation.

15th International Unicode Conference 57 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

For matting messages

TN T O o
di al og. add(" Center",

new Label ("The search found " + hits

+"\" on disk \""
£)

o W

+ " files containing \""
+ sear chRoot

+ searchString

MessageFormat for this.

So how do you do it? Well, let’s take another look at our code snippet. This i$ how
it looked originally. How do we fix it to output the message in a way that doesp’t
make any assumptions about sentence structure? Java provides a class callgd

15th International Unicode Conference

58

San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

For matting messages

X T O e
di al og. add(" Center",

new Label (MessageFor mat . f or mat (
"The search found {0} files containing
+ "\"{1}\" on disk \"{2}\".",
new Cbject[] {
new | nteger(hits),
searchString,
sear chRoot

));

k-2 T Jd
o W

With MessageFFormat, the code changesto look like this. The static format()

method on M essageFFormat takes two arguments: a pattern string and an array of
arguments. The argument array contains the values that get filled into the “blanks”
in the message, in a program-specified order.

The pattern string includes tokens indicating where the “blanks” are: these areq the

numerals in braces. The numeral tells the formatter which value from the argyument
array to put in at a particular “blank” position. In every language, “{0}" will
always refer to the number of hits, “{1}" will always refer to the search pattern,|and
“{2}" will always refer to the name of the search root. The program will always
supply these arguments in this order. But the pattern string doesn’t have to use
them in this order. It can rearrange them at will, leave some out, use some twjice,
and so on.

In other words, the localizable part of this statement is the pattern string.

15th International Unicode Conference 59 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

For matting messages

X1 T 0 o o
di al og. add(" Center",

new Label (MessageFor mat . f or mat (
resources. get String("Result Message"),
new Cbject[] {
new | nteger(hits),
searchString,
sear chRoot

));

o W

So to make this line language-independent, all you have to do is pull the pattern
string out of aresource. So the statement ends up looking like this.

15th International Unicode Conference 60 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

For matting messages

{ "Resul t Message",
"The search found {0} files
+ "containing \"{1}\" on disk
+ "\"{2\". "}

{ "Result Message",
"Es gibt {0} Dateien "
+ "auf Platte ,, {23 “"
+"die, {1} “enthalten." }

o W

In the resource-bundle definition, we can now replace the four resources containing
fragments of the message with a single resource containing the pattern string. The

first line shows the English version of the pattern string, and the second line shows
the German version. Note how the German version uses the argumentsin a

different order than the English version did.

15th International Unicode Conference 61 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling plurals

The search found 1 files containing “hello”
on disk “MyDisk”.

o W

We're still left with one pesky problem every programmer has encountered many
times: Here’s what you get when the number of hits is 1. There are a number|of
ways programmers deal with this. One is to just leave it this way and forget alpout
it. This produces wrong output, of course, but most users will either ignore it g
kind of sneer and keep going. It doesn’t impair understanding. This isn’'t
necessarily true in other languages.

-

15th International Unicode Conference 62 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling plurals

The search found 1 file(s) containing
“hello” on disk “MyDisk”.

o W

Then there’s the classic dodge for the problem. I've always thought this looks
pretty stupid too, and this definitely won’t work in a lot of languages.

The third approach is to just break down and include an “if” statement to select
between the singular and plural forms of “file”. But this includes a hidden

assumption: that your only choices are singular and plural. In some languages
have singular, dual, and plural, for example. A fixed “if” will leave users of thes
languages out of luck.

15th International Unicode Conference 63 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling plurals

The search found {0} files
containing "{1}" on disk "{2}".

o W

MessageFormat is a lot more flexible than it looks at first sight. Each of these
substitutions (the numbers in the braces) can contain more than just a number in the
brace. They can aso extra arguments that tell the formatter what kind of argument
itis, and to supply more information on how to format that argument.

One of our optionsisto tell the formatter to format a numeric argument as a choice
rather than anumber. Formatting a number as a choice uses the number to select
among several different pattern strings.

15th International Unicode Conference 64 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling plurals

The search found {0} files
containing "{1}" on disk "{2}".

The search found {0, choi ce, 0#no
files|1l#one file|2#{0} fil es}
containing "{1}" on disk "{2}".

k-2 T Jd
o W

So here we can deal with the plura problem by having argument 0 be a choice
argument. We supply three different pattern strings, separated by vertical bars.
The numbers at the beginning of the choice specify the range of values that

correspond to that choice. So for O or more, the expression evaluates to “no files”.
For 1 or more, the expression evaluates to “one file”, and for 2 or more we get “{0}
files”. Note that we can re-use the {0} inside the choices, letting us still format|the
value as a number when the value is 2 or more. Again, this lets us put all the
information on the alternative forms of this message into a single pattern string that
can be localized all at once.

15th International Unicode Conference 65 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling plurals

The search found {0, choice, 0#no
files|1l#one file|2#{0} fil es}
containing "{1}" {3, choi ce, O#on
disk "{2}" | 1#in folder "{2}"}.

k-2 T Jd
o W

Choice formats are useful for some other things, too. Let’s say the root of the
search could either be a whole disk or a single folder. Then we’d like to be able to
change the message to say either “disk” or “folder” instead of just “disk” all the
time. We can use a choice to select between the two (or more) different word

v

However, you can’t format a string as a choice— there’s no obvious way for the
formatter to look at a string and tell which choice it goes with. We’d have to agd
another argument to the formatter (argument 3) that's a selector codedodhis

involve changes to the code, but those changes can apply across all locales.

15th International Unicode Conference 66 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling Numbers and
Currency

15th International Unicode Conference 67 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling Numbers

1,234

o W

Now the whol e reason we need something like MessageFormat is so that we can
intersperse static text with dynamically-generated text. We’ve now fixed it so that
the static text is off in a separate place where it can be translated, but what ahout the

dynamically-generated text?
Take numbers, for example. What number is this?

15th International Unicode Conference 68 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling Numbers

1,234

one thousand two hundred thirty-four

o W

Well, if you’re an American, you probably looked at this number and saw one
thousand two hundred thirty-four. But that’s not what everybody would see.

15th International Unicode Conference 69 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling Numbers

1,234

one thousand two un point deux
hundred thirty-four trois quatre

o W

If you're French, you'll see this as one point two three four. That's because in
France, the decimal point is a comma instead of a period. In fact, the commaylis
used in many European countries, including Great Britiain.

Obviously, there’s a thousandfold difference between the American and European
interpretations of this sequence of characters. This could obviously lead to some

serious misunderstandings if you're operating across country boundaries. Clearly,
your program needs to worry about this kind of thing if it displays numbers.

15th International Unicode Conference 70 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling Numbers

1.23456 x 10°

1,234.56
1 234,56
1'234.56
Nig¥Y
FoESHMERTS

o W

The decimal-point character isn’t the only character that can vary. This slide shows
five different ways the same numeric value can be rendered. The first is the
American format. The second is French and the third is Swiss German. So here we
have three different combinations of decimal-point and thousands-separator
characters. In Arabic, the characters for all the digits have changed as well, and in
Japanese, the whole way a number is written is different.

15th International Unicode Conference 71 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling Currency

1N e e
$6.543.57

€6,098.95
39.861,60 F
SFr. 9'700.18
L. 11.766.449
fl 13.391,60
1.218.302%00 Esc.
YE'OLY, 1+ wd
cT+AANAT—BLE+TAA

o W

Handling currency can be even more difficult than handling other kinds of numbers.
Now you have to worry about currency symbols and where they get placed relative
to the number, alternate decimal-point characters, how many decimal placesto
show, and how much to round the value.

