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1 Preamble

This lecture explains some applications of communication complexity to proving lower bounds
in algorithmic game theory (AGT), at the border of computer science and economics. In
AGT, the natural description size of an object is often exponential in a parameter of inter-
est, and the goal is to perform non-trivial computations in time polynomial in the parameter
(i.e., logarithmic in the description size). As we know, communication complexity is a great
tool for understanding when non-trivial computations require looking at most of the input.

2 The Welfare Maximization Problem

The focus of this lecture is the following optimization problem, which has been studied in
AGT more than any other.

1. There are k players.

2. There is a set M of m items.

3. Each player i has a valuation vi : 2M → R+. The number vi(T ) indicates i’s value,
or willingness to pay, for the items T ⊆ M . The valuation is the private input of
player i — i knows vi but none of the other vj’s. We assume that vi(∅) = 0 and that
the valuations are monotone, meaning vi(S) ≤ vi(T ) whenever S ⊆ T . To avoid bit
complexity issues, we’ll also assume that all of the vi(T )’s are integers with description
length polynomial in k and m.
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Note that we may have more than two players — more than just Alice and Bob. Also note
that the description length of a player’s valuation is exponential in the number of items m.

In the welfare-maximization problem, the goal is to partition the items M into sets
T1, . . . , Tk to maximize, at least approximately, the welfare

k∑
i=1

vi(Ti),

using communication polynomial in n and m. Note this amount of communication is loga-
rithmic in the sizes of the private inputs.

The main motivation for this problem is combinatorial auctions. Already in the domain
of government spectrum auctions, dozens of such auctions have raised hundreds of billions of
dollars of revenue. They have also been used for other applications such as allocating take-
off and landing slots at airports. For example, items could represent licenses for wireless
spectrum — the right to use a certain frequency range in a certain geographic area. Players
would then be wireless telecommunication companies. The value vi(S) would be the amount
of profit company i expects to be able to extract from the licenses in S.

Designing good combinatorial auctions requires careful attention to “incentive issues,”
making the auctions as robust as possible to strategic behavior by the (self-interested) partic-
ipants. Incentives won’t play much of a role in this lecture. Our lower bounds for protocols in
Section 4 apply even in the ideal case where players are fully cooperative. Our lower bounds
for equilibria in Section 5 effectively apply no matter how incentive issues are resolved.

3 Multi-Party Communication Complexity

3.1 The Model

Welfare-maximization problems have an arbitrary number k of players, so lower bounds for
them follow most naturally from lower bounds for multi-party communication protocols. The
extension from two to many parties proceeds as one would expect, so we’ll breeze through
the relevant points without much fuss.

Suppose we want to compute a Boolean function f : {0, 1}n1×{0, 1}n2×· · ·×{0, 1}nk →
{0, 1} that depends on the k inputs x1, . . . ,xk. We’ll be interested in the number-in-hand
(NIH) model, where player i only knows xi. What other model could there be, you ask?
There’s also the stronger number-on-forehead (NOF) model, where player i knows everything
except xi. (Hence the name — imagine the players are sitting in a circle.) The NOF model
is studied mostly for its connections to circuit complexity; it has few direct algorithmic
applications, so we won’t discuss it in this course. The NIH model is the natural one for our
purposes and, happily, it’s also much easier to prove strong lower bounds for it.

Deterministic protocols are defined as you would expect, with the protocol specifying
whose turn it is speak (as a function of the protocol’s transcript-so-far) and when the com-
putation is complete. We’ll use the blackboard model, where we think of the bits sent by each
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player as being written on a blackboard in public view.1 Similarly, in a nondeterministic
protocol, the prover writes a proof on the blackboard, and the protocol accepts the input if
and only if all k players accept the proof.

3.2 The Multi-Disjointness Problem

We need a problem that is hard for multi-party communication protocols. An obvious idea
is to use an analog of Disjointness. There is some ambiguity about how to define a version
of Disjointness for three or more players. For example, suppose there are three players,
and amongst the three possible pairings of them, two have disjoint sets while the third have
intersecting sets. Should this count as a “yes” or “no” instance? We’ll skirt this issue
by worrying only about unambiguous inputs, that are either “totally disjoint” or “totally
intersecting.”

Formally, in the Multi-Disjointness problem, each of the k players i holds an input
xi ∈ {0, 1}n. (Equivalently, a set Si ⊆ {1, 2, . . . , n}.) The task is to correctly identify inputs
that fall into one of the following two cases:

(1) “Totally disjoint,” with Si ∩ Si′ = ∅ for every i 6= i′.

