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1 Preamble

Lectures #9 and #10 studied the planted bisection (a.k.a. community detection) and planted
clique models, where we posited specific parameterized input distributions (parameterized
by edge densities p and q within and between clusters, or by planted the clique size k),
in which a “clearly optimal” solution is planted in an otherwise random graph. The goal
was to identify necessary and sufficient conditions on the parameters (p − q, or k) of the
distribution such that the planted solution can be recovered in polynomial time. We obtained

state-of-the-art positive results for these problems, for p − q = Ω(
√

logn
n

) and k = Ω(
√
n).

We obtained these results using spectral algorithms, which compute the second eigenvector
of the adjacency matrix followed by some problem-specific postprocessing.

How should we feel about these results? Technically, the results are quite interesting.
And in the end, the theory ends up advocating natural algorithms that are not overly tailored
to the assumed input distributions, so there is hope that these algorithms could perform well
much more generally. Indeed, at least for graph partitioning, spectral algorithms constitute
one of the dominant paradigms in practice.

Still, one can’t help but notice that our analysis of these spectral algorithms strongly ex-
ploited the assumed input distribution (e.g., through bounds on the eigenvalues of random
mean-zero symmetric matrices). Can we do better? That is, can we obtain more robust ver-
sions of our recovery results, that assume much less about the underlying input distribution?
The answer is yes, although we will have to up our game—spectral algorithms will no longer
be sufficiently powerful, and we’ll need to rely on semidefinite-programming (SDP)-based
algorithms.
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2 Semi-Random Models

Semi-random graph modes are a very nice idea of Blum and Spencer [1]. The goal of these
models is to have as robust a data model as possible, subject to preserving the existence of a
“planted” or “clearly optimal” solution. Like several upcoming lectures (e.g., on smoothed
analysis), this is a “hybrid model” that blends together aspects of worst-case and average-
case analysis.

2.1 Definition and Discussion

We describe semi-random models in particular for the minimum bisection and maximum
clique problems. Nature and an adversary conspire to produce a hard input as follows.
In the first step, nature chooses a random instance from the corresponding planted model.
Recall for planted bisection the model is (for vertex set V and parameters p, q):

1. Choose a partition (S, T ) of V with |S| = |T | uniformly at random.

2. Independently for each pair (i, j) of vertices inside the same cluster (S or T ), include
the edge (i, j) with probability p.

3. Independently for each pair (i, j) of vertices in different clusters, include the edge (i, j)
with probability q (with q < p).

For planted clique the model is (for vertex set V and parameter k):

1. Choose a random subset Q ⊆ V of k vertices.

2. Add an edge between each pair of vertices in Q.

3. Independently for each pair (i, j) of vertices with at least one of i, j not in Q, include
the edge (i, j) with probability 1

2
.

In the second step, an adversary is allowed to modify the graph. If we want to recover
the planted solution, then we need to restrict the power of the adversary, as otherwise the
adversary could simply replace the random instance by a worst-case instance. The rules
of the game are such that the adversary can make the sparse regions sparser (by removing
edges) and the dense regions denser (by adding edges) in an arbitrary way—this is called a
monotone adversary. So in the minimum bisection problem, the adversary can delete any
edges between S and T and can add any edges within S or within T . In the maximum clique
problem, the adversary can remove any edges that are not inside the planted clique Q.1

The planted solution survives arbitrary modifications of a monotone adversary—if it was
an optimal solution in the original random planted instance, then it remains optimal after
the adversary’s actions. In fact, since a monotone adversary can intuitively only make the
planted solution “more optimal,” one might wonder if the semi-random model is really any

1See [4, 5] for recent proposals of semi-random graph models with even stronger adversaries.
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harder than the planted one. It is not easy to come up with a provable separation between
a planted problem and its semi-random counterpart (though it can be done, see [?]). But
it is easy to see that there are specific algorithms that work well in a planted model but
not in the corresponding semi-random one. For example, the “top k degrees” algorithm
that recovers the planted maximum clique with k = Ω(

√
n log n) (see Lectures #9–10) fails

miserably in the semirandom model, even when k is linear in n: the adversary can sparsify
the edges between the clique vertices and the other vertices, lowering the degrees of the
clique vertices to right around n/2 (Homework #6). It is less obvious but also true that
our spectral algorithms from last week can fail in semi-random models. We will instead use
optimization techniques—specifically, semidefinite programming, as in Lecture #8.

The benefit of the semirandom model over the planted one is that it encourages more
“robust” solutions — algorithms that are not overfitted to a particular data model. In the
planted model, an algorithm can take advantage of two properties of the input: (i) there is
a clearly optimal solution (a plausible property of many “real instances”); and (ii) the input
shares lots of non-trivial and useful properties with completely random instances, such as
highly predictable vertex degrees (a questionable property of “real instances”). The first
advantage was the motivating point behind the planted model, while the second was only a
side effect of our modeling choices. The semirandom model offers an algorithm only the first
advantage, and is thus more faithful to our original goals.

3 Semi-Random Graph Bisection

We begin with exact recovery for the semi-random Minimum Bisection problem. We need
to retain last week’s assumption about the edge density gap p− q:

p− q ≥ c1

√
log n

n
, (1)

where c1 is a sufficiently large constant. For simplicity we also assume that p, q = Ω(1),
although the results continue to hold (with the same arguments) for much smaller p and q.

