
CS261: A Second Course in Algorithms
Lecture #20: The Maximum Cut Problem and

Semidefinite Programming∗

Tim Roughgarden†

March 10, 2016

1 Introduction

Now that you’re finishing CS261, you’re well equipped to comprehend a lot of advanced
material on algorithms. This lecture illustrates this point by teaching you about a cool and
famous approximation algorithm.

In the maximum cut problem, the input is an undirected graph G = (V,E) with a
nonnegative weight we ≥ 0 for each edge e ∈ E. The goal is to compute a cut — a partition
of the vertex set into sets A and B — that maximizes the total weight of the cut edges (the
edges with one endpoint in each of A and B).

Now, if it were the minimum cut problem, we’d know what to do — that problem reduces
to the maximum flow problem (Exercise Set #2). It’s tempting to think that we can reduce
the maximum cut problem to the minimum cut problem just by negating the weights of all
of the edges. Such a reduction would yield a minimum cut problem with negative weights
(or capacities). But if you look back at our polynomial-time algorithms for computing
minimum cuts, you’ll notice that we assumed nonnegative edge capacities, and that our
proofs depended on this assumption. Indeed, it’s not hard to prove that the maximum cut
problem is NP -hard. So, let’s talk about polynomial-time approximation algorithms.

It’s easy to come up with a 1
2
-approximation algorithm for the maximum cut problem.

Almost anything works — a greedy algorithm, local search, picking a random cut, linear pro-
gramming rounding, and so on. But frustratingly, none of these techniques seemed capable
of proving an approximation factor better than 1

2
. This made it remarkable when, in 1994,

Goemans and Williamson showed how a new technique, “semidefinite programming round-
ing,” could be used to blow away all previous approximation algorithms for the maximum
cut problem.

∗ c©2016, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

2 A Semidefinite Programming Relaxation for the Max-

imum Cut Problem

2.1 A Quadratic Programming Formulation

To motivate a novel relaxation for the maximum cut problem, we first reformulate the
problem exactly via a quadratic program. (So solving this program is also NP -hard.) The
idea is to have one decision variable yi for each vertex i ∈ V , indicating which side of the
cut the vertex is on. It’s convenient to restrict yi to lie in {−1,+1}, as opposed to {0, 1}.
There’s no need for any other constraints. In the objective function, we want an edge (i, j)
of the input graph G = (V,E) to contribute wij whenever i, j are on different sides of the
cut, and 0 if they are on the same side of the cut. Note that yiyj = +1 if i, j are on the
same side of the cut and yiyj = −1 otherwise. Thus, we can formulate the maximum cut
objective function exactly as

max
∑

(i,j)∈E

wij ·
1

2
(1− yiyj) .

Note that the contribution of edge (i, j) to the objective function is wij if i and j are on
different sides of the cut and 0 otherwise, as desired. There is a one-to-one and objective-
function-preserving correspondence between cuts of the input graph and feasible solutions
to this quadratic program.

This quadratic programming formulation has two features that make it a non-linear
program: the integer constraints yi ∈ {±1} for every i ∈ V , and the quadratic terms yiyj in
the objective function.

2.2 A Vector Relaxation

Here’s an inspired idea for a relaxation: rather than requiring each yi to be either -1 or +1,
we only ask that each decision variable is a unit vector in Rn, where n = |V | denotes the
number of vertices. We henceforth use xi to denote the (vector-valued) decision variable
corresponding to the vertex i ∈ V . We can think of the values +1 and -1 as the special cases
of the unit vectors (1, 0, 0, . . . , 0) and (−1, 0, 0, . . . , 0). There is an obvious question of what
we mean by the quadratic term yiẏj when we switch to decision variables that are n-vectors;
the most natural answer is to replace the scalar product yi · yj by the inner product 〈xi, xj〉.
We then have the following “vector programming relaxation” of the maximum cut problem:

max
1

2

∑
(i,j)∈E

wij (1− 〈xi, xj〉)

subject to
‖xi‖22 = 1 for every i ∈ V .

It may seem obscure to write ‖xi‖22 = 1 rather than ‖xi‖2 = 1 (which is equivalent); the
reason for this will become clear later in the lecture. Since every cut of the input graph G

2

maps to a feasible solution of this relaxation with the same objective function value, and the
vector program only maximizes over more stuff, we have

vector OPT ≥ OPT.