As if all that weren’t complicated enough, you may also have to worry about the
exchange rates between different currencies. This is particularly true when an
application has to display monetary values in more than one currency.

15th International Unicode Conference

72

San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling Numbers

X T o o A
» DO NOT usetoString() toformat user-

visible number !

» DO NOT useparsel nt() or other similar
functionsto parse numeric user input!

» Use Nunber For mat . f or mat () and
Nunber For mat . par se() instead

instead of ...
| bl = new Label (Doubl e.toString(nilesTravel ed));

write...
Nunber Format fntr = Nunber For mat . get | nstance();
I bl = new Label (frmtr.format(m | esTravel ed));

k-2 T Jd
o W

Java’s built-in number formatting engine will handle this for you, but only if you
call the right APIs. The main thing to remember is not to use toString() or similar
methods to convert numbers into strings that the user will see, and not to use
parselnt() or similar methods to parse user input. (toString() and what-not are
useful, but only internally and for printing debugging messages.)

Instead of using these APIs, use the NumberFormat object. This will automatically
format numbers in a way that's appropriate for the user’s locale.

The example shows that you have to go through the extra hassle of creating 3
number formatter to use, but in real life, you'd probably just create a single number
formatter and let it sit around in a static variable where everyone can get to it.

15th International Unicode Conference 73 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Number For mat

X O
» All formattersboth format and parse
00001111— “31"—> 00001111
e public final String format(Cbject obj);
* public Cbject parseQbject(String source);

» Most formatters provide convenience methods
e public final String format(long nunber);
* public final String format(doubl e nunber);
> Nun‘oer For mat providesfour factory methods
* Nunber For mat . get | nst ance()
* Nunber For mat . get Nunber | nst ance()
* Nunber For mat . get Percent | nst ance()
* Nunber For mat . get Currencyl nstance()

o W

NumberFormat and all other formatting objects are designed both to format
(convert data from the internal format into user-readable text) and parse (convert
user-readable text back into the internal format). Thereisafamily of format() and
parse() functions to do these things.

Note that parsing will often, but not always, produce the same value you passed into
the formatter when you parse its output. It generally depends on whether al of the
information in the original valueis still present in the formatted output.

Most formatters will provide convenience methods that take parameters more
specific than Object. NumberFormat has methods that take along and a double (the
other types are all automatically upconverted).

There are four factory methods on NumberFormat: One formats numbersin a
generic format, one formats them as currency values, and one formats them as
percentages. getlnstance() does the same thing as getNumberlnstance().

15th International Unicode Conference 74 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Decimal For mat

1
» EXxercis ng more control
* The DecimalFormat object gives you more control over
the formatting process
* The DecimalFormat object only formats numbers using
Western positional notation in the decimal system
= Need new classto do other radices
= Need new class to write out a number in Chinese characters
= Need new class to write out number in words
« Parameters that can be controlled
= Min/max digitsto the left of the decimal point
= Mix/max digitsto the right of the decimal point
= Whether to parse strings as integers or decimal numbers
Whether to use grouping (“thousands”) separators
Distance between grouping separators
Multiplier
Prefixes and suffixes for positive and negative numbers
Whether to show the decimal point after an integer

k-2 T Jd
o W

If you want more control over the result than just the generic format for agiven
type and locale, you can use Decimal Format, the main implementation class for
NumberFormat directly. Thisclassis used to format numbers using standard
Western positional notation and the decimal numeration system. This covers
amost all languages.

DecimalFormat lets you control many aspects of the output, including the minimum
and maximum number of digits on either side of the decimal point, whether to
separate thousands, ten-thousands, or nothing, whether to add prefixes or suffixesto
numbers, whether to use a scaling factor (percentage formatters use a scaling factor
of 100), and many other things.

You'll need a different subclass of NumberFormat to do some things, such as
formatting in non-decimal radices, formatting numbers in Chinese characters, or
formatting numbers into words.

15th International Unicode Conference 75 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

DecimalFor mat
1N T O
» Deci mal For mat providesa pattern language as
a shortcut way to specify many options at once
* 0 specifiesarequired digit position
0000
* # specifies an optional digit position
0. ###
* , specifiesthe use and position of a grouping separator
#, ##0. 00

* Prefixes and suffixes can be added
$#, ##0. 00

* , Separates positive and negative patterns
$#, ##0. 00; ($#, ##0. 00)

o W

Y ou can aso change many of these settingsin asingle call by using a pattern: a
template describing the desired result. In fact, the built-in number formatters
produced by NumberFormat’s factory methods all load patterns from resource
bundles to get their behavior.

This slide shows a sampling of the most important pattern characters and how they
work together to specify different formats.

15th International Unicode Conference 76 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

DecimalFor matSymbols
1N T O
» Contains all of the localizable charactersand

stringsthat Deci mal For mat uses

* Decimal point character
Grouping separator character
Range of characters to use as digits
Minus sign
Percent/per mille signs (e.g., “%” and “%o”)
Local currency symbol (e.g., “$” or “¥")
International currency symbol (e.g., “USD” or “JPY?)
Decimal point character to use in currency values
Strings to use for infinity and NaN

o W

The actual charactersto use in the output are specified using a
Decimal FormatSymbol s object, which is also usually loaded from aresource. This
slide shows the various parameters stored in a Decimal FormatSymbols object.

15th International Unicode Conference 77 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

The Euro

1N T O
» Java 1.1.6 and later versionssupport the Euro
* Unicode character database updated to Unicode 2.1
* Fonts and keyboard maps updated
» Character code converters updated

* New locales added
= Currently, unmodified programs work as they always have

= If you want to format avalue in Euros, you have to specifically
ask for it

k-2 T Jd
o W

Support for the Euro currency was added to Javain version 1.1.6. Thisinvolved
updating fonts and keyboard layouts so you could display and type it, updating
character converters to support other encodings that support the Euro, and updating
the internal Unicode tables to conform to Unicode version 2.1, which added the
Euro to Unicode.

In addition, new resource bundles were added for the countries using the Euro

currency. You can get a currency formatter that formats numbers as numbers of

Euros by specifying a locale ID with a variant code of “EURO.” Currently, we only
support those countries actually using the Euro; we don’t yet support those (such as
the UK) that might support it in the future.

15th International Unicode Conference 78 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Multiple currencies
R T O o
» Handling multiple currencies at the sametime

can betricky

* You may need to keep track of the units for each value

* You may need to perform currency conversions

* You may need to mix two formatters to get the right
effect (e.g., “1.23 F” instead of “1,23 F”)

* You may want to use the international currency
symbols instead (e.g., “FRF 1.23” instead of “1,23 F”)

k-2 T Jd
o W

Some applications may want to format currency values denominated in different
units. The values may all be stored in the same currency and just translated on
output, or they may also be stored in different currencies. In either case, you have
to do a currency conversion, something Java can’t do for you.

If different values are denominated in different currencies, you'll probably also
need to tag each value with the currency it's in. You may want to mix two currency
formats (to show a value in French francs to an American user using the American
decimal-point character, for example), or you may just want to fall back on the ISO
three-letter currency symbols. This is all possible, but requires some extra work:
there are no convenience methods to help with this.