Feige and Kilian [3] prove the following cool theorem.

Theorem 3.1 ([3]) Under assumption (1), there is a polynomial-time algorithm that, with
high probability over nature’s coin flips, computes the minimum bisection in the semi-random
model.

Their approach is to use semidefinite programming (SDP), which we touched on in Lec-
ture #8 in the context of exact recovery in perturbation-stable Maximum Cut instances.2

Recall that one good way to think about SDPs is as relaxations of certain types of
quadratic programs (where pairs of decision variables can be multiplied together) with ±1
decision variables. It’s easy to express an instance of Minimum Bisection as such a

2See also Lecture #20 of the instructor’s lecture notes for CS261 for a more leisurely treatment of
semidefinite programming.
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quadratic program. We have one decision variable zi ∈ {−1,+1} for each vertex i ∈ V ,
indicating which side of the cut i belongs to. (We could use {0, 1}, but {−1,+1} is more
convenient to pass to an SDP relaxation.) To derive the appropriate objective function, first
note that zizj is 1 if i and j are on the same side of the cut, and −1 otherwise. Thus, our
objective is:3

min
1

2

∑
(i,j)∈E

(1− zizj) . (2)

Unlike when we were discussing the Maximum Cut problem, here we have to enforce the
constraint that the two sides of the cut have the same size:(∑

i∈V

zi

)2

=
∑
i,j∈V

zizj = 0. (3)

This ensures that there are an equal number of +1s and −1s. Why not just write
∑

i∈V zi =
0? Because when we eventually pass to a semidefinite programming relaxation, it’s going to
be important that the zi’s only appear in pairs (multiplied together), and not individually.
Optimizing (2) subject to (3) and zi ∈ {−1,+1} (or equivalently, z2i = 1) is exactly the
Minimum Bisection problem, and hence is NP -hard (in the worst case).4

Following the pattern in Lecture #8, the next step is to look at a vector relaxation of the
quadratic program. So rather than forcing each zi to be either 1 or -1, we allow it to be an
arbitrary unit vector in n-dimensional Euclidean space, where n is the number of decision
variables (i.e., |V |). Every appearance of a zi in the quadratic program is replaced by a
a vector vi ∈ Rn. Wherever we previously had the product of two decision variables, we
now take the inner product of the corresponding vectors. We arrive at the following vector
program (all norms in this lecture are 2-norms):

min
∑

(i,j)∈E

1
2

(1− 〈vi, vj〉)︸ ︷︷ ︸
∈[0,1]

(4)

subject to
vi ∈ Rn (5)

and
‖vi‖2 = 1 (6)

for every i ∈ V , and ∑
i,j∈V

〈vi, vj〉 = 0. (7)

This vector program is a relaxation of the Minimum Bisection problem, since for any
bisection (A,B), one always has the option of assigning all vertices i ∈ A to e1 and all i ∈ B

3In Lecture #8, we worked with the equivalent expression 1
4

∑
(i,j)∈E(zi − zj)2 (and were maximizing

rather than minimizing).
4In Lecture #8 we also added “triangle inequality” constraints; we won’t need them here.
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to −e1, where e1 denotes the first standard basis vector. Geometrically, this relaxation is
mapping each vertex to a point on the sphere (in Rn), to make the endpoints of each edge as
close to each other as possible (to make (4) small), subject to the “balance constraint” (7).

Let b(G) denote the number of edges crossing the minimum bisection of G and let h(G)
denote the optimal solution to the vector program above (or rather, the equivalent SDP, see
Section 5). Since the vector program is a relaxation of the Minimum Bisection problem—
every solution of the latter maps to one of the former, with equal objective function value—we
always have h(G) ≤ b(G). That is, the optimal solution of the relaxation can only be better
than that of the actual problem.

Since computing a minimum bisection is NP -hard and computing h(G) can be done in
polynomial time (see Section 5), we expect that h(G) < b(G) for many graphs G. The
main technical lemma in Feige and Kilian [3], which is inspired by Boppana [2], is that the
relaxation is exact (w.h.p.) in the planted bisection model.

Lemma 3.2 ([2, 3]) For a random graph in the planted (non-semirandom) bisection model,
under assumption (1), h(G) = b(G) with high probability.

We’ll prove Lemma 3.2 over the course of the next few sections.
But Lemma 3.2 merely matches the recovery guarantee that we already proved last week.

Moreover, solving a semidefinite program is significantly more computationally intensive (if
still polynomial time, see Section 5) than computing the eigenvectors of a matrix (as in last
week’s spectral algorithms). So what use is this new, slower solution?

Unlike the known combinatorial and spectral algorithms for planted models, the semidef-
inite programming approach extends automatically to the semi-random model, and is there-
fore a “more robust algorithm” in some sense. Formally, we now show that Theorem 3.1
follows easily from Lemma 3.2.

Proof of Theorem 3.1: Recall that b(G) denotes the value of the minimum bisection of G,
h(G) denotes the value of the optimal solution to the relaxation (4)–(7), and that h(G) ≤
b(G) for every graph G.

