
CS369E: Communication Complexity
(for Algorithm Designers)

Lecture #8: Lower Bounds in Property Testing∗

Tim Roughgarden†

March 12, 2015

1 Property Testing

We begin in this section with a brief introduction to the field of property testing. Section 2
explains the famous example of “linearity testing.” Section 3 gives upper bounds for the
canonical problem of “monotonicity testing,” and Section 4 shows how to derive property
testing lower bounds from communication complexity lower bounds.1 These lower bounds
will follow from our existing communication complexity toolbox (specifically, Disjoint-
ness); no new results are required.

Let D and R be a finite domain and range, respectively. In this lecture, D will always
be {0, 1}n, while R might or might not be {0, 1}. A property is simply a set P of functions
from D to R. Examples we have in mind include:

1. Linearity, where P is the set of linear functions (with R a field and D a vector space
over R).

2. Monotonicity, where P is the set of monotone functions (with D and R being partially
ordered sets).

3. Various graph properties, like bipartiteness (with functions corresponding to charac-
teristic vectors of edge sets, with respect to a fixed vertex set).

4. And so on. The property testing literature is vast. See [14] for a starting point.

∗ c©2015, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.
1Somewhat amazingly, this connection was only discovered in 2011 [1], even though the connection is

simple and property testing is a relatively mature field.

1

In the standard property testing model, one has “black-box access” to a function f :
D → R. That is, one can only learn about f by supplying an argument x ∈ D and receiving
the function’s output f(x) ∈ R. The goal is to test membership in P by querying f as few
times as possible. Since the goal is to use a small number of queries (much smaller than
|D|), there is no hope of testing membership exactly. For example, suppose you derive f
from your favorite monotone function by changing its value at a single point to introduce a
non-monotonicity. There is little hope of detecting this monotonicity violation with a small
number of queries. We therefore consider a relaxed “promise” version of the membership
problem.

Formally, we say that a function f is ε-far from the property P if, for every g ∈ P , f and
g differ in at least ε|D| entries. Viewing functions as vectors indexed by D with coordinates
in R, this definition says that f has distance at least ε|D| from its nearest neighbor in P
(under the Hamming metric). Equivalently, repairing f so that it belongs to P would require
changing at least an ε fraction of its values. A function f is ε-close to P if it is not ε-far
— if it can be turned into a function in P by modifying its values on strictly less than ε|D|
entries.

The property testing goal is to query a function f a small number of times and then
decide if:

1. f ∈ P ; or

2. f is ε-far from P .

If neither of these two conditions applies to f , then the tester is off the hook — any decla-
ration is treated as correct.

A tester specifies a sequence of queries to the unknown function f , and a declaration of
either “∈ P” or “ε-far from P” at its conclusion. Interesting property testing results almost
always require randomization. Thus, we allow the tester to be randomized, and allow it to
err with probability at most 1/3. As with communication protocols, testers come in various
flavors. One-sided error means that functions in P are accepted with probability 1, with no
false negative allowed. Testers with two-sided error are allowed both false positives and false
negatives (with probability at most 1/3, on every input that satisfies the promise). Testers
can be non-adaptive, meaning that they flip all their coins and specify all their queries up
front, or adaptive, with queries chosen as a function of the answers to previously asked
queries. For upper bounds, we prefer the weakest model of non-adaptive testers with 1-sided
error. Often (though not always) in property testing, neither adaptivity nor two-sided error
leads to more efficient testers. Lower bounds can be much more difficult to prove for adaptive
testers with two-sided error, however.

For a given choice of a class of testers, the query complexity of a property P is the
minimum (over testers) worst-case (over inputs) number of queries used by a tester that
solves the testing problem for P . The best-case scenario is that the query complexity of a
property is a function of ε only; sometimes it depends on the size of D or R as well.

2

2 Example: The BLR Linearity Test

The unofficial beginning of the field of property testing is [2]. (For the official beginning,
see [12, 15].) The setting is D = {0, 1}n and R = {0, 1}, and the property is the set of
linear functions, meaning functions f such that f(x + y) = f(x) + f(y) (over F2) for all
x,y ∈ {0, 1}n.2 The BLR linearity test is the following:

1. Repeat t = Θ(1
ε
) times:

(a) Pick x,y ∈ {0, 1}n uniformly at random.