15th International Unicode Conference 79 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Possible futures

X T O e
» We’ve done some improved number formatters
that may make it into future JDKs

 Enhancedeci nal For nat
= Adds new featuresto Deci nmal For mat
— Space padding
— Nickel rounding
— Scientific notation
— Support foBi gl nt eger andBi gDeci nal
* Rul eBasedNunber For mat

= A rule-driven engine that allows for more advanced
formatting:
— Numbers written out in words (“twenty-three”)
— Numbers written in Chinese characters
— Non-decimal radices
— Special handling of fractions (“46 2/3")
— Changing denominations (“1000K” and “976 Mb")

k-2 T Jd
o W

Our group at IBM has done two new number formatters of our own. Oneisan
enhanced version of Decimal Format that adds space padding, scientific notation,
nickel rounding, and support for Biginteger and BigDecimal to the current version
of DecimalFormat. We're still negotiating to get this into the JDK.

We also have something called RuleBasedNumberFormat, a more complicated
formatting engine that allows for more exotic formats such as Chinese characters,
words, alternate radices, special handling of fractions, and values with changing
denominations, among other things. We’'re still not sure of the ultimate fate of this
object.

Trial versions of both formatters are available at IBM’s AlphaWorks Web site.

15th International Unicode Conference 80 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling Dates and Times

15th International Unicode Conference 81 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling Dates & Times

Today isFriday, July 2, 1999.

o W

Displaying dates and times has many of the same challenges as displaying numbers.
Consider amessage like this. Again, it consists of both a static and a dynamic
part...

15th International Unicode Conference 82 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling Dates & Times

Today isFriday, July 2, 1999.
Heuteist Friday, July 2, 1999.

IEM

...and it doesn’t work to just translate the static part.

15th International Unicode Conference 83 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling Dates & Times

Today isFriday, July 2, 1999.
Heuteist Friday, July 2, 1999.
Heuteist Freitag, 2. Juli 1999.

IEM

What a German speaker would really like to seeisthis, with both the message and
the date itself trandated into German.

15th International Unicode Conference 84 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling Dates & Times

Today isFriday, July 2, 1999.
Heuteist Friday, July 2, 1999.
Heuteist Freitag, 2. Juli 1999.
Today isFreitag, 2. Juli 1999.

IEM

In fact, if you’re a German and you’re running a program that hasn’t actually bgen
translated into German, it's probably more desirable to see this.

15th International Unicode Conference 85 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling Dates & Times

19990402

Friday, April 2, 1999
Friday, 2nd April 1999
vendredi 2 avril 1999
Freitag, 2. April 1999
venerdi 2 aprile 1999
5759 o 16w o

TR 114E4H2H

o W

Again, the displayed forms of the dates can vary quite a bit from language to
language. Not only do the words for the days and months change, but so does the
order of the fields themselves and the punctuation around them. In fact, in some
countries, the calendar system in use also changes: In Hebrew, for example, April 2,
1999 is the 16th of Nisan, 5759. Japan has changed to use our Gregorian calendar,
but they number their years by the reigns of the emperors: 1999 is 11 Heisal in

Japan.

So, just as with numbers, you don’t want to do date and time formatting on your
own. Again, Java provides an extensive framework of tools to let you handle gates
and times properly.

15th International Unicode Conference 86 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling Dates & Times

X T o o A
» Formatting and parsing dates

e DO NOTusebDate.toString() or
Date.toLocal eString()!

e DO NOT useDat e. get Mont h(), Dat e. get Dat e() ,

Dat e. get Year (), etc. and format them with
Number For mat

* UseDat eFor mat :
= DateFormat fmt =
Dat eFor mat . get Dat eTi mel nst ance(
Dat eFor mat . FULL, Dat eFor mat . DEFAULT) ;
Systemout.println(fnt.format(new Date()));

* UseMessageFor mat :

= MessageFor mat . f or mat (
"It is {0,time, mediunm on {0,date,full}."
new Qbject[] { new Date() }
)

k-2 T Jd
o W

So you want to avoid using functions like toString(). Even more importantly, you
don’t want to decompose the date into fields using the methods on Date and then
format each field individually.

Instead, use DateFormat. Again, it has factory methods you call to get appropriate
DateFormat objects for your locale. A DateFormat actually formats both dates and
times (which are stored together in a Date object), so there are separate factory
methods to get objects that control whether you see just the date, just the time, or

both. DateFormat also offers a selection of formats (short, medium, long, and|full),
and you can set them independently for the date and time.

Again, you can also access all these features through MessageFormat by specifying
extra options in the {} sequences. In the example, we’re using the same parameter
(a Date object that has been initialized to “now”) in two different substitutions: the
first shows just the time and the second shows just the time.

Just as with NumberFormat, there is extensive API on DateFormat and its corcrete
subclass SimpleDateFormat for customizing the output or behavior of the formatter.

15th International Unicode Conference 87 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

o W

DatelFor mat

X T T O O O o e
» Providesfour factory methods:
e getlnstance()
e get Dat el nst ance()
= “August 26, 1999”
* get Ti nel nstance()
- “12:47 PM”
e get Dat eTi nel nst ance()
= “August 26, 1999 12:47 PM”

The abstract DateFormat class has four factory methods, that produce formatters

that show either the “date” part of the date value (a Date specifies a point of time
within a range of millennia with millisecond resolution, meaning it contains both
date and time information), the “time” part of the value, or both. (getinstance() is
the same as getDateTimelnstance().)

15th International Unicode Conference

88

San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

DatefFor mat
1N T O

» Four time styles:
e Short: Omits seconds (“12:54 PM”)
* Medium/Default: Includes seconds (“12:54:56 PM”)
* Long: Includes time zone (“12:54:56 PM PDT")
* Full: Same as full, or includes milliseconds

(“12:54:56.034 PM PDT")

» Four date styles:

e Short: In numerals, 2-digit year (“8/26/99”)

* Medium/Default: In numerals or abbreviations, 4-digit
year (“8/26/1999” or “Aug 26, 1999")

* Long: In words (“August 26, 1999")

* Full: Includes day of week
(“Thursday, August 26, 1999”)

o W

Each factory method lets you specify a style for the time part and a separate style
for the date part. The meanings of the various styles are shown above. (“Medium”
and “Default” are always the same.)

15th International Unicode Conference 89 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

SimpleDateFor mat

R T O o
» Only concrete subclass of Dat eFor mat

» Output controlled by a pattern string
* Groups of letters mark positions of elements:

* G=era(e.g., BC or AD), y=year, M=month, d=day, E=day of
week, h=hour (12-hour clock), H=hour (24-hour clock),
mEminute, s=second, a=AM/PM, z=time zone, €tc.

* Literal characters enclosed in single quotes
* Number of letters in group controls size

= For anumeric value, # of lettersis minimum # of digits

= For atextual value, 4 letters means spell it out in words, less
than 4 uses abbreviation

= For avalue that be rendered either way, 1 or 2 letters means
digits and 3 or more letters means text

“h:mmss a zzzz, EEEE, MMM d, yyyy G produces

“9:04:36 AM Pacific Daylight Time, Sunday, August 1,
1999 AD”

k-2 T Jd
o W

Again, the implementation class of DateFormat, SimpleDateFormat, is aso public,
allowing finer-grained control over date/time formatting than the DateFormat
factory methods give you.

SimpleDateFormat’s behavior is controlled by a pattern string that acts as a
template for the desired result. The pattern string includes tokens specifying
different possible “fields” of the date, such as day or month or hour of day (there
are many to choose from), punctuation or boilerplate text, and their relative orders.
The tokens also usually allow for several alternative representations for their value.

The canned date formats are all based on pattern strings in resources.