We claim that if the graph Ĝ is obtained by adding a single edge to another graph G,
then

h(G) ≤ h(Ĝ) ≤ h(G) + 1. (8)

To see the first inequality, take an optimal solution to the vector relaxation for Ĝ, and note
that it is also a feasible solution to the relaxation for G (with only less objective function
value). The optimal solution to the latter relaxation can of course only be better. The
argument for the second inequality is similar: we can reinterpret the optimal solution to the
vector relaxation for G as a feasible solution to the relaxation for Ĝ, with objective function
value at most 1 larger (since 1

2
(1 − 〈vi, vj〉) ∈ [0, 1]). The optimal solution to the latter

relaxation can only be better.
Now suppose the graph G0 is chosen by nature from the planted bisection model, with

assumption (1). By Lemma 3.2, with high probability, b(G) = h(G). Conditioned on this
being the case, we now show that b and h stay equal no matter what the adversary does
(and hence the relaxation remains exact).
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The adversary adds or deletes edges one at a time, yielding a sequence G0, . . . , Gt. We
claim that, by induction, b(Gi) = h(Gi) for every i.

Let (A,B) denote the planted bisection. First, consider a step where the adversary adds
an edge inside A or inside B to obtain Gi from Gi−1. The planted bisection has the same
value and other bisections can only get worse, so b(Gi) = b(Gi−1). By (8), h(Gi) ≥ h(Gi−1) =
b(Gi−1) = b(Gi). But since h(G) ≤ b(G) for every graph G, we must have b(Gi) = h(Gi).

Second, consider a step in which the adversary removes an edge of the planted bisection.
We then have b(Gi) = b(Gi−1) − 1 (the planted bisection gets better by 1, and no other
bisection gets better by more than 1). By (8), h(Gi) ≥ h(Gi−1)− 1 = b(Gi−1)− 1 = b(Gi).
But since h(G) ≤ b(G) for every graph G, we must have b(Gi) = h(Gi). �

The proof above shows how to compute the value b(G) of the minimum bisection in
polynomial time with high probability (by computing h(G) instead). We leave as an exercise
the task of using this subroutine to reconstruct the planted bisection itself in polynomial
time (Homework #6).

Theorem 3.1 is one of the main results of this week: semidefinite programming extends
the recovery guarantee we proved for a spectral algorithm from the random planted model
to the semi-random model. But there a few issues that probably seem mysterious at this
point:

1. What’s the connection between the vector programs we’ve been looking at and these
oft-mentioned semi-definite programs?

2. Why on earth can you solve vector (and semidefinite) programs in polynomial time?

3. Why is Lemma 3.2 true?

The next sections demystify each of these issues in turn. To answer the final question, we
will need to discuss duality for semidefinite programs.

4 Linear Algorithm Review (Part 2)

To make sure we’re all on the same page, we review the basics of (symmetric) positive
semidefinite (psd) matrices. Let’s start from the spectral decomposition for symmetric ma-
trices, which we reviewed last week. If M is an n × n symmetric matrix, then it can be
written as

M =

 u1 u2 · · · un


︸ ︷︷ ︸

Q

·


λ1 0

λ2
. . .

0 λn


︸ ︷︷ ︸

D

·


u1

u2
...

um


︸ ︷︷ ︸

Q>

. (9)

The ui’s are the eigenvectors of M (scaled to have unit norm), which form an orthonormal
basis of Rn, and the λi’s are the corresponding (real-valued) eigenvalues. We can assume
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that λ1 ≥ λ2 ≥ · · · ≥ λn. Recall that Q> re-represents a vector v in terms of the basis of
ui’s, the diagonal matrix D then scales and possibly flips independently along the directions
of the ui’s, and Q translates the result back into the standard basis. Thus the operator
(from Rn to itself) corresponding to a symmetric matrix is always super-simple, really the
same as a diagonal matrix (after a suitable change of basis).

One definition of a psd matrix is that all of its eigenvalues are nonnegative, or equivalently
that the smallest eigenvalue λn is nonnegative. Geometrically, then, the operator defined by
a psd matrix can only scale (and not flip) along the directions of its eigenvectors.

There’s zillions of equivalent definitions of psd matrices, and its worth knowing a few of
them. For example, a symmetric matrix M is psd if and only if the corresponding “quadratic
form” is nonnegative, meaning

x>Mx ≥ 0 for all x ∈ Rn. (10)

For the proof of equivalence, first assume that all of M ’s eigenvalues are nonnegative. Then
for an arbitrary x, express it as a linear combination x =

∑n
i=1 αiui of M’s eigenvectors and

note that x>Mx =
∑n

i=1 λiα
2
i ≥ 0. Conversely, if λn < 0, then u>n Mun = λn < 0.

Another characterization is: an n× n symmetric matrix M is psd if and only if it has a
“square root,” meaning there is a matrix V ∈ Rn×n that satisfies

M = V>V. (11)

If (11) holds, then certainly (10) holds as well, since for every x ∈ Rn we have x>Mx =
x>V>Vx = ‖Vx‖2 ≥ 0. In the other direction, suppose M is psd according to original
definition (all nonnegative eigenvalues). Then it is clear from the decomposition in (9) how
to define the square root, as

√
DQ> (where

√
D just means taking entrywise square roots

of D, which makes sense since its entries—M’s eigenvalues—are all nonnegative).
What the condition (11) really asserts is that the entries of M arise as all pairwise inner

projects of the columns of V. (Matrix multiplication says that Mij is the inner product of
the ith row of V> and the jth column of V.) That is, M is a psd matrix if and only if it
has the form 

〈v1,v1〉 〈v1,v2〉 · · · 〈v1,vn〉
〈v2,v1〉 〈v2,v2〉 · · · 〈v2,vn〉

...
...