(0) “Totally intersecting,” with ∩ki=1Si 6= ∅.

When k = 2, this is just Disjointness. When k > 2, there are inputs that are neither
1-inputs nor 0-inputs. We let protocols off the hook on such ambiguous inputs — they can
answer “1” or “0” with impunity.

In the next section, we’ll prove the following communication complexity lower bound for
Multi-Disjointness, credited to Jaikumar Radhakrishnan and Venkatesh Srinivasan in
Nisan [14].

Theorem 3.1 The nondeterministic communication complexity of Multi-Disjointness,
with k players with n-bit inputs, is Ω(n/k).

The nondeterministic lower bound is for verifying a 1-input. (It is easy to verify a 0-input
— the prover just suggests the index of an element r in ∩ki=1Si, the validity of which is easily
checked privately by each of the players.)

In our application in Section 4, we’ll be interested in the case where k is much smaller
than n, such as k = Θ(log n). Intuition might suggest that the lower bound should be
Ω(n) rather than Ω(n/k), but this is incorrect — a slightly non-trivial argument shows that
Theorem 3.1 is tight for nondeterministic protocols (for all small enough k, like k = O(

√
n)).

See the Homework for details. This factor-k difference won’t matter for our applications,
however.

1In the weaker message-passing model, players communicate by point-to-point messages rather than via
broadcast.
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3.3 Proof of Theorem 3.1

The proof of Theorem 3.1 has three steps, all of which are generalizations of familiar argu-
ments.

Step 1: Every deterministic protocol with communication cost c induces a partition of M(f)
into at most 2c monochromatic boxes. By “M(f),” we mean the k-dimensional array in which
the ith dimension is indexed by the possible inputs of player i, and an array entry contains
the value of the function f on the corresponding joint input. By a “box,” we mean the
k-dimensional generalization of a rectangle — a subset of inputs that can be written as a
product A1 × A2 × · · · × Ak. By “monochromatic,” we mean a box that does not contain
both a 1-input and a 0-input. (Recall that for the Multi-Disjointness problem there are
also wildcard (“*”) inputs — a monochromatic box can contain any number of these.)

The proof of this step is the same as in the two-party case. We just run the protocol and
keep track of the joint inputs that are consistent with the transcript. The box of all inputs is
consistent with the empty transcript, and the box structure is preserved inductively: when
player i speaks, it narrows down the remaining possibilities for the input xi, but has no
effect on the possible values of the other inputs. Thus every transcript corresponds to a box,
with these boxes partitioning M(f). Since the protocol’s output is constant over such a box
and the protocol computes f , all of the boxes it induces are monochromatic with respect to
M(f).

Similarly, every nondeterministic protocol with communication cost c (for verifying 1-
inputs) induces a cover of the 1-inputs of M(f) by at most 2c monochromatic boxes.

Step 2: The number of 1-inputs in M(f) is (k + 1)n. This step and the next are easy
generalizations of our second proof of our nondeterministic communication complexity lower
bounds for Disjointness (from Lecture #6): first we lower bound the number of 1-inputs,
then we upper bound the number of 1-inputs that can coexist in a single 1-box. In a 1-input
(x1, . . . ,xk), for every coordinate `, at most one of the k inputs has a 1 in the `th coordinate.
This yields k+ 1 options for each of the n coordinates, thereby generating a total of (k+ 1)n

1-inputs.

Step 3: The number of 1-inputs in a monochromatic box is at most kn. Let B = A1×A2×
· · ·×Ak be a 1-box. The key claim here is: for each coordinate ` = 1, . . . , n, there is a player
i ∈ {1, . . . , k} such that, for every input xi ∈ Ai, the `th coordinate of xi is 0. That is, to
each coordinate we can associate an “ineligible player” that, in this box, never has a 1 in
that coordinate. This is easily seen by contradiction: otherwise, there exists a coordinate `
such that, for every player i, there is an input xi ∈ Ai with a 1 in the `th coordinate. As a
box, this means that B contains the input (x1, . . . ,xk). But this is a 0-input, contradicting
the assumption that B is a 1-box.