15th International Unicode Conference 90 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

DateFor matSymbols
NIEIRINNNEEEENNEEE
» Holdstext for:

* Era names
AM and PM
Month names and abbreviations
Day-of-the-week names and abbreviations
Time zone names and abbreviations

o W

SimpleDateFormat has a DateFormatSymbols object associated with it that contains
the actual words and abbreviations used for certain field values. The symbols
object is also usually loaded from aresource bundle.

15th International Unicode Conference 91 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling Dates & Times

1
» Storing and manipulating dates & times
e java. util . Date
= # of milliseconds since midnight, January 1, 1970 GMT
(signed 64-bit integer)
* Now
= SystemcurrentTimeM I 1is()
= new Date()

. Composmg and decomposing

DO NOT useDat e. get Mont h() , Dat e. get Dat e(),
Dat e. get Year (), etc.

= Usejava. util. Cal endar:
Cal endar cal = Cal endar. getlnstance();
cal .set Ti ne(nyDat e) ;
nmyDay = cal . get (Cal endar. DAY_OF_MONTH) ;
myMont h = cal . get (Cal endar. MONTH) + 1;
nmyYear = cal . get (Cal endar. YEAR);

* Performing arithmetic

= Cal endar. add()
——— = Cal endar.roll ()

o W

With dates, you also have the additional problem of making sure your internal
processing code doesn’t contain any hidden locale assumptions when manipulating
the values.

Java provides a built-in class called Date that’s used for storing dates and times. Be
sure you use this for all date storage, not some ad-hoc format. The Java Date
format is completely locale-independent and Y2K-proof. All itis is the number of
milliseconds before or since midnight, January 1, 1970 GMT. Notice that dates are
always stored internally as GMT regardless of time zone.

There are two APIs for obtaining the current date and time. One,
System.currentTimeMillis(), returns a number of milliseconds, and this can’t be
formatted without converting it into a date (the raw value is useful for things like
timing tests, but not for displayable dates and times). The default constructor on the
Date object, on the other hand, creates a Date object using
System.currentTimeMillis().

Date provides a pretty good API for decomposing a date into individual fields and
the reverse DON'T USE IT. Thisis because Date contains the hidden assumption

that all countries use the Gregorian calendar. Instead, use the Calendar object to

convert between fieldsand millis. The API is better, and it'll work with multiple
calendar systems.

You also don’t want to do arithmetic directly on a number of millis. Consider
adding a month. You have no way of knowing how long any particular month is.
Non-Gregorian calendars also have this type of problem, but in different fields and
in different ways. Calendar provides add() and roll() methods for altering
individual fields, and also provides API to do things like time zone conversions.

15th International Unicode Conference 92 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Calendar
X o o
» Abstract class defining a family of classesthat
perform operations on dates
* Can translate millis value to individual fields
» Can build millis value from individual fields

» Can normalize field values (e.g., January 78th becomes
March 19th in a non-leap year)

» Supports date arithmetic:
= Jan 30 + 1 month = Feb 28
= Jan 30 + 2 months = March 30

» Can perform time-zone conversions

o W

The Calendar class defines the algorithms to be used for deriving field values (such
as hour of day or day or month) from a number of millis (araw date value), or
deriving a number of millis from a set of field values. These capabilities can be
used to perform accurate date arithmetic., including time zone conversions.

15th International Unicode Conference 93 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

TimeZone

X T o o A
» Carriesaraw offset from GMT (in seconds)

» Carriesrulesfor determining whether adateis
in standard time or daylight savingstime
» JDK has canned rules for all current world time zones
* No historical data
» Versions prior to JDK 1.1.6 miss many zones
» Zones have programmatic I Ds
* JDK 1.1.6 and later use the form
“America/Los_Angeles” or “Europe/London”
. pre-.J[;K 1.1.6 uses three-letter abbreviations (“PST”,
“BST”
* API provided in JDK 1.2 to get display names and
abbreviations (available throught eFor mat pre-1.2)

» Dat eFor mat time zone bug fixed in 1.1.6

k-2 T Jd
o W

Calendar also uses an auxiliary object called TimeZone to specify atime zone (the
internal value isalwaysin GMT). A TimeZone object carries not only an offset (in
seconds) from GMT, but also rules for calculating the beginning and end of

Daylight Savings Time (and an additional offset to use during Daylight Savings

Time). InJDK 1.1.6, we provide a complete set of canned TimeZones representing

all the current world time zones (there’s a different TimeZone for every jurisdiction
with different DST rules). These TimeZones all have standard internal identifiers,
and many aliases are also supplied (for example, “Asia/Tokyo” and “Asia/Seoul”,
although they have the same offset and DST rules, are both valid identifiers).

Prior to 1.1.6, a lot of time zones were missing, causing some weird behavior,
contrived three-letter IDs were used (they're still supported for compatbility), and
there was a bug in DateFormat that caused it to format everything according to an
arbitrary default time zone for the default locale. This bug was fixed, so that
TimeZone.getDefault(), which returns the current time zone setting from the
underlying host environment, is used instead.

In JDK 1.2, we also added a getDisplayName() function to TimeZone. In prior
versions, the display names could be accessed through SimpleDateFormat, but that
wasn’t obvious to anyone.

15th International Unicode Conference 94 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

| nter national calendars

1N T O
» JDK supportsonly Gregorian calendar
» We’'ve written classes to support:
* Hebrew calendar
* Islamic calendar
» Japanese imperial calendar
* Thai Buddhist calendar

o W

The only concrete subclass of Calendar in the JDK is GregorianCalendar, which is

fine for most things, but it's not the only calendar system in use in the world (it's
not even the only one in use in business). We've put together classes that handle
several other calendar systems, including the Hebrew, Islamic, and Japense
calendars. There are also available on AlphaWorks.

15th International Unicode Conference 95 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

M or e on M essageFor mat

IIIIIIIIIIII--_---_---_---IIIII
» Substitutionsin MessageFor mat patterns
may include additional for matting info
* First field specifies data type
= Canbenunber,dat e, ti me,orchoice
e Fornunber , second field can be
= i nt eger
= currency
= per cent
= Deci mal For mat pattern
* Fordat e orti ne, second field can be
= short
= medi um
= | ong
= full
= Si nmpl eDat eFor mat pattern
* Forchoi ce, second field i€hoi ceFor mat pattern

k-2 T Jd
o W

Now that we've had a chance to look at NumberFormat and DateFormat, I'd like to
take another look at MessageFormat.

As | mentioned briefly before, the substitutions in a MessageFormat pattern can be
gualified with information as to their type and desired output format. The type can
be number, date, time, or choice. (Strings are always formatted as themselves.)

For “number,” you can specify the format to be integer, currency, or percent, or you
can specify a DecimalFormat pattern string. Likewise, “date” and “time” can both
be qualified with short, medium, long, or full, or with a SimpleDateFormat pattern
string.

15th International Unicode Conference 96 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

M or e on M essageFor mat

IIlIIIIIIIII-----------II_II ;
» Be careful when using MesssageFor mat with
Dat eFor mat or Nunber For mat

¢ If you use the statitor mat () method or don’t
specifically say something, alunber For nat s and
Dat eFor mat s are based on the default locale

* To use a different locale, you must:
= Ingtantiate a MessageFor mat
= Call MessageFor mat . set Local e() tosetthelocae
= Re-apply the pattern using appl yPat t er n()

e Or...