Geometrically, this relaxation maps all the vertices of the input graph G to the unit
sphere in Rn, while attempting to map the endpoints of each edge to points that are as close
to antipodal as possible (to get 〈xi, xj〉 as close to -1 as possible).

2.3 Disguised Convexity

Figure 1: (a) a circle is convex, but (b) is not convex;the chord shown is not contained
entirely in the set.

It turns out that the relaxation above can be solved to optimality in polynomial time.1 You
might well find this counterintuitive, given that the inner products in the objective function
seem hopelessly quadratic. The moral reason for computational tractability is convexity.
Indeed, a good rule of thumb very generally is to equate computational tractability with
convexity. A mathematical program can be convex in two senses. The first sense is the same
as that we discussed back in Lecture #9 — a subset of Rn is convex if it contains all of its
chords. (See Figure 1.) Recall that the feasible region of a linear program is always convex
in this sense. The second sense is that the objective function can be a convex function. (A
linear function is a special case of a convex function.) We won’t need this second type of
convexity in this lecture, but it’s extremely useful in other contexts, especially in machine
learning.

OK. . . but where’s the convexity in the vector relaxation above? After all, if you take the
average of two points on the unit sphere, you don’t get another point on the unit sphere.

We next expose the disguised convexity. A natural idea to remove the quadratic (inner
product) character of the vector program above is to linearize it, meaning to introduce a
new decision variable pij for each i, j ∈ V , with the intention that pij will take on the value
〈xi, xj〉. But without further constraints, this will lead to a relaxation of the relaxation —

1Strictly speaking, since the optimal solution might be irrational, we only solve it up to arbitrarily small
error.

3

nothing is enforcing the pij’s to actually be of the form 〈xi, xj〉 for some collection x1, . . . , xn
of n-vectors, and the pij’s could form an arbitrary matrix instead. So how can we enforce
the intended semantics?

This is where elementary linear algebra comes to the rescue. We’ll use some facts that
you’ve almost surely seen in a previous course, and also have almost surely forgotten. That’s
OK — if you spend 20-30 minutes with your favorite linear algebra textbook (or Wikipedia),
you’ll remember why all of these relevant facts are true (none are difficult).

First, let’s observe that a V × V matrix P = {pij} is of the form pij = 〈xi, xj〉 for some
vectors x1, . . . , xn (for every i, j ∈ V) if and only if we can write

P = XTX (1)

for some matrix X ∈ RV×V . Recalling the definition of matrix multiplication, the (i, j) entry
of XTX is the inner product of the ith row of XT and the jth column of X, or equivalently
the inner product of the ith and jth columns of X. Thus, for matrices P of the desired form,
the columns of the matrix X provide the n-vectors whose inner products define all of the
entries of P .

Matrices that are “squares” in the sense of (1) are extremely well understood, and they are
called (symmetric) positive semidefinite (psd) matrices. There are many characterizations of
symmetric psd matrices, and none are particularly hard to prove. For example, a symmetric
matrix is psd if and only if all of its eigenvalues are nonnegative. (Recall that a symmetric
matrix has a full set of real-valued eigenvalues.) The characterization that exposes the latent
convexity in the vector program above is that a symmetric matrix P is psd if and only if

zTPz︸ ︷︷ ︸
”quadratic form”

≥ 0 (2)

for every vector z ∈ Rn. Note that the forward direction is easy to see (if P can be written
P = XTX then zTPz = (Xz)T (Xz) = ‖Xz‖22 ≥ 0); the (contrapositive of the) reverse
direction follows easily from the eigenvalue characterization already mentioned.

For a fixed vector z ∈ Rn, the inequality (2) reads∑
i,j∈V

pijzizj ≥ 0,

which is linear in the pij’s (for fixed zi’s). And remember that the pij’s are our decision
variables!

2.4 A Semidefinite Relaxation

Summarizing the discussion so far, we’ve argued that the vector relaxation in Section 2.2 is
equivalent to the linear program

max
1

2

∑
(i,j)∈E

wij (1− pij)

4

subject to ∑
i,j∈V

pijzizj ≥ 0 for every z ∈ Rn (3)

pij = pji for every i, j ∈ V (4)

pii = 1 for every i ∈ V . (5)

The constraints (3) and (4) enforce the p.s.d. and symmetry constraints on the pij’s. Their
presence makes this program a semidefinite program (SDP). The final constraints (5) corre-
spond to the constraints that ‖xi‖22 = 1 for every i ∈ V — that the matrix formed by the
pij’s not only has the form XTX, but has this form for a matrix X whose columns are unit
vectors.