The claim implies the stated upper bound. Every 1-input of B can be generated by
choosing, for each coordinate `, an assignment of at most one “1” in this coordinate to one
of the k − 1 eligible players for this coordinate. With only k choices per coordinate, there
are at most kn 1-inputs in the box B.
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Conclusion: Steps 2 and 3 imply that covering of the 1s of the k-dimensional array of the
Multi-Disjointness function requires at least (1+ 1

k
)n 1-boxes. By the discussion in Step 1,

this implies a lower bound of n log2(1+ 1
k
) = Θ(n/k) on the nondeterministic communication

complexity of the Multi-Disjointness function (and output 1). This concludes the proof
of Theorem 3.1.

Remark 3.2 (Randomized Communication Complexity of Multi-Disjointness)
Randomized protocols with two-sided error also require communication Ω(n/k) to solve
Multi-Disjointness [8, 2].2 This generalizes the Ω(n) lower bound that we stated (but
did not prove) in Lecture #4, so naturally we’re not going to prove this lower bound either.
Extending the lower bound for Disjointness to Multi-Disjointness requires significant
work, but it is a smaller step than proving from scratch a linear lower bound for Disjoint-
ness [10, 15]. This is especially true if one settles for the weaker lower bound of Ω(n/k4) [1],
which is good enough for our purposes in this lecture.

4 Lower Bounds for Approximate Welfare Maximiza-

tion

4.1 General Valuations

We now put Theorem 3.1 to work and prove that it is impossible to obtain a non-trivial
approximation of the general welfare-maximization problem with a subexponential (in m)
amount of communication. First, we observe that a k-approximation is trivial. The protocol
is to give the full set of itemsM to the player with the largest vi(M). This protocol can clearly
be implemented with a polynomial amount of communication. To prove the approximation
guarantee, consider a partition T1, . . . , Tk of M with the maximum-possible welfare W ∗.
There is a player i with vi(Ti) ≥ W ∗/k. The welfare obtained by our simple protocol is at
least vi(M); since we assume that valuations are monotone, this is at least vi(Ti) ≥ W ∗/k.

To apply communication complexity, it is convenient to turn the optimization problem of
welfare maximization into a decision problem. In the Welfare-Maximization(k) problem,
the goal is to correctly identify inputs that fall into one of the following two cases:

(1) Every partition (T1, . . . , Tk) of the items has welfare at most 1.

(0) There exists a partition (T1, . . . , Tk) of the items with welfare at least k.

Clearly, communication lower bounds for Welfare-Maximization(k) apply more gener-
ally to the problem of obtaining a better-than-k-approximation of the maximum welfare.

We prove the following.

Theorem 4.1 ([14]) The communication complexity of Welfare-Maximization(k) is
exp{Ω(m/k2)}.

2There is also a far-from-obvious matching upper bound of O(n/k) [9, 2].
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Thus, if the number of items m is at least k2+ε for some ε > 0, then the communication
complexity of the Welfare-Maximization(k) problem is exponential. Because the proof is
a reduction from Multi-Disjointness, the lower bound applies to deterministic protocols,
nondeterministic protocols (for the output 1), and randomized protocols with two-sided
error.

The proof of Theorem 4.1 relies on Theorem 3.1 and a combinatorial gadget. We construct
this gadget using the probabilistic method. As a thought experiment, consider t random
partitions P 1, . . . , P t of M , where t is a parameter to be defined later. By a random partition
P j = (P j

1 , . . . , P
j
k ), we just mean that each of the m items is assigned to exactly one of the

k players, independently and uniformly at random.
We are interested in the probability that two classes of different partitions intersect: for

all i 6= i′ and j 6= `, since the probability that a given item is assigned to i in P j and also to
i′ in P ` is 1

k2 , we have

Pr
[
P j
i ∩ P `

i′ = ∅
]

=

(
1− 1

k2

)m
≤ e−m/k

2

.

Taking a Union Bound over the k choices for i and i′ and the t choices for j and `, we have

Pr
[
∃i 6= i′, j 6= ` s.t. P j

i ∩ P `
i′ = ∅

]
≤ k2t2e−m/k

2

. (1)

Call P 1, . . . , P t an intersecting family if P j
i ∩ P `

i′ 6= ∅ whenever i 6= i′, j 6= `. By (1), the
probability that our random experiment fails to produce an intersecting family is less than 1
provided t < 1

k
em/2k

2
. The following lemma is immediate.

Lemma 4.2 For every m, k ≥ 1, there exists an intersecting family of partitions P 1, . . . , P t

with t = exp{Ω(m/k2)}.