(b) If f(x + y) 6= f(x) + f(y) (over F2), then REJECT.

2. ACCEPT.

It is clear that if f is linear, then the BLR linearity test accepts it with probability 1.
That is, the test has one-sided error. The test is also non-adaptive — the t random choices
of x and y can all be made up front. The non-trivial statement is that only functions that
are close to linear pass the test with large probability.

Theorem 2.1 ([2]) If the BLR linearity test accepts a function f with probability greater
than 1

3
, then f is ε-close to the set of linear functions.

The modern and slick proof of Theorem 2.1 uses Fourier analysis — indeed, the elegance of
this proof serves as convincing motivation for the more general study of Boolean functions
from a Fourier-analytic perspective. See [8, Chapter 1] for a good exposition. There are also
more direct proofs of Theorem 2.1, as in [2]. None of these proofs are overly long, but we’ll
spend our time on monotonicity testing instead. We mention the BLR test for the following
reasons:

1. If you only remember one property testing result, Theorem 2.1 and the BLR linearity
test would be a good one.

2. The BLR test is the thin end of the wedge in constructions of probabilistically checkable
proofs (PCPs). Recall that a language is in NP if membership can be efficiently verified
— for example, verifying an alleged satisfying assignment to a SAT formula is easy to
do in polynomial time. The point of a PCP is to rewrite such a proof of membership
so that it can be probabilistically verified after reading only a constant number of bits.
The BLR test does exactly this for the special case of linearity testing — for proofs
where “correctness” is equated with being the truth table of a linear function. The
BLR test effectively means that one can assume without loss of generality that a proof
encodes a linear function — the BLR test can be used as a preprocessing step to reject
alleged proofs that are not close to a linear function. Subsequent testing steps can
then focus on whether or not the encoded linear function is close to a subset of linear
functions of interest.

2Equivalently, these are the functions that can be written as f(x) =
∑n

i=1 aixi for some a1, . . . , an ∈ {0, 1}.

3

3. Theorem 2.1 highlights a consistent theme in property testing — establishing connec-
tions between “global” and “local” properties of a function. Saying that a function f is
ε-far from a property P refers to the entire domain D and in this sense asserts a “global
violation” of the property. Property testers work well when there are ubiquitous “local
violations” of the property. Theorem 2.1 proves that, for the property of linearity, a
global violation necessarily implies lots of local violations. We give a full proof of such
a “global to local” statement for monotonicity testing in the next section.

3 Monotonicity Testing: Upper Bounds

The problem of monotonicity testing was introduced in [11] and is one of the central problems
in the field. We discuss the Boolean case, where there have been several breakthroughs in
just the past few months, in Sections 3.1 and 3.2. We discuss the case of larger ranges, where
communication complexity has been used to prove strong lower bounds, in Section 3.3.

3.1 The Boolean Case

In this section, we take D = {0, 1}n and R = {0, 1}. For b ∈ {0, 1} and x−i ∈ {0, 1}n−1, we
use the notation (b,x−i) to denote a vector of {0, 1}n in which the ith bit is b and the other
n− 1 bits are x−i. A function f : {0, 1}n → {0, 1} is monotone if flipping a coordinate of an
input from 0 to 1 can only increase the function’s output:

f(0,x−i) ≤ f(1,x−i)

for every i ∈ {1, 2, . . . , n} and x−i ∈ {0, 1}n−1.
It will be useful to visualize the domain {0, 1}n as the n-dimensional hypercube; see also

Figure 1. This graph has 2n vertices and n2n−1 edges. An edge can be uniquely specified by a
coordinate i and vector x−i ∈ {0, 1}n−1 — the edge’s endpoints are then (0,x−i) and (1,x−i).
By the ith slice of the hypercube, we mean the 2n−1 edges for which the endpoints differ
(only) in the ith coordinate. The n slices form a partition of the edge set of the hypercube,
and each slice is a perfect matching of the hypercube’s vertices. A function {0, 1}n → {0, 1}
can be visualized as a binary labeling of the vertices of the hypercube.