2.5 Solving SDPs Efficiently

The good news about the SDP above is that every constraint is linear in the pij’s, so we’re in
the familiar realm of linear programming. The obvious issue is that the linear program has
an infinite number of constraints of the form (3) — one for each real-valued vector z ∈ Rn.
So there’s no hope of even writing this SDP down. But wait, didn’t we discuss an algorithm
for linear programming that can solve linear programs efficiently even when there are too
many constraints to write down?

The first way around the infinite number of constraints is to use the ellipsoid method
(Lecture #10) to solve the SDP. Recall that the ellipsoid method runs in time polynomial in
the number of variables (n2 variables in our case), provided that there is a polynomial-time
separation oracle for the constraints. The responsibility of a separation oracle is, given an
allegedly feasible solution, to either verify feasibility or else produce a violated constraint. For
the SDP above, the constraints (4) and (5) can be checked directly. The constraints (3) can be
checked by computing the eigenvalues and eigenvectors of the matrix formed by the pij’s.

2 As
mentioned earlier, the constraints (3) are equivalent to this matrix having only nonnegative
eigenvalues. Moreover, if the pij’s are not feasible and there is a negative eigenvalue, then
the corresponding eigenvector serves as a vector z such that the constraint (3) is violated.3

This separation oracle allows us to solve SDPs using the ellipsoid method.
The second solution is to use “interior-point methods,” which were also mentioned briefly

at the end of Lecture #10. State-of-the-art interior-point algorithms can solve SDPs both in
theory (meaning in polynomial time) and in practice, meaning for medium-sized problems.
SDPs are definitely harder in practice than linear programs, though — modern solvers have
trouble going beyond thousands of variables and constraints, which is a couple orders of
magnitude smaller than the linear programs that are routinely solved by commercial solvers.

2There are standard and polynomial-time matrix algorithms for this task; see any textbook on numerical
analysis.

3If z is an eigenvector of a symmetric matrix P with eigenvalue λ, then zTPz = zT (λz) = λ · ‖z‖22, which
is negative if and only if λ is negative.

5

A third option for many SDPs is to use an extension of the multiplicative weights algo-
rithm (Lecture #11) to quickly compute an approximately optimal solution. This is similar
in spirit to but somewhat more complicated than the application to approximate maximum
flows discussed in Lecture #12.4

Henceforth, we’ll just take it on faith that our SDP relaxation can be solved in polynomial
time. But the question remains: what do we do with the solution to the relaxation?

3 Randomized Hyperplane Rounding

The SDP relaxation above of the maximum cut problem was already known in the 1980s.
But only in 1994 did Goemans and Williamson figure out how to round its solution to
a near-optimal cut. First, it’s natural to round the solution of the vector programming
relaxation (Section 2.2) rather than the equivalent SDP relaxation (Section 2.4), since the
former ascribes one object (a vector) to each vertex i ∈ V , while the latter uses one scalar
for each pair of vertices.5 Thus, we “just” need to round each vector to a binary value, while
approximately preserving the objective function value.

The first key idea is to use randomized rounding, as first discussed in Lecture #18. The
second key idea is that a simple way to round a vector to a binary value is to look at
which side of some hyperplane it lies on (cf., the machine learning examples in Lectures #7
and #12). See Figure 2. Combining these two ideas, we arrive at randomized hyperplane
rounding.

Figure 2: Randomized hyperplane rounding: points with positive dot product in set A,
points with negative dot product in set B.

4Strictly speaking, the first two solutions also only compute an approximately optimal solution. This
is necessary, because the optimal solution to an SDP (with all integer coefficients) might be irrational.
(This can’t happen with a linear program.) For a given approximation ε, the running time of the ellipsoid
method and interior-point methods depend on log 1

ε , while that of multiplicative weights depends inverse
polynomially on 1

ε .
5After solving the SDP relaxation to get the matrix P of the pij ’s, another standard matrix algorithm

(“Cholesky decomposition”) can be used to efficiently recover the matrix X in the equation P = XTX and
hence the vectors (which are the columns of X).