...
...

〈vn,v1〉 〈vn,v2〉 · · · 〈vn,vn〉

 , (12)

where vi corresponds to the ith column of V. It is this view of psd matrices that suggests
a connection between vector programs and semidefinite programs, developed in the next
section.

5 Semidefinite Programs

An n × n matrix is psd if and only if its entries arise as all pairwise inner products of n
vectors vi ∈ Rn (the columns of V in the previous section). Thus, if we have a vector
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program where the vectors only appear as inner products with each other (like (4)–(7)), we
can recast the decision variables as these inner products, subject to a psd constraint. For
example, the vector program in (4)–(7) is equivalent to the following:

min
1

2

∑
(i,j)∈E

(1− xij) (13)

subject to ∑
i,j∈V

xij = 0, (14)

xii = 1 (15)

for every vertex i ∈ V , and the constraint that

X =


x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
...

...
xn1 xn2 · · · xnn

 , (16)

is a (symmetric) psd matrix. In effect, we have “linearized” the inner products in (4)–(7),
replacing each one with a new decision variable (〈vi, vj〉 by xij), but then adding the psd
constraint to keep the xij’s honest (i.e., they really should correspond to the inner products
of n vectors in Rn, as intended). “Integer solutions” to this SDP correspond to psd matrices
that have the form X = xx> for x ∈ {±1}n. In general, linear programs supplemented by
psd constraints (like (13)–(16)) are called semidefinite programs, or SDPs.

Back in Lecture #8, we stated without proof or intuition that vector programs can be
solved in polynomial time. We alluded to the fact that convexity is what underlies the
computational tractability. But where’s the convexity in a vector relaxation? After all, if
you take the average of two points on the unit sphere, you don’t get another point on the
unit sphere.

By reformulating vector programs as semidefinite programs, we now see where the con-
vexity comes from. Specifically, it is clear from the characterization of psd matrices in (10)
that the set of psd matrices of a given size is convex.5 Since everything else about our
semidefinite programs are linear, the optimization problem boils down to optimizing a linear
function over a convex feasible region. This can be done in polynomial time (under minor
technical conditions, which hold in our applications), using the ellipsoid method or interior-
point methods (see e.g. Lecture #20 of CS261 for more discussion).6,7 If the corresponding
vectors (the vi’s) are desired, they can be recovered as the columns of the “square root” of
the computed psd matrix.

5Using linearity, if x>M1x ≥ 0 and x>M2x ≥ 0 for all x, then x>(αM1 + (1− α)M2)x = αx>M1x +
(1− α)x>M2x ≥ 0 for all x.

6Strictly speaking, since the optimal solution might be irrational, we can only solve it up to arbitrarily
small error.

7It is also important that psd matrices can be recognized in polynomial time, but this just boils down
to an eigenvalue computation.
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6 Duality

Our high-level plan for proving Lemma 3.2 is: (i) let x̂ denote the SDP solution corresponding
to the planted bisection (S, T ) (with x̂ij = 1 if i, j are on the same side of the bisection and
x̂ij = −1 otherwise); and (ii) certify the optimality of the “integral solution” x̂ to (13)–(16)
by exhibiting a feasible solution to the dual SDP that has the same objective function value.
Clearly, to implement this, we need to understand what the dual of an SDP is. Fortunately,
SDP duality can be understood fairly easily by analogy with linear programming duality
(which hopefully you have at least passing familiarity with, otherwise see below and CS261).8

This “dual certificate” approach is ubiquitous in the literature on exact recovery (across many
different problems), and in particular works well for both the planted bisection and planted
clique problems.

6.1 Linear Programming Duality

First, a brief review of linear programming duality, to serve as a model for the subsequent
description of SDP duality. One canonical way to write a linear program is as

min c>x (17)

subject to

Ax = b

x ≥ 0, (18)

where c and x are (column) n-vectors, b is a (column) m-vector, A is an m× n matrix and
the equations and inequalities are componentwise. It will be convenient to write the equality
constraints in a more verbose form:

aix = bi (19)

for i = 1, 2, . . . ,m, where ai is the ith row of A (and so aix is a scalar). Let’s call this the
primal linear program.

The corresponding dual linear program is, by definition,

max y>b (20)

subject to
m∑
j=1

yj · a>j ≤ c, (21)

where the yj’s are scalars and the a>j ’s and c are column n-vectors. The inequalities are
componentwise (for i = 1, 2, . . . , n).

In general, there is a purely syntactic way of passing from an arbitrary linear program
to its dual and back (the dual of the dual is equivalent to the original linear program).

8Our treatment is inspired by Gupta [?], which in turn is inspired primarily by Lovász [?].
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This can be very useful, but don’t forget the true meaning of the dual (which holds in
all cases): feasible dual solutions correspond to bounds on the best-possible primal objective
function value (derived from taking linear combinations of the constraints), and the optimal
dual solution is the tightest-possible such bound.

If you remember the meaning of duals, then “weak duality” becomes tautological.

Theorem 6.1 (Weak Duality) For every minimization linear program (P) and correspond-
ing dual linear program (D),

OPT value for (P) ≥ OPT value for (D).

The proof, in matrix-vector notation, simply takes primal and dual feasible solutions x
and y and notes that c>x ≥ y>Ax = y>b.

The following corollary (and its extension to SDPs) is highly relevant for exact recovery.