A simple combination of Theorem 3.1 and Lemma 4.2 proves Theorem 4.1.

Proof of Theorem 4.1: The proof is a reduction from Multi-Disjointness. Fix k and
m. (To be interesting, m should be significantly bigger than k2.) Let (S1, . . . , Sk) denote
an input to Multi-Disjointness with t-bit inputs, where t = exp{Ω(m/k2)} is the same
value as in Lemma 4.2. We can assume that the players have coordinated in advance on an
intersecting family of t partitions of a set M of m items. Each player i uses this family and
its input Si to form the following valuation:

vi(T ) =

{
1 if T ⊇ P j

i for some j ∈ Si
0 otherwise.

That is, player i is either happy (value 1) or unhappy (value 0), and is happy if and only if
it receives all of the items in the corresponding class P j

i of some partition P j with index j
belonging to its input to Multi-Disjointness. The valuations v1, . . . , vk define an input
to Welfare-Maximization(k). Forming this input requires no communication between
the players.
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Consider the case where the input to Multi-Disjointness is a 1-input, with Si∩Si′ = ∅
for every i 6= i′. We claim that the induced input to Welfare-Maximization(k) is a 1-
input, with maximum welfare at most 1. To see this, consider a partition (T1, . . . , Tk) in
which some player i is happy (with vi(Ti) = 1). For some j ∈ Si, player i receives all the
items in P j

i . Since j 6∈ Si′ for every i′ 6= i, the only way to make a second player i′ happy
is to give it all the items in P `

i′ in some other partition P ` with ` ∈ Si′ (and hence ` 6= j).
Since P 1, . . . , P t is an intersecting family, this is impossible — P j

i and P `
i′ overlap for every

` 6= j.
When the input to Multi-Disjointness is a 0-input, with an element r in the mutual

intersection ∩ki=1Si, we claim that the induced input to Welfare-Maximization(k) is a
0-input, with maximum welfare at least k. This is easy to see: for i = 1, 2, . . . , k, assign the
items of P r

i to player i. Since r ∈ Si for every i, this makes all k players happy.
This reduction shows that a (deterministic, nondeterministic, or randomized) protocol for

Welfare-Maximization(k) yields one for Multi-Disjointness (with t-bit inputs) with
the same communication. We conclude that the communication complexity of Welfare-
Maximization(k) is Ω(t/k) = exp{Ω(m/k2)}. �

4.2 Subadditive Valuations

To an algorithms person, Theorem 4.1 is depressing, as it rules out any non-trivial posi-
tive results. A natural idea is to seek positive results by imposing additional structure on
players’ valuations. Many such restrictions have been studied. We consider here the case
of subadditive valuations, where each vi satisfies vi(S ∪ T ) ≤ vi(S) + vi(T ) for every pair
S, T ⊆M .

Our reduction in Theorem 4.1 immediately yields a weaker inapproximability result
for welfare maximization with subadditive valuations. Formally, define the Welfare-
Maximization(2) problem as that of identifying inputs that fall into one of the following
two cases:

(1) Every partition (T1, . . . , Tk) of the items has welfare at most k + 1.

(0) There exists a partition (T1, . . . , Tk) of the items with welfare at least 2k.

Communication lower bounds for Welfare-Maximization(2) apply to the problem of
obtaining a better-than-2-approximation of the maximum welfare.

Corollary 4.3 ([4]) The communication complexity of Welfare-Maximization(2) is
exp{Ω(m/k2)}, even when all players have subadditive valuations.

Proof: Picking up where the reduction in the proof of Theorem 4.3 left off, every player i
adds 1 to its valuation for every non-empty set of items. Thus, the previously 0-1 valu-
ations become 0-1-2 valuations that are only 0 for the empty set. Such functions always
satisfy the subadditivity condition (vi(S ∪ T ) ≤ vi(S) + vi(T )). 1-inputs and 0-inputs of
Multi-Disjointness now become 1-inputs and 0-inputs of Welfare-Maximization(2),
respectively. The communication complexity lower bound follows. �
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Rock Paper Scissors
Rock 0,0 -1,1 1,-1
Paper 1,-1 0,0 -1,1

Scissors -1,1 1,-1 0,0

Figure 1: Player utilities in Rock-Paper-Scissors. The pair of numbers in a matrix entry
denote the utilities of the row and column players, respectively, in a given outcome.