6

Randomized Hyperplane Rounding

given: one vector xi for each i ∈ V
choose a random unit vector r ∈ Rn

set A = {i ∈ V : 〈xi, r〉 ≥ 0}
set B = {i ∈ V : 〈xi, r〉 < 0}
return the cut (A,B)

Thus, vertices are partitioned according to which side of the hyperplane with normal vector
r they lie on. You may be wondering how to choose a random unit vector in Rn in an
algorithm. One simple way is: sample n independent standard Gaussian random variables
(with mean 0 and variance 1) g1, . . . , gn, and normalize to get a unit vector:

r =
(g1, . . . , gn)

‖(g1, . . . , gn)‖
.

(Or, note that the computed cut doesn’t change if we don’t bother to normalize.) The main
property we need of the distribution of r is spherical symmetry — that all vectors at a given
distance from the origin are equally likely.

We have the following remarkable theorem.

Theorem 3.1 The expected weight of the cut produced by randomized hyperplane rounding
is at least .878 times the maximum possible.

The theorem follows easily from the following lemma.

Lemma 3.2 For every edge (i, j) ∈ E of the input graph,

Pr[(i, j) is cut] ≥ .878 ·
[

1

2
(1− 〈xi, xj〉)

]
︸ ︷︷ ︸
contribution to SDP

.

Proof of Theorem 3.1: We can derive

E[weight of (A,B)] =
∑

(i,j)∈E

wij ·Pr[(i, j) is cut]

≥ .878 ·
∑

(i,j)∈E

[
1

2
(1− 〈xi, xj〉)

]
≥ .878 ·OPT,

where the equation follows from linearity of expectation (using one indicator random variable
per edge), the first inequality from Lemma 3.2, and the second inequality from the fact that
the xi’s are an optimal solution to vector programming relaxation of the maximum cut
problem. �

7

We conclude by proving the key lemma.

Figure 3: xi and xj are placed on different sides of the cut with probability θ/π.

Proof of Lemma 3.2: Fix an edge (i, j) ∈ E. Consider the two-dimensional subspace (through
the origin) spanned by the vectors xi and xj. Since r was chosen from a spherically symmetric
distribution, its projection onto this subspace is also spherically symmetric — it’s equally
likely to point in any direction. The vertices xi and xj are placed on different sides of the
cut if and only if they are “split” by the projection of r. (Figure 3.) If we let θ denote the
angle between xi and xj in this subspace, then 2θ out of the 2π radians of possible directions
result in the edge (i, j) getting cut. So we know the cutting probability, as a function of θ:

Pr[(i, j) is cut] =
θ

π
.

We still need to understand 1
2
(1 − 〈xi, xj〉) as a function of θ. But remember from pre-

calculus that 〈xi, xj〉 = ‖xi‖‖xj‖ cos θ. And since xi and xj are both unit vectors (in the
original space and also the subspace that they span), we have

1

2
(1− 〈xi, xj〉) = 1

2
(1− cos θ).

The lemma thus boils down to verifying that

θ

π
≥ .878 ·

[
1
2
(1− cos θ)

]
for all possible values of θ ∈ [0, π]. This inequality is easily seen by plotting both sides, or if
you’re a stickler for rigor, by computations familiar from first-year calculus. �

8

4 Going Beyond .878

For several lectures we were haunted by the number 1− 1
e
, which seemed like a pretty weird

number. Even more bizarrely, it is provably the best-possible approximation guarantee for
several natural problems, including online bipartite matching (Lecture #14) and, assuming
P 6= NP , set coverage (Lecture #15).

Now the .878 in this lecture seems like a really weird number. But there is some evidence
that it might be optimal! Specifically, in 2005 it was proved that, assuming that the “Unique
Games Conjecture (UGC)” is true (and P 6= NP), there is no polynomial-time algorithm
for the maximum cut problem with approximation factor larger than the one proved by
Goemans and Williamson. The UGC (which is only from 2002) is somewhat technical
to state precisely — it asserts that a certain constraint satisfaction problem is NP -hard.
Unlike the P 6= NP conjecture, which is widely believed, it is highly unclear whether the
UGC is true or false. But it’s amazing that any plausible complexity hypothesis implies the
optimality of randomized hyperplane rounding for the maximum cut problem.

9