Corollary 6.2 Let (P),(D) be a primal-dual pair of linear programs. If x,y are feasible for
(P),(D) and cTx = yTb, then x and y are both optimal.

Corollary 6.2 follows from the fact that there is no feasible primal solution with objective
function value strictly smaller than that of any feasible dual solution. So if we ever find
a primal-dual pair with matching objective function values, there can be no better (i.e.,
smaller) primal solution, and there can be no better (i.e., larger) dual solution.

You may also know about strong linear programming duality, which states that whenever
both the primal and dual LPs have optimal solutions (guaranteed if, e.g., their feasible regions
are non-empty and bounded), these optimal solutions have equal objective function values.
(In particular, providing the converse to Corollary 6.2.) We won’t need strong duality in
these lectures.

6.2 Semidefinite Programming Duality

In the semidefinite programming analog of linear programming duality, we replace n-vectors
with n× n symmetric matrices, inner products of vectors with the corresponding product

A •B =
∑
i,j

aijbij (22)

of matrices (i.e., the inner product treating the matrices as vectors of length of n2), and
nonnegativity constraints by psd constraints. With these replacements, the primal linear
program (17)–(19) becomes the semidefinite program with objective function

min C •X (23)

and constraints
Ai •X = bi (24)
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for i = 1, 2, . . . ,m and
X psd. (25)

Here, C, X, and the Ai’s are n× n matrices. The bi’s are scalars.
The dual program (20)–(21) becomes the semidefinite program with objective function

max y>b (26)

and constraint

C−
m∑
j=1

yjAj is psd. (27)

As a sanity check, let’s verify weak duality—that the (dual) objective function of every
dual feasible solution is at most the (primal) objective function value of every primal feasible
solution. (This should hold as long as we came up with the “correct” definition of a dual
SDP.) As with weak linear programming duality, we’ll just follow our nose, applying whatever
equations or inequalities apply at each step of the derivation.

Theorem 6.3 (Weak SDP Duality) For every semidefinite program in the form (23)–
(25) and corresponding dual semidefinite program (26)–(27),

optimal value of primal ≥ optimal value of dual.

We’ll need the following lemma, which you’ll prove on Homework #6. It is a simple
consequence of the fact (which you’ll prove) that the entrywise product of psd matrices is
again psd.9

Lemma 6.4 If A,B are n× n psd matrices, then A •B ≥ 0.

We then have

C •X =

(
C−

m∑
j=1

yjAj +
m∑
j=1

yjAj

)
•X = y>b +

(
C−

m∑
j=1

yjAj

)
︸ ︷︷ ︸

psd

• X︸︷︷︸
psd

≥ y>b,

with the final inequality following from Lemma 6.4. This concludes the proof of Theo-
rem 6.3.10

9This is one of many senses in which psd matrices behave analogously to nonnegative real numbers.
10There is also a version of strong duality for SDPs, but it requires more conditions than in the case of

LPs. The most common sufficient condition requires that both the primal and dual SDPs have “strictly
feasible” solutions.
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7 Proof of Lemma 3.2

7.1 The Set-Up

To prove Lemma 3.2, we first instantiate the theory of SDP duals to the SDP that we actually
care about, given in (13)–(16). Let’s rewrite that SDP in the notation used in (23)–(25).
We can write the objective function (13) as

min
|E|
2
− 1

4
·B •X,

where B denotes the adjacency matrix of the input graph (the 1
4

because each edge is counted
twice in B•X). In the notation of (24), the constraint (14) translates to a psd matrix A0 = J,
where J is the all-ones matrix, and the n constraints in (15) to matrices A1, . . . ,An, where
Aj has a 1 in entry (j, j) and 0 everywhere else, and bj = 1.

The corresponding dual SDP, in the form of (26)–(27), is then

max
|E|
2

+
n∑

j=1

yj (28)

subject to (
−1

4
B− yoJ−

n∑
j=1

yjAj

)
is psd. (29)

The harmless constant |E|
2

is just a shift of the objective function and hence gets carried over
to the dual. Note that y0 does not appear in the dual objective function, because b0 = 0.

To write the dual more succinctly, write Y = diag(y1, . . . , yn) for the n × n diagonal
matrix that has the yj’s on the diagonal; note that this is precisely

∑n
j=1 yjAj. Also, for

convenience, let’s multiply the constraint (29) by 4 (which doesn’t affect it) and replace each
yj by yj/4. The result is the SDP

max
|E|
2

+
1

4

n∑
j=1

yj (30)

subject to
−B− y0J−Y is psd. (31)

7.2 The Analysis

Lemma 3.2 asserts that the feasible solution to the primal SDP above (with xij = 1 if
i, j are on the same side of the planted bisection, and −1 otherwise) is optimal. By weak
duality (Theorem 6.3), one way to prove this is to exhibit a feasible solution to the dual
SDP (30)–(31) that has the same objective function value (i.e., the number of edges crossing
the planted bisection). We proceed with this plan.
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Defining a dual solution boils down to specifying values for y0, y1, . . . , yn. The first, and
easier, step is to define a dual solution with the right objective function value. For this, we
only need to discuss values for y1, . . . , yn (since y0 does not participate in (31)). We want
these values to satisfy

1

4

n∑
j=1

yj = (# of edges cut by (S, T ))− |E|
2

=
1

2
· (# of edges cut by (S, T )−# of edges not cut by (S, T )) , (32)

where (S, T ) denotes the planted bisection. A natural solution is to ascribe to each yj its
share of the “imbalance” in (32). That is, if we set

yj = # of j’s neighbors on other side of (S, T )−# of j’s neighbors on same side, (33)

then indeed, 1
4

∑n
j=1 yj equals the number of edges crossing the planted bisection.