= Make sure your pattern doesn’t specify anythingasber ,
date,ortine

= Instantiate &kessageFor mat based on this pattern

= Manually set up all its sub-formatters usegt For mat s()

k-2 T Jd
o W

But you have to be careful sometimes when you have number or date/time fieldsin

a MessageFormat pattern. If you just specify the formats in the pattern, you always

get the default locale’s behavior. If you want satier locale’s behavior instead,

you have call setLocale() on the MessageFormat (which precludes using the static
format() function), andhen call applyPattern() to set the pattern (you can’t do this

in the opposite order).

Or you can simply manually create the subformatters yourself and pass them to the
MessageFormat using its setFormats() method (this is useful in more exotic cases,
such as when the fields aren't all going to use the same locale).

15th International Unicode Conference 97 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

FieldPosition and Par sePosition

IIIIIIIIIIII----.-'------IIII
» Two auxiliary classes used by all formatters:
* Fi el dPosi ti on isused to locate the position of a

partlcular field in the output
= If you pass Dat eFor mat . f or mat () aFi el dPosition
containing Dat eFor mat . MONTH_FI ELD, f or mat () will
fillinthe Fi el dPosi ti on with the starting and ending
offsets of the month in the output text
= Can’t be used to find more than one field in a single call to
format ()

* Par sePosi ti on isused to return some state
information to the user after acall to apar se()
method

= Filled in with offset of first character in the string not
consumed by the parse operation
= |f an error occurred, also filled in with location of error

k-2 T Jd
o W

The formatting framework also defines two auxiliary classes.

The client can use a FieldPosition object in conjunction with aformater’s format()
methods to locate a particular “field” in the formatted result (the “month” field in a
date format, or the integral part of a number).

The client can also use a ParsePosition object in conjunction with a formatter’'s
parse() methods to specify the starting parse location in a string and keep track of
how many characters from the string were consumed by the parse. If there’s a parse
error, the ParsePosition also shows where in the string the error occurred.

15th International Unicode Conference 98 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Sear ching and Sorting Text

15th International Unicode Conference 99 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Searching & Sorting

X T o o A
» String comparison isvery language-specific
« Different definitions of “letter”
= In English, “a”= “a” and “v” # “w”
= In Swedish, “a"# “8” and “v” = “w”

= In Spanish, “ch” and “II” are considered single letters, not pairs
of letters

» Expanding character sequences
= In German, “d"= “ae” and “3"= “ss”
* Ignorable characters
= “e-mail” and “email” are the same word

k-2 T Jd
o W

Just as it's important to watch for hidden assumptions about language when
displaying text on the screen, it's important to watch for hidden assumptions when
analyzing or manipulating text internally. The most important analysis operations
done on text are searching and sorting, which both rely on string comparison and
have highly language-dependent behavior.

For example, in English, a-umlaut is just an a with an umlaut added to it, while v
and w are completely different letters. In Swedish, on the other hand, a-umlaut is a
completely different letter from an unadorned a, and actually sorts after z. vand w,
on the other hand, are variant forms of the same letter in Swedish.

Some languages treat sequences of characters as though they were one character:
for instance “ch” and “IlI” are considered single letters, not pairs of letters, in
Spanish.

Some languages treat some single letters as though they were sequences of
characters: for instance, a-umlaut in German is equivalent to “ae”, and the sharp S
Is equivalent to “ss”.

Most languages also have the concept of characters that are “ignorable” for
searching or sorting purposes: for instance, in English, “email” is the same word
whether or not it's spelled with a hyphen.

15th International Unicode Conference 100 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Searching & Sorting

IIIIIIIIIIII-----------_IIIIII
» DO NOT useString. conpareTo(),
String. equal s(), etc. to compare natural-
language strings:
bool ean di dSwap = true;

whil e (di dSwap) {
di dSwap = fal se;

int top = 1list.length;
for (int i =0; i <--top; i++) {
if (list[i].conpareTo(list[i + 1]) > 0) {
String temp = list[i];
ist[i] =list[i + 1];

I
list[i + 1] = tenp;
di dSwap = true;

o W

The bottom line, therefore, is that you shouldn’t use String.compareTo(),
String.equals(), or similar functions to compare natural-language text. These
functions can be fine for things like internal IDs, but not for natural-language text.
The problem is that these functions perform a bitwise lexicographic compare, which
is not language-sensitive (and, in fact, doesn’t conform to any language’s sort order
with Unicode values).

15th International Unicode Conference 101 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Searching & Sorting

X O o o
P Instead, useaCol | at or:

Collator coll = Collator.getlnstance();
bool ean di dSwap = true;
whil e (di dSwap) {

di dSwap = fal se;

int top = 1list.length;
for (int i =0; i <--top; i++) {
if (coll.compare(list[i], list[i+1]) > 0) {
String tenp = list[i];
list[i] =1list[i + 1];
list[i + 1] = tenp;

di dSwap = true;

o W

Instead, Java provides a class called Collator that knows how to compare stringsin
alanguage-sensitive way. When comparing natural-language strings, create a
Collator object and use its compare() method to compare strings.

15th International Unicode Conference

102

San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

CollationK ey

» For long lists, use Col | at i onKeys:

Col lator coll = Collator.getlnstance();
Col | ationKey[] keys = new Col | ati onKey[list.|ength];
for (int i =0; i <list.length; i++)

keys[i] = coll.getCollationKey(list[i]);

bool ean di dSwap = true;
whi l e (di dSwap) {
di dSwap = fal se;

int top = list.length;
for (int i =0; i <--top; i++) {
if (keys[i].conpareTo(keys[i + 1]) > 0) {
String temp = list[i];
list[i] =1list[i + 1];

list[i + 1] = tenp;

Col I ati onKey tenp2 = keys[i];
keys[i] = keys[i + 1];

keys[i + 1] = tenp2;

di dSwap = true;

k-2 T Jd
o W

The previous two examples showed a simple snippet of code doing a bubble sort on

a list of strings. As you might imagine, it’s significantly slower to do a language-
sensitive comparison than it is to do a bitwise comparison. Internally, each

compare operation partially translates the strings it's comparing into sort keys--
sequences of integers that can be compared with a bitwise compare. You can speed
up a sort operation (or any other operation that compares the same strings
repeatedly) by creating sort keys for all of your strings before doing the sort.

Java has a class called CollationKey that represents a sort key. It's a sequence of
integers based on a String that can be bitwise compared with another CollationKey
created by the same Collation and will yield the same result for the same two strings
as calling Collator.compare() itself. So to do a faster sort on a long list, you'd

create a temporary array of CollationKeys using Collator.getCollationKey() and

then do the sort by doing bitwise comparison on the keys. For long lists, the time
savings in the sort loop swamps the extra time spent building the key list.

15th International Unicode Conference 103 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

RuleBasedCollator

IIlIIIIIIIII-------_--_--IIII
» Theonly built-in concrete subclass of Col | at or

iIsRul eBasedCol | at or

» Sort order is controlled by a “pattern” that
describes it
» Pattern is an ordered list of the collation elements (i.e.,
characters or sequences of characters that get treated a
one) separated by symbols that specify the strength of the
difference:
.c, C<ch, cH, Ch, CH<d, D..
* Behavior can be modified by appending text to the end of
a pattern, using the & symbol to indicate where to insert
the changes:
& C<ch, cH, Ch, CH
* Modifying the behavior of a collator involves creating it,
fishing out the pattern, appending the new rules to the
end, and creating a new Collator from the new pattern

*2J

o W

The implementation class for Collator is called RuleBasedCollator, and it can be
used directly when the programmer wants to specify a particular sort order. Again,
a pattern string specifies the collator’s behavior.