We consider the following edge tester, which picks random edges of the hypercube and
rejects if it ever finds a monotonicity violation across one of the chosen edges.

1. Repeat t times:

(a) Pick i ∈ {1, 2, . . . , n} and x−i ∈ {0, 1}n−1 uniformly at random.

(b) If f(0,x−i) > f(1,x−i) then REJECT.

2. ACCEPT.

4

000" 100"

010" 110"

001" 101"

011" 111"

Figure 1: {0, 1}n can be visualized as an n-dimensional hypercube.

Like the BLR test, it is clear that the edge tester has 1-sided error (no false negatives) and
is non-adaptive. The non-trivial part is to understand the probability of rejecting a function
that is ε-far from monotone — how many trials t are necessary and sufficient for a rejection
probability of at least 2/3? Conceptually, how pervasive are the local failures of monotonicity
for a function that is ε-far from monotone?

The bad news is that, in contrast to the BLR linearity test, taking t to be a constant
(depending only on ε) is not good enough. The good news is that we can take t to be only
logarithmic in the size of the domain.

Theorem 3.1 ([11]) For t = Θ(n
ε
), the edge tester rejects every function that is ε-far from

monotone with probability at least 2/3.

Proof: A simple calculation shows that it is enough to prove that a single random trial of
the edge test rejects a function that is ε-far from monotone with probability at least ε

n
.

Fix an arbitrary function f . There are two quantities that we need to relate to each
other — the rejection probability of f , and the distance between f and the set of monotone
functions. We do this by relating both quantities to the sizes of the following sets: for
i = 1, 2, . . . , n, define

|Ai| = {x−i ∈ {0, 1}n−1 : f(0,x−i) > f(1,x−i)}. (1)

That is, Ai is the edges of the ith slice of the hypercube across which f violates monotonicity.
By the definition of the edge tester, the probability that a single trial rejects f is exactly

n∑
i=1

|Ai|︸ ︷︷ ︸
of violations

/ n2n−1︸ ︷︷ ︸
of edges

. (2)

Next, we upper bound the distance between f and the set of monotone functions, implying
that the only way in which the |Ai|’s (and hence the rejection probability) can be small is if
f is close to a monotone function. To upper bound the distance, all we need to do is exhibit
a single monotone function close to f . Our plan is to transform f into a monotone function,

5

00" 10"

01" 11"
1"

1" 1"

0"

00" 10"

01" 11"
0"

1" 1"

1"

swap"with"i=1"

(a) Fixing the first slice

00" 10"

01" 11"
1"

1" 1"

0"

00" 10"

01" 11"
1"

1" 0"

1"

swap"with"i=2"

(b) Fixing the second slice

Figure 2: Swapping values to eliminate the monotonicity violations in the ith slice.

coordinate by coordinate, tracking the number of changes that we make along the way. The
next claim controls what happens when we “monotonize” a single coordinate.

Key Claim: Let i ∈ {1, 2, . . . , n} be a coordinate. Obtain f ′ from f by, for each violated
edge ((0,x−i), (1,x−i)) ∈ Ai of the ith slice, swapping the values of f on its endpoints
(Figure 2). That is, set f ′(0,x−i) = 0 and f ′(1,x−i) = 1. (This operation is well defined
because the edges of Ai are disjoint.) For every coordinate j = 1, 2, . . . , n, f ′ has no more
monotonicity violations in the jth slice than does f .

Proof of Key Claim: The claim is clearly true for j = i: by construction, the swapping
operation fixes all of the monotonicity violations in the ith slice, without introducing any
new violations in the ith slice. The interesting case is when j 6= i, since new monotonicity
violations can be introduced (cf., Figure 2). The claim asserts that the overall number of
violations cannot increase (cf., Figure 2).