There is also a quite non-trivial matching upper bound of 2 for deterministic, polynomial-
communication protocols [5].

5 Lower Bounds for Equilibria

The lower bounds of the previous section show that every protocol for the welfare-maximization
problem that interacts with the players and then explicitly computes an allocation has ei-
ther a bad approximation ratio or high communication cost. Over the past five years, many
researchers have aimed to shift the work from the protocol to the players, by analyzing the
equilibria of simple auctions. Can such equilibria bypass the communication complexity
lower bounds proved in Section 4? The answer is not obvious, because equilibria are defined
non-constructively, and not through a low-communication protocol.3

5.1 Game Theory

Next we give the world’s briefest-ever game theory tutorial. See e.g. [17], or the instructor’s
CS364A lecture notes, for a more proper introduction. We’ll be brief because the details of
these concepts do not play a first-order role in the arguments below.

5.1.1 Games

A (finite, normal-form) game is specified by:

1. A finite set of k ≥ 2 players.

2. For each player i, a finite action set Ai.

3. For each player i, a utility function ui(a) that maps an action profile a ∈ A1×· · ·×Ak
to a real number. The utility of a player generally depends not only on its action, but
also those chosen by the other players.

For example, in “Rock-Paper-Scissors (RPS),” there are two players, each with three actions.
A natural choice of utility functions is depicted in Figure 1.

For a more complex and relevant example of a game, consider simultaneous first-price
auctions (S1As). There are k players. An action ai of a player i constitutes a bid bij on

3This question was bothering your instructor back in CS364B (Winter ’14) — hence, Theorem 5.4.
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each item j of a set M of m items.4 In a S1A, each item is sold separately in parallel
using a “first-price auction” — the item is awarded to the highest bidder, and the price is
whatever that player bid.5 To specify the utility functions, we assume that each player i has
a valuation vi as in Section 2. We define

ui(a) = vi(Si)︸ ︷︷ ︸
value of items won

−
∑
j∈Si

bij︸ ︷︷ ︸
price paid for them

,

where Si denotes the items on which i is the highest bidder (given the bids of a).6 Note
that the utility of a bidder depends both on its own action and those of the other bidders.
Having specified the players, their actions, and their utility functions, we see that an S1A is
an example of a game.

5.1.2 Equilibria

Given a game, how should one reason about it? The standard approach is to define some
notion of “equilibrium” and then study the equilibrium outcomes. There are many useful
notions of equilibria (see e.g. the instructor’s CS364A notes); for simplicity, we’ll stick here
with the most common notion, (mixed) Nash equilibria.7

A mixed strategy for a player i is a probability distribution over its actions — for exam-
ple, the uniform distribution over Rock/Paper/Scissors. A Nash equilibrium is a collection
σ1, . . . , σk of mixed strategies, one per player, so that each player is performing a “best
response” to the others. To explain, adopt the perspective of player i. We think of i as
knowing the mixed strategies σ−i used by the other k − 1 players (but not their coin flips).
Thus, player i can compute the expected payoff of each action ai ∈ Ai, where the expectation
assumes that the other k − 1 players randomly and independently select actions from their
mixed strategies. Every action that maximizes i’s expected utility is a best response to σ−i.
Similarly, every probability distribution over best responses is again a best response (and
these exhaust the best responses). For example, in Rock-Paper-Scissors, both players playing
the uniform distribution yields a Nash equilibrium. (Every action of a player has expected
utility 0 w.r.t. the mixed strategy of the other player, so everything is a best response.)

Nash proved the following.

Theorem 5.1 ([13]) In every finite game, there is at least one Nash equilibrium.

4To keep the game finite, let’s agree that each bid has to be an integer between 0 and some known upper
bound B.

5You may have also heard of the Vickrey or second-price auction, where the winner does not pay their
own bid, but rather the highest bid by someone else (the second-highest overall). We’ll stick with S1As for
simplicity, but similar results are known for simultaneous second-price auctions, as well.

6Break ties in an arbitrary but consistent way.
7For the auction settings we study, “Bayes-Nash equilibria” are more relevant. These generalize Nash

equilibria, so our lower bounds immediately apply to them.
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Theorem 5.1 can be derived from, and is essentially equivalent to, Brouwer’s Fixed-Point
Theorem. Note that a game can have a large number of Nash equilibria— if you’re trying to
meet a friend in New York City, with actions equal to intersections, then every intersection
corresponds to a Nash equilibrium.