The pattern string just consists of the various tokens (either single characters or
groups of characters to treat as a single character) separated by characters that
specify the level of difference (see next slide) between them. You can also modify
an existing set of rule by appending rules at the end that start with & The &
symbol allows you to insert new rules at arbitrary positions earlier in the rules.

15th International Unicode Conference 104 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Searching & Sorting

X T o o A
» Therearevarious levels of equivalence for
sear ching

* Primary differences
= Different letters: “resume” vs “repeat”

* Secondary differences
= Different diacritics: “résumé” vs “resume”

* Tertiary differences
= Different case: “RESUME” vs “resume”

* “Whole word” searches
= Definition of “word” varies with language

k-2 T Jd
o W

When you're doing a search or comparing two strings for equality, you also care
about the degree of equivalence; for example, you may or may not want to take case
differences into account.

Java’s Collator class defines three levels of equivalence:

- Two strings have a “primary difference” if somewhere they have different
“letters” (according to the language) in corresponding positions

- Two strings have a “secondary difference” if they don’t have a primary difference,
but do have two corresponding letters with a diacritic or variant-form difference.

- Two strings have a “tertiary difference” if they don’t have a primary or secondary
difference, but two corresponding letters have different case.

There’s also a fourth level of difference, “identity difference,” which is when there

are no tertiary differences, but the strings still are different in terms of the actual

hex codes. This usually happens when you have two otherwise equal strings that
contain characters from outside the language-- those characters sort after everything
else and are sorted relative to each other based on their hex value (this helps ensure
there’s always a well-defined ordering in a list).

When you're searching, you may also only be interested in search hits that are
“whole words,” i.e., whose ends both fall on word boundaries. But the definition of
“word” also varies between languages.

There are many types of searches that require other more complicated types of
equivalence, but there isn’t much built-in support for these fancier processes in
Java.

15th International Unicode Conference 105 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

CollationElementlter ator

X o O
» DO NOT usestring.indexcf () to search natural-

language text. Use col | ati onEl enent | terator instead:
public int nlIndexOh(String searchFor, String searchln,
Collator coll) {
CEl p = coll.getCEl (searchln);
CEl q col | . get CEl (searchFor);
int el = p.last();
int e2 = q.last();
bool ean triedOnce = fal se;
while (el !'= CElI.DONE && e2 != CEl.DONE) {
if (el == e2)
el = g.previous(); e2 = p.previous();
else if (!triedOnce)
e2 = qg.last(); triedOnce = true;

el se
el = p.previous(); triedOnce = fal se;

}
if (e2 == CEl.DONE)

p.next(); return p.getOffset();
el se

return -1;

So again, you don’t want to use String.indexOf() or any of its brothers when you're
searching natural-language text (although again it may be just fine for internal IDs
and other things like that).

Instead, Java provides a class called CollationElementlterator that can be used to
perform language-sensitive searching. A CollationKey is a sequence of integers.
These individual integers are called collation elements, and there isn’t a one-to-one
mapping of characters to collation elements. To do a natural-language search, you
have to match collation elements, not characters. CollationElementlterator provides
you a way to obtain collation elements one at a time and a way to map back from a
collation-element position to an actual character position in the original string.

This example (which I've had to squoosh terribly to get on one slide) shows one
simple way of doing a search using a CollationElementiterator. Instead of pulling
characters from the strings, you use the iterator to get collation elements (which are
ints) one at a time. Then you use getOffset() at the end to tell where the hit is. This
algorithm does it backwards so that we're sitting at the beginning of the hit when
we drop out of the loop. Unfortunately, that means this function really matches
lastindexOf(). Doing indexOf() correctly is more complicated. This example also
ignores strength differences and ignorable characters, both of which complicate
things somewhat.

15th International Unicode Conference 106 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Sear ching

» Col | ati onEl enent | terator preJDK 1.2
doesn’t haveset O f set () and
get O fset ()

» Clients of Col | ati onEl enent | t er at or

must supply code to handle ignorable
characters

» We have a class calle&t r i ngSear ch that
aids in the searching process

o W

A few other random points: CollationElementiterator doesn’t have getOffset() and
setOffset() in pre-1.2 Java implementations. Searching can be done without them,
but only with difficulty and slowly.

CollationElementlterator also leaves handling of some of the details, such as

ignorable characters, to you. The example on the previuos slide omits this because
| ran out of room.

We have a convenience class called StringSearch that handles all the extra
bookkeeping for you and also implements a fast-search algorithm. It's also
available via AlphaWorks.

15th International Unicode Conference 107 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

L ocating Word and Char acter
Boundaries

15th International Unicode Conference 108 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

L ocating text boundaries

The rain in Spain stays mainly on the plain.
0537 R R BT R

AT UaoNT 1900 Ll e

o W

Locating boundaries between words isn’t as simple as it seems. The definition of
“word” varies from language to language. In fact, the definition of “word” depends
on what you’re doing. In this example, we’re looking for positions where it'd be
legal to wrap text onto the next line. In English you can (generally, but not always),
break the line at the boundary between a run of whitespace characters and a run of
non-whitespace characters. But in Thai, spaces aren’t used between words, o you
have to do a lot more work to determine the word boundaries.

In Chinese, there also aren’t spaces between words, but lines can be broken almost
anywhere, not just on actual word boundaries. The only restriction is that certain
punctuation marks must be kept with the character before or after them.

15th International Unicode Conference 109 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

o W

L ocating text boundaries

» DON'T do this by hand:

public int countWords(String text) {

int count = O;

char last ="' 7;
char current;
for (int i = 1; i < text.length(); i++) {

current = text.charAt(i);
if (Character.isWitespace(l ast)
&& ! Character.isWitespace(current))
++count ;
| ast = current;

}

return count;

Clearly, then, if you try to locate word boundaries using a simple algorithm such as
this, you'll break down in some languages and occasionally get wrong results in all

languages.

15th International Unicode Conference

110

San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

L ocating text boundaries

P Instead, useaBr eakl t er at or:

public int countWords(String text) {

int count = O;

bi = Breaklterator. getLinelnstance();

bi . set Text (text);

int pos = bi.first();

while (pos != Breaklterator.DONE) {
pos = bi.next();
++count ;

}

return count;

=l

III!

-
x|

Java provides a class called Breaklterator to take care of this problem. This how
the code from the preceding slide looksif you use a Breaklterator. Note that it's
totally different, but similar to code that iterates across a collection using an
Enumeration object.

15th International Unicode Conference 111 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Breaklterator

1N T O
» Uses an “iteration” model to locate unit

boundaries

* Iterator is always positioned at a single known
boundary position

* next () andprevi ous() leapfrom one boundary
position to another

« foll ow ng() andprecedi ng() canbeusedto
locate the boundary position nearest some random
position in the text

» Performance considerations

= next () isfaster than pr evi ous()
= precedi ng() isfasterthanf ol | owi ng()

o W

That iteration idiom is the one that Breaklterator uses to return boundary positions
to the client. The Breaklterator just jumps from boundary to boundary, returning
their positionsin order. Y ou can move through them forward or backward (although
forward isfaster).

Y ou can also use preceding() and following() to locate the nearest boundary to
some arbitrary position in the text (preceding() is faster than following()).