We partition the edges of the jth slice into edge pairs as follows. We use x0
−j to denote

an assignment to the n − 1 coordinates other than j in which the ith coordinate is 0, and
x1
−j the corresponding assignment in which the ith coordinate is flipped to 1. For a choice

of x0
−j, we can consider the “square” formed by the vertices (0,x0

−j), (0,x1
−j), (1,x0

−j), and
(1,x1

−j); see Figure 3. The edges ((0,x0
−j), (1,x

0
−j)) and ((0,x1

−j), (1,x
1
−j)) belong to the jth

6

(0,x%j)(

0"

1" 0"

0" 0"

0" 1"

0"

(0,x’%j)(

(1,x%j)((1,x’%j)(

e1(

e2(

e3(e4(f:"

(0,x%j)((0,x’%j)(

(1,x%j)((1,x’%j)(

e1(

e2(

e3(e4(f’:"

Figure 3: The number of monotonicity violations on edges e3 and e4 is at least as large
under f as under f ′.

slice, and ranging over the 2n−2 choices for x0
−j — one binary choice per coordinate other

than i and j — generates each such edge exactly once.
Fix a choice of x0

−j, and label the edges of the corresponding square e1, e2, e3, e4 as in
Figure 3. A simple case analysis shows that the number of monotonicity violations on edges e3
and e4 is at least as large under f as under f ′. If neither e1 nor e2 was violated under f , then
f ′ agrees with f on this square and the total number of monotonicity violations is obviously
the same. If both e1 and e2 were violated under f , then values were swapped along both
these edges; hence e3 (respectively, e4) is violated under f ′ if and only if e4 (respectively, e3)
was violated under f . Next, suppose the endpoints of e1 had their values swapped, while
the endpoints of e2 did not. This implies that f(0,x0

−j) = 1 and f(0,x1
−j) = 0, and hence

f ′(0,x0
−j) = 0 and f(0,x1

−j) = 1. If the endpoints (1,x0
−j) and (1,x1

−j) of e2 have the values 0
and 1 (under both f and f ′), then the number of monotonicity violations on e3 and e4 drops
from 1 to 0. The same is true if their values are 0 and 0. If their values are 1 and 1, then
the monotonicity violation on edge e4 under f moves to one on edge e3 under f ′, but the
number of violations remains the same. The final set of cases, when the endpoints of e2 have
their values swapped while the endpoints of e1 do not, is similar.3

Summing over all such squares — all choices of x0
−j — we conclude that the number of

monotonicity violations in the jth slice can only decrease. �

Now consider turning a function f into a monotone function g by doing a single pass
through the coordinates, fixing all monotonicity violations in a given coordinate via swaps
as in the Key Claim. This process terminates with a monotone function: immediately after
coordinate i is treated, there are no monotonicity violations in the ith slice by construction;
and by the Key Claim, fixing future coordinates does not break this property. The Key

3Suppose we corrected only one endpoint of an edge to fix a monotonicity violation, rather than swapping
the endpoint values. Would the proof still go through?

7

Claim also implies that, in the iteration where this procedure processes the ith coordinate,
the number of monotonicity violations that need fixing is at most the number |Ai| of mono-
tonicity violations in this slice under the original function f . Since the procedure makes
two modifications to f for each monotonicity violation that it fixes (the two endpoints of
an edge), we conclude that f can be made monotone by changing at most 2

∑n
i=1 |Ai| of its

values. If f is ε-far from monotone, then 2
∑n

i=1 |Ai| ≥ ε2n. Plugging this into (2), we find
that a single trial of the edge tester rejects such an f with probability at least

1
2
ε2n

n2n−1
=
ε

n
,

as claimed. �

3.2 Recent Progress for the Boolean Case

An obvious question is whether or not we can improve over the query upper bound in
Theorem 3.1. The analysis in Theorem 3.1 of the edge tester is tight up to a constant factor
(see Exercises), so an improvement would have to come from a different tester. There was no
progress on this problem for 15 years, but recently there has been a series of breakthroughs
on the problem. Chakrabarty and Seshadhri [4] gave the first improved upper bounds, of
Õ(n7/8/ε3/2).4 A year later, Chen et al. [6] gave an upper bound of Õ(n5/6/ε4). Just a
couple of months ago, Knot et al. [13] gave a bound of Õ(