An ε-Nash equilibrium is the relaxation of a Nash equilibrium in which no player can
increase its expected utility by more than ε by switching to a different strategy. Note that
the set of ε-Nash equilibria is nondecreasing with ε. Such approximate Nash equilibria seem
crucial to the lower bound in Theorem 5.4, below.

5.1.3 The Price of Anarchy

So how good are the equilibria of various games, such as S1As? To answer this question,
we use an analog of the approximation ratio, adapted for equilibria. Given a game (like
an S1A) and a nonnegative maximization objective function on the outcomes (like welfare),
the price of anarchy (POA) [11] is defined as the ratio between the objective function value
of an optimal solution, and that of the worst equilibrium.8 If the equilibrium involves
randomization, as with mixed strategies, then we consider its expected objective function
value.

The POA of a game and a maximization objective function is always at least 1. It is
common to identify “good performance” of a system with strategic participants as having a
POA close to 1.9

For example, the equilibria of S1As are surprisingly good in fairly general settings.

Theorem 5.2 ([7]) In every S1A with subadditive bidder valuations, the POA is at most 2.

Theorem 5.2 is non-trivial and we won’t prove it here (see the paper or the instructor’s
CS364B notes for a proof). This result is particularly impressive because achieving an
approximation factor of 2 for the welfare-maximization problem with subadditive bidder
valuations by any means (other than brute-force search) is not easy (see [5]).

A recent result shows that the analysis of [7] is tight.

Theorem 5.3 ([3]) The worst-case POA of S1As with subadditive bidder valuations is at
least 2.

The proof of Theorem 5.3 is an ingenious explicit construction — the authors exhibit a
choice of subadditive bidder valuations and a Nash equilibrium of the corresponding S1A so
that the welfare of this equilibrium is only half of the maximum possible. One reason that
proving results like Theorem 5.3 is challenging is that it can be difficult to solve for a (bad)
equilibrium of a complex game like a S1A.

8Recall that games generally have multiple equilibria. Ideally, we’d like an approximation guarantee that
applies to all equilibria — this is the point of the POA.

9An important issue, outside the scope of these notes, is the plausibility of a system reaching an equilib-
rium. A natural solution is to relax the notion of equilibrium enough so that it become “relatively easy” to
reach an equilibrium. See e.g. the instructor’s CS364A notes for much more on this point.
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5.2 POA Lower Bounds from Communication Complexity

Theorem 5.2 motivates an obvious question: can we do better? Theorem 5.3 implies that
the analysis in [7] cannot be improved, but can we reduce the POA by considering a different
auction? Ideally, the auction would still be “reasonably simple” in some sense. Alternatively,
perhaps no “simple” auction could be better than S1As? If this is the case, it’s not clear
how to prove it directly — proving lower bounds via explicit constructions auction-by-auction
does not seem feasible.

Perhaps it’s a clue that the POA upper bound of 2 for S1As (Theorem 5.2) gets stuck at
the same threshold for which there is a lower bound for protocols that use polynomial commu-
nication (Theorem 4.3). It’s not clear, however, that a lower bound for low-communication
protocols has anything to do with equilibria. In the spirit of the other reductions that we’ve
seen in this course, can we extract a low-communication protocol from an equilibrium?

Theorem 5.4 ([16]) Fix a class V of possible bidder valuations. Suppose there exists no
nondeterministic protocol with subexponential (in m) communication for the 1-inputs of the
following promise version of the welfare-maximization problem with bidder valuations in V:

(1) Every allocation has welfare at most W ∗/α.

(0) There exists an allocation with welfare at least W ∗.

Let ε be bounded below by some inverse polynomial function of n and m. Then, for every
auction with sub-doubly-exponential (in m) actions per player, the worst-case POA of ε-Nash
equilibria with bidder valuations in V is at least α.

Theorem 5.4 says that lower bounds for nondeterministic protocols carry over to all “suffi-
ciently simple” auctions, where “simplicity” is measured by the number of actions available to
each player. These POA lower bounds follow from communication complexity lower bounds,
and do not require any new explicit constructions.