15th International Unicode Conference 112 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Breaklterator

X T O e
» Providesfour factory methods:
e get Charact erl nstance()

= Locates “grapheme” boundaries (boundaries between chunks
of Unicode characters that are seen as single “characters” by
the user)

* get Wordl nstance()

= Locatesword boundaries for the purpose of supporting a
“whole words” search

* get Li nel nstance()

= Locates word boundaries for the purpose of word-wrapping
* get Sent encel nst ance()

= Locates sentence boundaries

» Behavior not customizable
» Current JDK versions don’t support Thai
» We have a version that solves these problems

k-2 T Jd
o W

Breaklterator isn’t restricted to just finding word boundaries. It provides factory
methods for locating boundaries between four different types of units (including
two different types of word boundaries). Others are possible.

Currently, Breaklterator's behavior is not customizable (although the canned
behavior is correct for almost all languages), and Thai (which requires a more
sophisticated algorithm) isn’t supported.

IBM’s JDK 1.2 release includes a version of Breaklterator that is customizable and
supports Thai, and this is also available now on AlphaWorks. Thai support is also
planned for future JDKs from Sun.

15th International Unicode Conference 113 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

L ow-level Operationson
Characters

15th International Unicode Conference 114 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Character property queries

» API for thison java.lang.Character
* isDefined()
e isDigit()
* isLetter()
* isSpace()/isSpaceChar()/isWitespace()
e isLetterOrDigit()
* isUpperCase()/isLowerCase()/isTitl eCase()
* isJavaldentifierStart()
i sJaval dentifierPart ()
* isUnicodeldentifierStart()
* isUnicodeldentifierPart ()
* islSOControl ()

* getType()
e get Numeri cVal ue()

o W

The java.lang.Character class provides a whole variety of functionsto query various
properties on a character. getType() returns a code representing one of the types
defined in the Unicode Character Database. getNumericValue() returns the numeric
value of a character according to the Unicode Character Database.

15th International Unicode Conference 115 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Case conver sion

X T O e
» Not alwaysthe same numeric offset
* A=U+0041 and a = U+0061,
butA = U+0100 andi = U+0101
» Not alwaysround trip
e s and ?both uppercase to S
» Not alwaysoneto one
* [3 uppercases to “SS”
» Not always context-independent

» ¥ lowercases to eitheror ¢ depending on the position
in the word

» Not always locale-independent
« In Turkish, | uppercases tand | lowercases to

o W

Converting a character from lowercase to uppercase and vice versa also isn't
straightforward. Case pairs aren’t all positioned in the same way relative to each
other (again, because of compatibility issues with other encodings). Some times
there are mappings between a character in one case and multiple counterparts in the
other case. Sometimes a character will expand into two when converted to a
different case. And sometimes the conversion is locale-dependent.

15th International Unicode Conference 116 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

“Titlecase”
NN
» Some Unicode characters have a “titlecase”
form

* The Serbian lettdib maps either a single code point for
“NJ” or a single code point for “Nj” depending on
context

o W

Then there’s “titlecase”, which is used with some single character codes that really
represent two characters and represents the situation where the first “character” is
uppercase and the second “character” is lowercase.

15th International Unicode Conference 117 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Case conver sion

X T O e
» t oUpper Case(),t oLower Case(), and
toTitl eCase() onString handlethe
complicated situations
» t oUpper Case(),t oLower Case() and
toTitl eCase() on Character just dothe
raw one-to-one mappings

o W

There’s APl on both String and Character to perform case conversions. The String
API takes into account all the complicated situations discussed before. The
Character API only handles the simple one-to-one mappings.

15th International Unicode Conference 118 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Displaying and Editing
Multilingual Text

15th International Unicode Conference 119 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Displaying multilingual text
“.I.:blli.;ra-y-o-r-d?-r;;;:ot be the same as storage

order

S0
So, iYW NX 18 a sentence.

NN W7 1s|ja s‘ent‘en‘c‘e.

)

o W

Displaying multilingual text can also be quite complicated. When mixing English
and Hebrew text, which have opposite writing directions, on the same line, extra
work must be done to keep the various character runsin the right visual positions

relative to each other.

15th International Unicode Conference 120 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Displaying multilingual text
“lllbm(:.l:;r- a:;;r-s-rr-l ;; :Fllzla.n ge shape depending on
their context

s

SOy o

o W

Sometimes, characters change their shape depending on the surrounding characters.
Here, we show three of the same Arabic letter. When positioned next to one
another, they assume three different shapes, none of which isthe same as the form
the letter takes when it stands aone.

15th International Unicode Conference 121 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Displaying multilingual text
“lllbm(:.l:;r- a:;;r-s-c;:-j;;:.'::)get her into ligatures:

Ji y
ColC

o W

Sometimes, adjacent characters join together into awhole new shape called a
“ligature.” This slide shows two examples (one in Arabic, one in Hindi) of how
characters stored adjacently in memory appear on screen.

15th International Unicode Conference 122 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Displaying multilingual text
R T O o
» Support for Arabic and Hebrew “comes for
free” in JDK 1.2
* In Swing, all of the components descending from
JText Conponent will draw, select, and hit-test
Arabic and Hebrew correctly
* In AWT, text editing depends on the host environment
* G aphics.drawstri ng() handlesasingle line of
Arabic or Hebrew correctly
* The newText Layout andLi neBr eakMeasur er
classes ipava. awt . f ont can be used by
programmers who want to write their own text-editing
engines
» Support for other languages may comein
futureversions of the JDK
e The IBM JDK 1.2 release supports Hindi and Thai

o W

The text-rendering engine in JDK 1.2 properly supports Arabic and Hebrew. All of

the Swing text components have been updated, so support comes “for free.” AWT,
on the other hand, relies on the underlying host, so support for various languages
doesn’t depend on the JDK. The low-level Graphics.drawString() call also handles
Arabic and Hebrew correctly.

The Java 2D framework now includes new classes, TextLayout and
LineBreakMeasurer, which allow programmers writing their own text editors to
draw and hit-test multilingual text correctly.

The IBM JDK 1.2 release will also support Hindi and Thai, and we are negotiating
to get this into the next Sun JDK as well.

15th International Unicode Conference 123 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Entering multilingual text

X T O e
» Some languagesrequire multiple keystrokesto
enter a single character

sa

X shi

S L

S Lmi

3L A

Rl B

o W

Languages such as Japanese and Chinese with many different characters require
specia procedures (usually involving multiple keystrokes) to enter the text. These
are called “input methods.”

15th International Unicode Conference 124 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Entering multilingual text

X T o o A

» JDK 1.2 introducesthe Java I nput Method
Framework, which allows text editorswritten
in Java low-level accessto variousinput
methods

»1nJDK 1.2, JTextComponent and its subclasses
usethe Input Method Framework

»1n JDK 1.3, the Input Method Framework will
add an SPI to allow developersto write input
methodsin Java

o W

Pre-1.2 Javaversionsrelied on the underlying host for input method support and

didn’t provide a way for application programs to access the host’s input method
engine. JDK 1.2 introduced the Java Input Method Framework, which does provide
low-level access to the input method engine (allowing text editors written in Java to
provide a better Ul for interacting with input methods). In JDK 1.3, the Input
Method Framework will add an SPI to allow programmers to write new input
methods in Java.

15th International Unicode Conference 125 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Translating Window L ayouts

15th International Unicode Conference 126 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Trandlating window layout
“.II:V\I/.thi-rT g- E:;:t-l c-)rT Ic.):‘lltlext may also affect layout
of objectson the screen

» Arabic and Hebrew users prefer to see everything laid
out from right to left

English — nTay
| ong SRR
| two o™
| three e]

o W

Writing direction usually can affect window layout. Arabic and Hebrew speakers
usually prefer for the whole Ul to be the mirror image of its English layout:
Individual Ul widgets gets reversed relative to each other, and the Ul widgets

themselves also reverse: for example, the check box now appearsto the right of its
label.