The second and harder step is to show that, for a suitable choice of y0, the dual solution
y0, y1, . . . , yn is feasible, meaning that the matrix −B − y0 · J −Y is psd. Set y0 = −1, so
that we are trying to prove that the matrix M := −B + J−Y is psd. It’s not hard to check
that M is singular (Homework #6) and hence has a zero eigenvalue. Since a symmetric
matrix is psd if and only if all of its eigenvalues are nonnegative (Section 4), it suffices to
show that the second-smallest eigenvalue λn−1(M) of M is strictly positive. Happily, we can
reuse much of the work we did last week to prove this without too much trouble. Last week,
this linear-algebraic machinery drove the (spectral) algorithms themselves, but here we use
it purely in the analysis (to prove exactness of an SDP).

To track the value of λn−1 as we successively add the components of M to each other, we
recall a linear algebra lemma from last week (proved on Homework #5, using the variational
characterization of eigenvalues).

Lemma 7.1 Let X,Y be n × n symmetric matrices with eigenvalues λ1 ≥ · · · ≥ λn and
µ1 ≥ · · · ≥ µn. For every i = 1, 2, . . . , n, the ith eigenvalue νi of X + Y satisfies

λi + µn ≤ νi ≤ λi + µ1.

That is, adding one symmetric matrix Y to another X shifts each eigenvalue by a number
somewhere between the smallest and largest eigenvalues of Y (with different eigenvalues
possibly shifting by different amounts).

Since M = −B+J−Y, we can also write M as B+I−Y, where I is the identity matrix
and B is the adjacency matrix of the complement graph G of G (formed by complementing

G’s edge set). As in Lectures #9–10, we can further decompose B as M̂ + R, where M̂ is

13



the “expected adjacency matrix” of G:

M̂ =



1− p 1− p · · · 1− p 1− q 1− q · · · 1− q
...

...
...

...
...

...
...

...
1− p 1− p · · · 1− p 1− q 1− q · · · 1− q
1− q 1− q · · · 1− q 1− p 1− p · · · 1− p

...
...

...
...

...
...

...
...

1− q 1− q · · · 1− q 1− p 1− p · · · 1− p


, (34)

where we have permuted the rows and columns so that those corresponding to vertices in S
come first; and R is the random matrix

R =


−(1− p)/p −(1− q)/q

−(1− q)/q −(1− p)/p

 , (35)

where “−(1 − p)/p” means that an entry is either 1 − p (with probability p) or p (with
probability 1 − p), and similarly for “−(1 − q)/q.” Like last week, for convenience we’re

cheating a bit on the diagonal entries, which are actually all zeros in M̂ and R. This cheat
only changes the eigenvalues of M̂ by 1− p, which is negligible in our context.

We already computed the eigenvalues of the matrix M̂ in Lectures #9–10. The matrix
has rank 2, and thus has only two non-zero eigenvalues, and these eigenvalues are (2−p−q)n
and (q− p)n. Since the former number is positive and the latter negative, we have λ1(M̂) =

(2− p− q)n, λ2(M̂) = · · · = λn−1(M̂) = 0, and λn(M̂) = (q − p)n.
We also gave a high-probability bound on the eigenvalues of symmetric random matrices

such as R. Here is the relevant statement from last week.11

Theorem 7.2 ([?]) Let P be a random matrix with the following properties:

(i) With probability 1, P is symmetric, with only zeroes on the diagonal.

(ii) Each random variable Pij has expectation 0, and is bounded between -1 and 1.

(iii) The random variables {Pij}1≤i<j≤n are independent.

Then there is a constant c2 > 0 such that, with probability approaching 1 as n→∞,

‖P‖ ≤ c2
√
n.

11We sketched a proof in lecture of the weaker bound of O(
√
n log n), the proof of Theorem 7.2 on

Homework #5. With more work, one can prove a bound with c2 = 1 [?].
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Recall that the operator norm ‖M‖ of a matrix M is the largest magnitude of one of its
eigenvalues. So Theorem 7.2 says that all of the eigenvalues of a random symmetric matrix
have magnitude at most c2

√
n (with high probability).

Finally, recall that the eigenvalues of a diagonal matrix (like I or −Y) are precisely the
diagonal entries. The matrix −Y is random, with yj defined as in (33). Recalling the random
graph model, the expected number of neighbors on the same side is p(n

2
− 1) and on the

opposite side is q n
2
. In light of assumption (1), we have

E[−yj] ≈ (p− q)n
2
≥ c1

2
·
√
n.

A straightforward application of the Hoeffding bound (see Homework #5) shows that, with
high probability,

−yj ≥
c1
4

√
n

for every j = 1, 2, . . . , n.
Now the dominoes fall. Recalling that

M = M̂ + R + I−Y

and applying Lemma 7.1 repeatedly (with initial matrix M̂ and successive perturbations by
R, I, and −Y) yields

λn−1(M) ≥ λn−1(M̂)︸ ︷︷ ︸
=0

+ λn(R)︸ ︷︷ ︸
≥−c2

√
n (w.h.p.)

