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1 An Appetizer: Randomized Communication Com-

plexity of the Equality Function

We begin with an appetizer before starting the lecture proper — an example that demon-
strates that randomized one-way communication protocols can sometimes exhibit surprising
power.

It won’t surprise you that the Equality function — with f(x,y) = 1 if and only if x = y
— is a central problem in communication complexity. It’s easy to prove, by the Pigeonhole
Principle, that its deterministic one-way communication complexity is n, where n is the
length of the inputs x and y.1 What about its randomized communication complexity?
Recall from last lecture that by default, our randomized protocols can use public coins2 and
can have two-sided error ε, where ε is any constant less than 1

2
.

Theorem 1.1 ([8]) The (public-coin) randomized one-way communication complexity of
Equality is O(1).

Thus, the randomized communication complexity of a problem can be radically smaller
than its deterministic communication complexity. A similar statement follows from our upper
and lower bound results for estimating the frequency moments F0 and F2 using small-space
streaming algorithms, but Theorem 1.1 illustrates this point in a starker and clearer way.

∗ c©2015, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.
1We’ll see later that this lower bound applies to general deterministic protocols, not just to one-way

protocols.
2Recall the public-coin model: when Alice and Bob show up there is already an infinite stream of random

bits written on a blackboard, which both of them can see. Using shared randomness does not count toward
the communication cost of the protocol.
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Theorem 1.1 provides a cautionary tale: sometimes we expect a problem to be hard for
a class of protocols and are proved wrong by a clever protocol; other times, clever protocols
don’t provide non-trivial solutions to a problem but still make proving strong lower bounds
technically difficult. Theorem 1.1 also suggests that, if we want to prove strong communi-
cation lower bounds for randomized protocols via a reduction, there might not be too many
natural problems out there to reduce from.3

Proof of Theorem 1.1: The protocol is as follows.

1. Alice and Bob interpret the first 2n public coins as random strings r1, r2 ∈ {0, 1}n.
This requires no communication.

2. Alice sends the two random inner products 〈x, r1〉 mod 2 and 〈x, r2〉 mod 2 to Bob.
This requires two bits of communication.

3. Bob reports “1” if and only if his random inner products match those of Alice: 〈y, ri〉 =
〈x, ri〉 mod 2 for i = 1, 2. Note that Bob has all of the information needed to perform
this computation.

We claim that the error of this protocol is at most 25% on every input. The protocol’s
error is one-sided: when x = y the protocol always accepts, so there are no false negatives.
Suppose that x 6= y. We use the Principle of Deferred Decisions to argue that, for each
i = 1, 2, the inner products 〈y, ri〉 and 〈x, ri〉 are different (mod 2) with probability exactly
50%. To see this, pick an index i where xi 6= yi and condition on all of the bits of a random
string except for the ith one. Let a and b denote the values of the inner products-so-far of x
and y (modulo 2) with the random string. If the ith random bit is a 0, then the final inner
products are also a and b. If the ith random bit is a 1, then one inner product stays the
same while the other flips its value (since exactly one of xi, yi is a 1). Thus, whether a = b
or a 6= b, exactly one of the two random bit values (50% probability) results in the final two
inner products having different values (modulo 2). The probability that two unequal strings
have equal inner products (modulo 2) in two independent experiments is 25%. �

The proof of Theorem 1.1 gives a 2-bit protocol with (1-sided) error 25%. As usual,
executing many parallel copies of the protocol reduces the error to an arbitrarily small
constant, with a constant blow-up in the communication complexity.

The protocol used to prove Theorem 1.1 makes crucial use of public coins. We’ll see
later that the private-coin 1-way randomized communication complexity is Θ(log n), which
is worse than public-coin protocols but still radically better than deterministic protocols.
More generally, next lecture we’ll prove Newman’s theorem, which states that the private-
coin communication complexity of a problem is at most O(log n) more than its public-coin
communication complexity.

3Recall our discussion about Gap-Hamming last lecture: for the problem to be hard, it is important to
choose the midpoint t to be n

2 . With t too close to 0 or n, the problem is a special case of Equality and is
therefore easy for randomized protocols.
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The protocol in the proof of Theorem 1.1 effectively gives each of the two strings x,y
a 2-bit “sketch” or “fingerprint” such that the property of distinctness is approximately
preserved. Clearly, this is the same basic idea as hashing. This is a useful idea in both
theory and practice, and we’ll use it again shortly.