15th International Unicode Conference 127 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

ComponentOrientation

» Added toj ava. awt APl inJDK 1.2

» Describesthe layout direction for a component

» The Conponent classhasa getter and a setter
for aConponent Ori ent at i on object

* In JDK 1.2, most layout managers honored the
orientation, but only if asked

* In JDK 1.2, some Swing Ul widgets were updated to
respond to their orientations

* In JDK 1.3, all of Swing has been updated to honor
Conmponent Ori entati on

* The peer-based AWT Ul widgets will never honor
Conmponent Ori entati on

o W

JDK 1.2 was updated to handle this by adding a new object called Component

Orientation that specifies a Ul widget’s layout direction. Some layout managers
and Ul widgets were updated to respond to this setting in JDK 1.2, and the rest will
be updated in JDK 1.3. The AWT Ul widgets depend on the host environment for
this support and are unaffected by changes in the JDK.

15th International Unicode Conference 128 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling Non-Unicode text

15th International Unicode Conference 129 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Handling non-Unicode text

X T O e

» Most text fileswill not bein Unicode

» Thosethat are can bein many flavors of
Unicode:
« UTF-16BE
« UTF-16LE
« UTF-8
« UCS-4

» Thej ava. i o framework includes classesto
handlethis

o W

It's nice that Java uses Unicode for text storage, but the whole world hasn’t seen the
light yet, so there has to be a way for a Java program to read files and receive data

that’s in other character encodings (in fact, various flavors of Unicode also count as

foreign character encodings). Support for character code conversion is in the

java.io package.

15th International Unicode Conference 130 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Character code conversion
X T o o A
» java.io. | nput StreanReader and
java.io.Qutput StreamWiter
* Wrap input and output streams and automatically

convert between the file format and Unicode in their
read() andw it e() methods

* Readers and writers are initialized with the name of the
file’s character encoding (no built-in tagging
mechanism)

» java.lang. String
* Has constructors that take an array of byte and convert
its contents from the specified encoding to Unicode

* Hasget Byt es() methods to get arrays of byte
containing the string text in a specified encoding

o W

The Java I/O library has classes called “readers” and “writers” that can be wrapped
around streams to perform the conversions transparently. The String class also has
API to convert from Unicode to something else and back.

15th International Unicode Conference 131 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

L imitations
1N T O
» No direct accessto the conversion engine
* No naming standard for converters
No converters are guaranteed to be available on all IDK
No way to find out which converters are installed
No display-name support
No SPI for writing new converters

° [) [)
UJ

k-2 T Jd
o W

There’s no direct access to the converters in the API, which limits the control an
application has. You can’t write your own converters for the I/O framework to use,
and since there’s no way to get a list of available converters and no Java
implementation is required to support any particular converter, the conversion
library is only useful if you don’t need to have the user pick an encoding and you
either have control over all of the environments where your program will be run or
can use the exception-handling mechanism to deal with situations where the desired
converter isn't available.

15th International Unicode Conference 132 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Server-Side
| nter nationalization

15th International Unicode Conference 133 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Multi-locale programs
X T o o A

» Most programsjust operatein the default
locale

» Some applications support two locales
simultaneously
* One for the Ul
* One for the data being processed

» Some applications need to support an arbitrary
number of simultaneous locales

* Again, one Ul locale and various pieces of data tagged
with locales

» Some applications support changing the Ul
locale on the fly
* This is rarely necessary

o W

There are afew issues related to supporting multiple locales at the same time that

are worth commenting on. Most applications don’t need to worry about locale; they
can just use the default locale (which is picked up from the host environment) and
never explicitly deal with locales.

Sometimes, it’s nice if you can use one locale for the Ul and a different Ul for the
data you're working on. In fact, maybe the data itself will need multiple locales (all
specified in the data somewhere). Again, you'd use the default locale for the Ul
and explicitly specify the locale when dealing with the data.

It's usually not necessary to support multiple Ul locales. Some applications allow
the user to change the Ul locale on the fly while the program is running. This
makes for a cool demo, but usually isn’t necessary in real life. The big exception to
this is a program that is never shut down but may be used at different times by
different users.

15th International Unicode Conference 134 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Server-sideissues
X T o o A
» Server-side applications need to support
multiple Ul locales
» Each user may be operating in a different locale
* Most server-side applications need to have their own
ad-hoc protocol to communicate locale information
between client and server
* Servlets can use tlecept | anguage parameter
= But not all browsers support this
* When possible, delegate the Ul work to the client side
= Not possible when client is a generic Web browser
* Some work can't be delegated to the client
= Searching and sorting usually can’t

= Server must be able to do these correctly according to the
user’s locale

k-2 T Jd
o W

...which is a great description for a server-side application. If you're writing an
application that runs on a server and deals with remote users, then it has to be able
to handle multiple simultaneous users that may all be operating in different locales.
This requires some kind of protocol for the client and the server to exchange locale
information. Java doesn’t provide a built-in way to do this, because the protocol is
so application-specific. (If the communication protocol is HTTP, you can use its
accept_language tag, but not all browsers support this properly.)

Generally, as much locale-specific processing as possible (number and date
formatting, for example) should be performed on the client side (the protocol
between client and serve is locale-independent). But this isn’'t always possible. For
some operations, such as searching and sorting, it's very rarely possible. Here, the
locale-specific code has to reside on the server.

15th International Unicode Conference 135 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

Other talksto hear

» For useful tipson using the Java | 18N APIs
* Helena Shih, Thursday,10:00 AM, Track A
» For more on thetext-editing APIs
* Brian Beck, Wednesday, 2:05 PM, Track C
* Doug Felt & John Raley, Wednesday, 4:50 PM, Track C

» For more on the Input Method Framework
* Norbert Lindenberg, Thursday, 3:50 PM, Track C

» For mor e on searching in Unicode text
* Laura Werner, Wednesday, 10:00 AM, Track B

» For more on international calendars
* Laura Werner, Thursday, 10:45 AM, Track A

» For mor e on Breaklterator
* Richard Gillam, Wednesday, 10:45 AM, Track B

o W

15th International Unicode Conference 136 San Jose, CA, August-September 1999

Developing Globa Applicationsin Java

For Morelnfo...

» JDK class and method documentation

e http://ww.java. sun. coni products/jdk/ 1. 2/ docs/ api/
i ndex. ht m

e http://ww.java. sun. coni product s/ j dk/ 1. 2/ docs/ gui de/
i nternat/index. htm

» Java internationalization tutorial

e http://java. sun. coni docs/ books/tutorial/i1l8n/index.htn
» Additional IBM classesfor internationalization

e http://wwm. al phawor ks. i bm cont t ech (click on “International”)
» IBM'’s Classes for Unicode

e http://ww.ibmconljaval/tool s/international-classes/

P Variousinternationalization-related |1BM papers
e http://ww.ibmconijaval/ educati on/ papers. htni
e http://ww2. software.i bm com devel oper/ papers. nsf/
j ava- paper s- byt opi ¢ (click on “Unicode”)
» Unicode home page
e http://ww. uni code.org
» Me(rgill am@s. i bm com)

k-2 T Jd
o W

15th International Unicode Conference 137 San Jose, CA, August-September 1999