+λn(I)︸ ︷︷ ︸
=1

+ λn(−Y)︸ ︷︷ ︸
≥ c1

4
√
n (w.h.p.)

.

We conclude that, provided c1 ≥ 4c2, with high probability, λn−1(M̂) > 0. (Recall that c2
comes from Theorem 7.2 and is not under our control, but c1 is in the assumption (1) and
we can choose it as needed.) In this case, M is psd, and so the dual solution defined by
y0, y1, . . . , yn is feasible, and so the primal solution corresponding to the planted bisection is
in fact optimal. This completes the proof of Lemma 3.2.

8 Semi-Random Planted Clique

The techniques that we’ve been studying are quite flexible. To illustrate this point, we now
show that the same type of SDP-based algorithm and analysis can be used to extend our
recovery results for the planted clique problem (Lecture #10) to the semi-random model
with a monotone adversary.

8.1 The Main Result

Recall the model:
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Semi-Random Planted Clique

Step 1 (Nature): For a fixed vertex set V and parameter k, form a graph
G = (V,E) as follows:

1. Choose a random subset Q ⊆ V of k vertices.

2. Add an edge between each pair of vertices in Q.

3. Independently for each pair (i, j) of vertices with at least one of i, j not
in Q, include the edge (i, j) with probability 1

2
.

Step 2 (Monotone adversary): An arbitrary subset of non-clique edges
(i.e., at least one endpoint is outside the clique) is removed from G.

The main result of this section is the following, also due to Feige and Kilian [3].

Theorem 8.1 ([3]) There exists a constant c3 > 0 such that, for the planted clique model
with k ≥ c3

√
n, the optimal value of a SDP relaxation is exactly k (with high probability

over G).

We are stating Theorem 8.1 only for the planted model of Lecture #10, not for the semi-
random model. But just as with the planted bisection problem, monotonicity properties of
SDPs mean that exact recovery guarantees for the classical planted model translate easily to
the same guarantees for the semi-random model with a monotone adversary (see Homework
#6). The spectral algorithm from last week is not robust enough to recover planted cliques
in this semi-random model.

Another complaint is that the guarantee in Theorem 8.1 is only about the optimal objec-
tive function value, and the more natural goal is to actually recover the planted clique. But
a solution of the former type naturally leads to one of the latter type; see Homework #6.

8.2 An SDP Relaxation and Its Dual

We need an SDP relaxation for the clique problem. It’s more convenient to consider the
independent set problem (i.e., given a graph, find the largest subset of mutually non-adjacent
vertices), which is an equivalent problem (just complement all edges). In this transformation,
the planted clique becomes a planted independent set (of the same size), and a monotone
adversary is now allowed to add any edges that it wants, except with edges in the planted
independent set forbidden.

The SDP relaxation (for independent set) will not be as immediately natural as the ones
we’ve seen for cut problems, but it will still be easy to work with. First, it’s easy to come
up with a quadratic programming formulation. Introduce a variable zi that is meant to be 1
if i is in the independent set and 0 if not. (The integrality constraint corresponds to the
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quadratic constraint z2i = zi.) The objective is then

max
∑
i∈V

zi. (36)

One way to write the constraint that an independent set cannot contain two adjacent vertices
is

zi · zj = 0 for all (i, j) ∈ E. (37)

Here E denotes the edge set of the independent set instance, which is the complement of
the edge set of the clique instance that we started with. By definition, this is an exact
formulation of the maximum independent set problem.

There are two obstacles to relaxing this quadratic program to an SDP. The first is the
objective function (36). Variables in an SDP correspond to products of pairs of variables,
and in (36) each zi appears solo. One way to address this is to change the objective to

max

(∑
i∈V

zi

)2

, (38)

which gives a collection of quadratic terms. For this objective function to correspond to the
maximum independent set problem, we need to change the semantics of the zi’s slightly. An
independent set S of G now translates to a solution where zi = 1/

√
|S| for every i ∈ S

and zi = 0 otherwise. To enforce these semantics, we replace the old 0-1 constraint (that
z2i = zi for each i) by ∑

i∈V

z2i = 1. (39)

The optimal objective function value (38) subject to the constraints (37) and (39) is precisely
the size of largest independent set of G. (For one direction, take an independent set S and
set zi = 1/

√
|S| for all i ∈ S and 0 otherwise; for the other direction, see Homework #6.)

Since the zi’s only occur in pairs in (37)–(39), we can consider the corresponding vector
program relaxation (with each zizj replaced by 〈vi,vj〉 for vectors vi,vj ∈ Rn) and equivalent
SDP relaxation (with xij standing in for 〈vi,vj〉). Skipping straight to the latter, our SDP
relaxation is

max
∑
i,j∈V

xij (40)

subject to

xij = 0 for all (i, j) ∈ E (41)∑
i∈V

xii = 1 (42)

X is psd. (43)

This optimal value of this relaxation for the maximum independent set problem is actually
a famous quantity, known as the Lovász theta-function. It has many equivalent definitions,
see [?].
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Next we derive the dual SDP. In the notation of Section 6.2, the coefficient matrix in the
objective function (40) is the all-ones matrix J, the coefficient matrix of a constraint of the
form (41) for edge e = (i, j) ∈ E is a matrix Ae with all zeroes except for a “1” in entries
(i, j) and (j, i), and the coefficient matrix of the constraint (42) is the identity matrix I.