√
n/ε2). All of these improved

upper bounds are for path testers. The idea is to sample a random monotone path from
the hypercube (checking for a violation on its endpoints), rather than a random edge. One
way to do this is: pick a random point x ∈ {0, 1}n; pick a random number z between 0 and
the number of zeroes of x (from some distribution); and obtain y from x by choosing at
random z of x’s 0-coordinates and flipping them to 1. Given that a function that is ε-far
from monotone must have lots of violated edges (by Theorem 3.1), it is plausible that path
testers, which aspire to check many edges at once, could be more effective than edge testers.
The issue is that just because a path contains one or more violated edges does not imply
that the path’s endpoints will reveal a monotonicity violation. Analyzing path testers seems
substantially more complicated than the edge tester [4, 6, 13]. Note that path testers are
non-adaptive and have 1-sided error.

There have also been recent breakthroughs on the lower bound side. It has been known
for some time that all non-adaptive testers with 1-sided error require Ω(

√
n) queries [9]; see

also the Exercises. For non-adaptive testers with two-sided error, Chen et al. [6] proved a
lower bound of Ω̃(n1/5) and Chen et al. [5] improve this to Ω(n(1/2)−c) for every constant
c > 0. Because the gap in query complexity between adaptive and non-adaptive testers
can only be exponential (see Exercises), these lower bounds also imply that adaptive testers
(with two-sided error) require Ω(log n) queries. The gap between Õ(

√
n) and Ω(log n) for

adaptive testers remains open; most researchers think that adaptivity cannot help and that
the upper bound is the correct answer.

4The notation Õ(·) suppresses logarithmic factors.

8

An interesting open question is whether or not communication complexity is useful for
proving interesting lower bounds for the monotonicity testing of Boolean functions.5 We’ll
see in Section 4 that it is useful for proving lower bounds in the case where the range is
relatively large.

3.3 Larger Ranges

In this section we study monotonicity testing with the usual domain D = {0, 1}n but with a
range R that is an arbitrary finite, totally ordered set. Some of our analysis for the Boolean
case continues to apply. For example, the edge tester continues to be a well-defined tester
with 1-sided error. Returning to the proof of Theorem 3.1, we can again define each Ai as
the set of monotonicity violations — meaning f(0,x−i) > f(1,x−i) — along edges in the ith
slice. The rejection probability again equals the quantity in (2).

We need to revisit the major step of the proof of Theorem 3.1, which for Boolean functions
gives an upper bound of 2

∑n
i=1 |Ai| on the distance from a function f to the set of monotone

functions. One idea is to again do a single pass through the coordinates, swapping the
function values of the endpoints of the edges in the current slice that have monotonicity
violations. In contrast to the Boolean case, this idea does not always result in a monotone
function (see Exercises).

We can extend the argument to general finite ranges R by doing multiple passes over the
coordinates. The simplest approach uses one pass over the coordinates, fixing all monotonic-
ity violations that involve a vertex x with f(x) = 0; a second pass, fixing all monotonicity
violations that involve a vertex x with f(x) = 1; and so on. Formalizing this argument yields
a bound of 2|R|

∑n
i=1 |Ai| on the distance between f and the set of monotone functions, which

gives a query bound of O(n|R|/ε) [11].
A divide-and-conquer approach gives a better upped bound [7]. Assume without loss of

generality (relabeling if necessary) that R = {0, 1, . . . , r − 1}, and also (by padding) that
r = 2k for a positive integer k. The first pass over the coordinates fixes all monotonicity
violations that involve values that differ in their most significant bit — one value that is less
than r

2
and one value that is at least r

2
. The second pass fixes all monotonicity violations

involving two values that differ in their second-highest-order bit. And so on. The Exercises
ask you to prove that this idea can be made precise and show that the distance between
f and the set of monotone functions is at most 2 log2 |R|

∑n
i=1 |Ai|. This implies an upper

bound of O(n
ε

log |R|) on the number of queries used by the edge tester for the case of general
finite ranges. The next section shows a lower bound of Ω(n/ε) when |R| = Ω(

√
n); in these

cases, this upper bound is the best possible, up to the logR factor.6

5At the very least, some of the techniques we’ve learned in previous lectures are useful. The arguments
in [6, 5] use an analog of Yao’s Lemma (Lecture #4) to switch from randomized to distributional lower
bounds. The hard part is then to come up with a distribution over both monotone functions and functions
ε-far from monotone such that no deterministic tester can reliably distinguish between the two cases using
few queries to the function.