To get a feel for the simplicity constraint, note that S1As with integral bids between 0
and B have (B + 1)m actions per player — singly exponential in m. On the other hand, in
a “direct-revelation” auction, where each bidder is allowed to submit a bid on each bundle
S ⊆M of items, each player has a doubly-exponential (in m) number of actions.10

The POA lower bound promised by Theorem 5.4 is only for ε-Nash equilibrium; since
the POA is a worst-case measure and the set of ε-Nash equilibria is nondecreasing with ε,
this is weaker than a lower bound for exact Nash equilibria. It is an open question whether
or not Theorem 5.4 holds also for the POA of exact Nash equilibria. Arguably, Theorem 5.4
is good enough for all practical purposes — a POA upper bound that holds for exact Nash
equilibria and does not hold (at least approximately) for ε-Nash equilibria with very small ε
is too brittle to be meaningful.

Theorem 5.4 has a number of interesting corollaries. First, since S1As have only a
singly-exponential (in m) number of actions per player, Theorem 5.4 applies to them. Thus,

10Equilibria can achieve the optimal welfare in direct-revelation mechanisms, so the bound in Theorem 5.4
on the number of actions is necessary. See the Exercises for further details.
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combining it with Theorem 4.3 recovers the POA lower bound of Theorem 5.3 — modulo
the exact vs. approximate Nash equilibria issue — and shows the optimality of the upper
bound in Theorem 5.2 without an explicit construction. More interestingly, this POA lower
bound of 2 (for subadditive bidder valuations) applies not only to S1As, but more generally
to all auctions in which each player has a sub-doubly-exponential number of actions. Thus,
S1As are in fact optimal among the class of all such auctions when bidders have subadditive
valuations (w.r.t. the worst-case POA of ε-Nash equilibria).

We can also combine Theorem 5.4 with Theorem 4.1 to prove that no “simple” auction
gives a non-trivial (better than k-) approximation for general bidder valuation. Thus with
general valuations, complexity is essential to any auction format that offers good equilibrium
guarantees.

5.3 Proof of Theorem 5.4

Presumably, the proof of Theorem 5.4 extracts a low-communication protocol from a good
POA bound. The hypothesis of Theorem 5.4 offers the clue that we should be looking to
construct a nondeterministic protocol. So what could we use an all-powerful prover for?
We’ll see that a good role for the prover is to suggest a Nash equilibrium to the players.

Unfortunately, it’s too expensive for the prover to even write down the description of
a Nash equilibrium, even in S1As. Recall that a mixed strategy is a distribution over
actions, and that each player has an exponential (in m) number of actions available in a
S1A. Specifying a Nash equilibrium thus requires an exponential number of probabilities.
To circumvent this issue, we resort to ε-Nash equilibria, which are guaranteed to exist even
if we restrict ourselves to distributions with small descriptions.

Lemma 5.5 ([12]) For every ε > 0 and every game with k players with action sets A1, . . . , Ak,
there exists an ε-Nash equilibrium with description length polynomial in k, log(maxki=1 |Ai|),
and 1

ε
.

We give the high-level idea of the proof of Lemma 5.5; see the Exercises for details.

1. Let (σ1, . . . , σk) be a Nash equilibrium. (One exists, by Nash’s Theorem.)

2. Run T independent trials of the following experiment: draw actions at1 ∼ σ1, . . . , a
t
k ∼

σk for the k players independently, according to their mixed strategies in the Nash
equilibrium.

3. For each i, define σ̂i as the empirical distribution of the ati’s. (With the probability
of ai in σ̂i equal to the fraction of trials in which i played ai.)

4. Use Chernoff bounds to prove that, if T is at least a sufficiently large polynomial
in k, log(maxki=1 |Ai|), and 1

ε
, then with high probability (σ̂1, . . . , σ̂k) is an ε-Nash

equilibrium. Note that the natural description length of (σ̂1, . . . , σ̂k) — for example,
just by listing all of the sampled actions — is polynomial in n, log(maxki=1 |Ai|), and 1

ε
.
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(i)  OPT'≤'W/α'
(ii)  OPT'≥'W'

prover'writes''
down'an'ε9NE'x'

players'privately'
verify'ε9NE'condi@ons'

players'compute'
expected'welfare'of'x'

if'E[welfare(x)]'≤'W/α'
then'OPT'≤'ρW/α'<'W'
(so'case'(i))'

if'E[welfare(x)]'>'W/α'
then'OPT'>'W/α''
(so'case'(ii))'

Figure 2: Proof of Theorem 5.4. How to extract a low-communication nondeterministic
protocol from a good price-of-anarchy bound.