The recipe for taking SDP duals in Section 6.2 assumes that the primal problem is a
minimization problem. To apply the recipe here, we change the objective function (40) to

min
∑
i,j∈V

−xij,

derive the dual SDP as in Section (6.2), and then negate the objective function of this dual
SDP to obtain a minimization problem. The end result (as you should check) is:

min−t (44)

subject to
− J− tI−Y is psd, (45)

where Y denote the matrix that has value ye in the two entries corresponding to the edge e.
This dual simplifies to something very clean. In (45), note that the subtraction of tI

decreases the eigenvalues of −J−Y by exactly t. Thus for a given choice of Y, t is feasible
if and only if

t ≤ λn(−J−Y),

or equivalently,
−t ≥ λ1(J + Y),

since negating a matrix negates all its eigenvalues. Looking at the objective (44), we see
that at an optimal solution we will have −t = λ1(J + Y). What are our possible choices of
for the matrix M := J + Y? Since Y has zeros in entries (i, j) that do not correspond to
edges, and arbitrary values in entries that do correspond to edges, we can take M to be any
matrix that has a 1 in every entry corresponding to a non-edge.

Summarizing, the dual SDP is equivalent to the following eigenvalue minimization prob-
lem:

minλ1(M) (46)

subject to
Mij = 1 for every (i, j) 6∈ E. (47)

8.3 Proof of Theorem 8.1

To prove Theorem 8.1, we follow the same plan as for Lemma 3.2: exhibit a feasible solution
to the dual SDP (46)–(47) with the desired objective function value (in this case, the planted
independent set size k). The hard part will again be verifying feasibility of the dual solution
(with high probability over the input graph G).
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So what’s the easiest way to define a dual solution M so that λ1(M) = k? If we visual-
ize M with the rows and columns corresponding to the planted independent set Q coming
first, then we can write 

Jk ≈ 50% 1’s

≈ 50% 1’s ≈ 50% 1’s

 ,

where Jk denotes the k × k all-ones matrix. Note that the top and left “halves” of the
matrix only contain k � n

2
rows and columns. The 1’s correspond to non-edges of the

planted independent set instance, or equivalently to edges of the original planted clique
instance. In the rest of the entries, we are free to fill in whatever values we want. How can
we fill them in so that λ1(M) = k?

First let make sure that there is some eigenvector (not necessarily the largest) with
eigenvalue k. The obvious candidate for such an eigenvector is the vector v that puts a
constant value on clique values and zero on non-clique vertices:

v = (1, 1, . . . , 1︸ ︷︷ ︸
k coordinates

, 0, 0, . . . , 0︸ ︷︷ ︸
n− k coordinates

).

For v to actually be an eigenvector of M with eigenvalue k, we need Mv = (k, k, . . . , k, 0, 0, . . . , 0).
Note that Mv is sum of M’s first k columns. So the first k coordinates of Mv are automati-
cally k. To make sure that the other coordinates are 0, we can just assign the unconstrained
entries in the lower-left part of the matrix accordingly. That is, in each row i ∈ {k+1, . . . , n},
if ` of the first k entries of the row are forced to be 1, then we cancel this out by evenly
spreading negative mass on the other k− ` entries in the row (from among the first k). Thus
each such entry gets assigned the value − `

k−ell . For example, if ` is exactly its expectation

(k
2
, right?), then the unconstrained entries all get the value -1. If ` is 2k/3 then they each

get value -2, and if ` is k/3 they each get the value −1
2
. To complete the description of M,

we set every unconstrained entry in the lower-right submatrix to -1. By construction, the
matrix M has k as an eigenvalue (with eigenvector v as above).12 We still need to show that
all of M’s other eigenvalues are smaller (with high probability).

We will again use Lemma 7.1 to track the eigenvalues of M as we build it up from its

12One detail: M is not well defined if ` = k in some row. But this happens only with extremely small
probability.
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constituent parts. So write

M =


Jk 0

0 0


︸ ︷︷ ︸

=M1

+


0 1/− k−`

k

1/− k−`
k

0


︸ ︷︷ ︸

=M2

+


0 0

0 ±1


︸ ︷︷ ︸

=M3

,

where in M3, each non-zero entry is equally likely to be 1 or -1. By Lemma 7.1,

λ2(M) ≤ λ2(M1)︸ ︷︷ ︸
=0

+ λ1(M2)︸ ︷︷ ︸
≤ c2
√
n w.h.p.

+ λ1(M3)︸ ︷︷ ︸
≤ c2
√
n− k w.h.p.

. (48)

Since M1 is a rank-1 matrix, λ2(M1) = 0. Theorem 7.2 directly implies that λ1(M3) ≤
c1
√
n− k with high probability, where c2 is the constant in Theorem 7.2. Theorem 7.2 does

not apply directly to M2, since its nonzero entries are i.i.d. But intuitively, M2 is “enough
like” a random symmetric matrix that the bound in Theorem 7.2 should still apply. This is
in fact the case, although it requires a non-trivial, basically reworking one of the proofs of
Theorem 7.2 so that it applies to M2 (see [3] for details).

From (48), with k ≥ c3
√
n as in Theorem 8.1, we have λ2(M) < k with high probability

provided c3 > 2c2. When this is the case, we have λ1(M) = k, as desired. This completes
the proof of Theorem 8.1.
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