6It is an open question to reduce the dependence on |R|. Since we can assume that |R| ≤ 2n (why?), any
sub-quadratic upper bound o(n2) would constitute an improvement.

9

4 Monotonicity Testing: Lower Bounds

4.1 Lower Bound for General Ranges

This section uses communication complexity to prove a lower bound on the query complexity
of testing monotonicity for sufficiently large ranges.

Theorem 4.1 ([1]) For large enough ranges R and ε = 1
8
, every (adaptive) monotonicity

tester with two-sided error uses Ω(n) queries.

Note that Theorem 4.1 separates the case of a general range R from the case of a Boolean
range, where Õ(

√
n) queries are enough [13]. With the right communication complexity tools,

Theorem 4.1 is not very hard to prove. Simultaneously with [1], Briët et al. [3] gave a non-
trivial proof from scratch of a similar lower bound, but it applies only to non-adaptive testers
with 1-sided error. Communication complexity techniques naturally lead to lower bounds
for adaptive testers with two-sided error.

As always, the first thing to try is a reduction from Disjointness, with the query
complexity somehow translating to the communication cost. At first this might seem weird
— there’s only one “player” in property testing, so where do Alice and Bob come from?
But as we’ve seen over and over again, starting with our applications to streaming lower
bounds, it can be useful to invent two parties just for the sake of standing on the shoulders
of communication complexity lower bounds. To implement this, we need to show how a
low-query tester for monotonicity leads to a low-communication protocol for Disjointness.

It’s convenient to reduce from a “promise” version of Disjointness that is just as hard as
the general case. In the Unique-Disjointness problem, the goal is to distinguish between
inputs where Alice and Bob have sets A and B with A∩B = ∅, and inputs where |A∩B| = 1.
On inputs that satisfy neither property, any output is considered correct. The Unique-
Disjointness problem showed up a couple of times in previous lectures; let’s review them.
At the conclusion of our lecture on the extension complexity of polytopes (Lecture #5), we
proved that the nondeterministic communication complexity of the problem is Ω(n) using
a covering argument with a clever inductive proof. In our boot camp (Lecture #4), we
discussed the high-level approach of Razborov’s proof that every randomized protocol for
Disjointness with two-sided error requires Ω(n) communication. Since the hard probability
distribution in this proof makes use only of inputs with intersection size 0 or 1, the lower
bound applies also to the Unique-Disjointness problem.

Key to the proof of Theorem 4.1 is the following lemma.

Lemma 4.2 Fix sets A,B ⊆ U = {1, 2, . . . , n}. Define the function hAB : 2U → Z by

hAB(S) = 2|S|+ (−1)|S∩A| + (−1)|S∩B|. (3)

Then:

(i) If A ∩B = ∅, then h is monotone.

10

(ii) If |A ∩B| = 1, then h is 1
8
-far from monotone.

We’ll prove the lemma shortly; let’s first see how to use it to prove Theorem 4.1. Let Q
be a tester that distinguishes between monotone functions from {0, 1}n to R and functions
that are 1

8
-far from monotone. We proceed to construct a (public-coin randomized) protocol

for the Unique-Disjointness problem.
Suppose Alice and Bob have sets A,B ⊆ {1, 2, . . . , n}. The idea is for both parties to

run local copies of the tester Q to test the function hAB, communicating with each other as
needed to carry out these simulations. In more detail, Alice and Bob first use the public
coins to agree on a random string to be used with the tester Q. Given this shared random
string, Q is deterministic. Alice and Bob then simulate local copies of Q query-by-query:

1. Until Q halts:

(a) Let S ⊆ {1, 2, . . . , n} be the next query that Q asks about the function hAB.7

(b) Alice sends (−1)|S∩A| to Bob.

(c) Bob sends (−1)|S∩B| to Alice.