The intuition is that, for T sufficiently large, expectations with respect to σi and with respect
to σ̂i should be roughly the same. Since there are |Ai| relevant expectations per player (the
expected utility of each of its actions) and Chernoff bounds give deviation probabilities that
have an inverse exponential form, we might expect a log |Ai| dependence to show up in the
number of trials.

We now proceed to the proof of Theorem 5.4.

Proof of Theorem 5.4: Fix an auction with at most A actions per player, and a value for
ε = Ω(1/poly(k,m)). Assume that, no matter what the bidder valuations v1, . . . , vk ∈ V are,
the POA of ε-Nash equilibria of the auction is at most ρ < α. We will show that A must be
doubly-exponential in m.

Consider the following nondeterministic protocol for computing a 1-input of the welfare-
maximization problem — for convincing the k players that every allocation has welfare at
most W ∗/α. See also Figure 2. The prover writes on a publicly visible blackboard an ε-Nash
equilibrium (σ1, . . . , σk) of the auction, with description length polynomial in k, logA, and
1
ε

= O(poly(k,m)) as guaranteed by Lemma 5.5. The prover also writes down the expected
welfare contribution E[vi(S)] of each bidder i in this equilibrium.

Given this advice, each player i verifies that σi is indeed an ε-best response to the other
σj’s and that its expected welfare is as claimed when all players play the mixed strategies
σ1, . . . , σk. Crucially, player i is fully equipped to perform both of these checks without any
communication — it knows its valuation vi (and hence its utility in each outcome of the
game) and the mixed strategies used by all players, and this is all that is needed to verify
the ε-Nash equilibrium conditions that apply to it and to compute its expected contribution
to the welfare.11 Player i accepts if and only if the prover’s advice passes these two tests,

11These computations may take a super-polynomial amount of time, but they do not contribute to the
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and if the expected welfare of the equilibrium is at most W ∗/α.
For the protocol correctness, consider first the case of a 1-input, where every allocation

has welfare at most W ∗/α. If the prover writes down the description of an arbitrary ε-Nash
equilibrium and the appropriate expected contributions to the social welfare, then all of the
players will accept (the expected welfare is obviously at most W ∗/α). We also need to argue
that, for the case of a 0-input — where some allocation has welfare at least W ∗ — there
is no proof that causes all of the players to accept. We can assume that the prover writes
down an ε-Nash equilibrium and its correct expected welfare W , since otherwise at least one
player will reject. Since the maximum-possible welfare is at least W ∗ and (by assumption)
the POA of ε-Nash equilibria is at most ρ < α, the expected welfare of the given ε-Nash
equilibrium must satisfy W ≥ W ∗/ρ > W/α. Since the players will reject such a proof, we
conclude that the protocol is correct. Our assumption then implies that the protocol has
communication cost exponential in m. Since the cost of the protocol is polynomial in k, m,
and logA, A must be doubly exponential in m. �

Conceptually, the proof of Theorem 5.4 argues that, when the POA of ε-Nash equilibria
is small, every ε-Nash equilibrium provides a privately verifiable proof of a good upper bound
on the maximum-possible welfare. When such upper bounds require large communication,
the equilibrium description length (and hence the number of actions) must be large.

5.4 An Open Question

While Theorems 4.3, 5.2, and 5.4 pin down the best-possible POA achievable by simple
auctions with subadditive bidder valuations, there are still open questions for other valuation
classes. For example, a valuation vi is submodular if it satisfies

vi(T ∪ {j})− vi(T ) ≤ vi(S ∪ {j})− vi(S)

for every S ⊆ T ⊂M and j /∈ T . This is a “diminishing returns” condition for set functions.
Every submodular function is also subadditive, so welfare-maximization with the former
valuations is only easier than with the latter.

The worst-case POA of S1As is exactly e
e−1
≈ 1.58 when bidders have submodular valu-

ations. The upper bound was proved in [18], the lower bound in [3]. It is an open question
whether or not there is a simple auction with a smaller worst-case POA. The best lower
bound known — for nondeterministic protocols and hence, by Theorem 5.4, for the POA of
ε-Nash equilibria of simple auctions — is 2e

2e−1
≈ 1.23. Intriguingly, there is an upper bound

(slightly) better than e
e−1

for polynomial-communication protocols [6] — can this better
upper bound also be realized as the POA of a simple auction? What is the best-possible
approximation guarantee, either for polynomial-communication protocols or for the POA of
simple auctions?

protocol’s cost.
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