(d) Both Alice and Bob evaluate the function hAB at S, and give the result to their
respective local copies of Q.

2. Alice (or Bob) declares “disjoint” if Q accepts the function hAB, and “not disjoint”
otherwise.

We first observe that the protocol is well defined. Since Alice and Bob use the same random
string and simulate Q in lockstep, both parties know the (same) relevant query S to hAB in
every iteration, and thus are positioned to send the relevant bits ((−1)|S∩A| and (−1)|S∩B|)
to each other. Given these bits, they are able to evaluate hAB at the point S (even though
Alice doesn’t know B and Bob doesn’t know A).

The communication cost of this protocol is twice the number of queries used by the
tester Q, and it doesn’t matter if Q is adaptive or not. Correctness of the protocol follows
immediately from Lemma 4.2, with the error of the protocol the same as that of the tester Q.
Because every randomized protocol (with two-sided error) for Unique-Disjointness has
communication complexity Ω(n), we conclude that every (possibly adaptive) tester Q with
two-sided error requires Ω(n) queries for monotonicity testing. This completes the proof of
Theorem 4.1.

Proof of Lemma 4.2: For part (i), assume that A ∩ B = ∅ and consider any set S ⊆
{1, 2, . . . , n} and i /∈ S. Because A and B are disjoint, i does not belong to at least one
of A or B. Recalling (3), in the expression hAB(S ∪ {i}) − hAB(S), the difference between
the first terms is 2, the difference in either the second terms (if i /∈ A) or in the third
terms (if i /∈ B) is zero, and the difference in the remaining terms is at least -2. Thus,
hAB(S ∪ {i})− hAB(S) ≥ 0 for all S and i /∈ S, and hAB is monotone.

7As usual, we’re not distinguishing between subsets of {1, 2, . . . , n} and their characteristic vectors.

11

For part (ii), let A∩B = {i}. For all S ⊆ {1, 2, . . . , n}\{i} such that |S∩A| and |S∩B| are
both even, hAB(S ∪ {i})− hAB(S) = −2. If we choose such an S uniformly at random, then
Pr[|S ∩ A| is even] is 1 (if A = {i}) or 1

2
(if A has additional elements, using the Principle

of Deferred Decisions). Similarly, Pr[|S ∩B| is even] ≥ 1
2
. Since no potential element of

S ⊆ {1, 2, . . . , n} \ {i} is a member of both A and B, these two events are independent and
hence Pr[|S ∩ A|, |S ∩B| are both even] ≥ 1

4
. Thus, for at least 1

4
· 2n−1 = 2n/8 choices of

S, hAB(S ∪{i}) < hAB(S). Since all of these monotonicity violations involve different values
of hAB — in the language of the proof of Theorem 3.1, they are all edges of the ith slice of
the hypercube — fixing all of them requires changing hAB at 2n/8 values. We conclude that
hAB is 1

8
-far from a monotone function. �

4.2 Extension to Smaller Ranges

Recalling the definition (3) of the function hAB, we see that the proof of Theorem 4.1
establishes a query complexity lower bound of Ω(n) provided the range R has size Ω(n). It
is not difficult to extend the lower bound to ranges of size Ω(

√
n). The trick is to consider a

“truncated” version of hAB, call it h′AB, where values of hAB less than n− c
√
n are rounded

up to n − c
√
n and values more than n + c

√
n are rounded down to n + c

√
n. (Here c is a

sufficiently large constant.) The range of h′AB has size Θ(
√
n) for all A,B ⊆ {1, 2, . . . , n}.

We claim that Lemma 4.2 still holds for h′AB, with the “1
8
” in case (ii) replaced by

“ 1
16

;” the new version of Theorem 4.1 then follows. Checking that case (i) in Lemma 4.2
still holds is easy: truncating a monotone function yields another monotone function. For
case (ii), it is enough to show that hAB and h′AB differ in at most a 1

16
fraction of their

entries; since Hamming distance satisfies the triangle inequality, this implies that h′AB must
be 1

16
-far from the set of monotone functions. Finally, consider choosing S ⊆ {1, 2, . . . , n}

uniformly at random: up to an ignorable additive term in {−2,−1, 0, 1, 2}, the value of hAB
lies in n ± c

√
n with probability at least 15

16
, provided c is a sufficiently large constant (by

Chebyshev’s inequality). This implies that hAB and h′AB agree on all but a 1
16

fraction of the
domain, completing the proof.

For even smaller ranges R, the argument above can be augmented by a padding argument
to prove a query complexity lower bound of Ω(|R|2); see the Exercises.

5 A General Approach

It should be clear from the proof of Theorem 4.1 that its method of deriving property testing
lower bounds from communication complexity lower bounds is general, and not particular
to the problem of testing monotonicity. The general template for deriving lower bounds for
testing a property P is:

1. Map inputs (x,y) of a communication problem Π with communication complexity at
least c to a function h(x,y) such that:

(a) 1-inputs (x,y) of Π map to functions h(x,y) that belong to P ;

12

(b) 0-inputs (x,y) of Π map to functions h(x,y) that are ε-far from P .

2. Devise a communication protocol for evaluating h(x,y) that has cost d. (In the proof of
Theorem 4.1, d = 2.)

Via the simulation argument in the proof of Theorem 4.1, instantiating this template yields
a query complexity lower bound of c/d for testing the property P .8

There are a number of other applications of this template to various property testing
problems, such as testing if a function admits a small representation (as a sparse polynomial,
as a small decision tree, etc.). See [1, 10] for several examples.

A large chunk of the property testing literature is about testing graph properties [12].
An interesting open question is if communication complexity can be used to prove strong
lower bounds for such problems.

References

[1] E. Blais, J. Brody, and K. Matulef. Property testing lower bounds via communication
complexity. Computational Complexity, 21(2):311–358, 2012.

[2] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to
numerical problems. Journal of Computer and System Sciences, 47(3):549–595, 1993.

[3] J. Briët, S. Chakraborty, D. Garćıa-Soriano, and A. Matsliah. Monotonicity testing and
shortest-path routing on the cube. Combinatorica, 32(1):35–53, 2012.

[4] D. Chakrabarty and C. Seshadhri. A o(n) monotonicity tester for boolean functions over
the hypercube. In Proceedings of the 45th ACM Symposium on Theory of Computing
(STOC), pages 411–418, 2013.

[5] X. Chen, A. De, R. A. Servedio, and L.-Y. Tan. Boolean function monotonicity testing
requires (almost) n1/2 non-adaptive queries. In Proceedings of the 47th ACM Symposium
on Theory of Computing (STOC), pages 519–528, 2015.

[6] X. Chen, R. A. Servedio, and L.-Y. Tan. New algorithms and lower bounds for mono-
tonicity testing. In Proceedings of the 55th Symposium on Foundations of Computer
Science (FOCS), pages 286–295, 2014.

[7] Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnitsky.
Improved testing algorithms for monotonicity. In Proceedings of APPROX-RANDOM,
pages 97–108, 1999.

[8] R. O’ Donnell. Analysis of Boolean Functions. Cambridge, 2014.

8There is an analogous argument that uses 1-way communication complexity lower bounds to derive query
complexity lower bounds for non-adaptive testers; see the Exercises.

13

[9] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorod-
nitsky. Monotonicity testing over general poset domains. In Proceedings of the 34th
Annual ACM Symposium on Theory of Computing (STOC), pages 474–483, 2002.

[10] O. Goldreich. On the communication complexity methodology for proving lower bounds
on the query complexity of property testing. Electronic Colloquium on Computational
Complexity (ECCC), 20, 2013.

[11] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samorodnitsky. Testing
monotonicity. Combinatorica, 20(3):301–337, 2000.

[12] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning
and approximation. Journal of the ACM, 45(4):653–750, 1998.

[13] S. Khot, D. Minzer, and M. Safra. On monotonicity testing and Boolean isoperimetric
type theorems. In Proceedings of the 56th Symposium on Foundations of Computer
Science (FOCS), 2015. To appear.

[14] D. Ron. Property testing: A learning theory perspective. Foundations and Trends in
Theoretical Computer Science, 5(2):73–205–402, 2010.

[15] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

14