Remark 1.2 The computational model studied in communication complexity is potentially
very powerful — for example, Alice and Bob have unlimited computational power — and the
primary point of the model is to prove lower bounds. Thus, whenever you see an upper bound
result in communication complexity, like Theorem 1.1, it’s worth asking what the point of
the result is. In many cases, a positive result is really more of a “negative negative result,”
intended to prove the tightness of a lower bound rather than offer a practical solution to a
real problem. In other cases, the main point is demonstrate separations between different
notions of communication complexity or between different problems. For example, Theo-
rem 1.1 shows that the one-way deterministic and randomized communication complexity of
a problem can be radically different, even if we insist on one-sided error. It also shows that
the randomized communication complexity of Equality is very different than that of the
problems we studied last lecture: Disjointness, Index, and Gap-Hamming.

Theorem 1.1 also uses a quite reasonable protocol, which is not far from a practical
solution to probabilistic equality-testing. In some applications, the public coins can be
replaced by a hash function that is published in advance; in other applications, one party
can choose a random hash function that can be specified with a reasonable number of bits
and communicate it to other parties.

2 Sparse Recovery

2.1 The Basic Setup

The field of sparse recovery has been a ridiculously hot area for the past ten years, in
applied mathematics, machine learning, and theoretical computer science. We’ll study sparse
recovery in the standard setup of “compressive sensing” (also called “compressed sensing”).
There is an unknown “signal” — i.e., a real-valued vector x ∈ Rn — that we want to learn.
The bad news is that we’re only allowed to access the signal through “linear measurements;”
the good news is that we have the freedom to choose whatever measurements we want.
Mathematically, we want to design a matrix A ∈ Rm×n, with m as small as possible, such
that we can recover the unknown signal x from the linear measurements Ax (whatever x
may be).

As currently stated, this is a boring problem. It is clear that n measurements are sufficient
– just take A = I, or any other invertible n×n matrix. It is also clear that n measurements
are necessary: if m < n, then there is a entire subspace of dimension n−m of vectors that
have image Ax under A, and we have no way to know which one of them is the actual
unknown signal.

The problem becomes interesting when we also assume that the unknown signal x is
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Figure 1: The basic compressive sensing setup. The goal is to design a matrix A such that
an unknown sparse signal x can be recovered from the linear measurements Ax.

“sparse,” in senses we define shortly. The hope is that under the additional promise that x
is sparse, we can get away with much fewer than n measurements (Figure 1).

2.2 A Toy Version

To develop intuition for this problem, let’s explore a toy version. Suppose you are promised
that x is a 0-1 vector with exactly k 1’s (and hence n− k 0’s). Throughout this lecture, k is
the parameter that measures the sparsity of the unknown signal x — it could be anything,
but you might want to keep k ≈

√
n in mind as a canonical parameter value. Let X denote

the set of all such k-sparse 0-1 vectors, and note that |X| =
(

n
k

)
.

Here’s a solution to the sparse recovery problem under that guarantee that x ∈ X. Take
m = 3 log2 |X|, and choose each of the m rows of the sensing matrix A independently and
uniformly at random from {0, 1}n. By the fingerprinting argument used in our randomized
protocol for Equality (Theorem 1.1), for fixed distinct x,x′ ∈ X, we have

PrA[Ax = Ax′ mod 2] =
1

2m
=

1

|X|3
.

Of course, the probability that Ax = Ax′ (not modulo 2) is only less. Taking a Union
Bound over the at most |X|2 different distinct pairs x, x′ ∈ X, we have

PrA[there exists x 6= x′ s.t. Ax = Ax′] ≤ 1

|X|
.
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Thus, there is a matrix A that maps all x ∈ X to distinct m-vectors. (Indeed, a random A
works with high probability.) Thus, given Ax, one can recover x — if nothing else, one can
just compute Ax′ for every x′ ∈ X until a match is found.4

The point is that m = Θ(log |X|) measurements are sufficient to recover exactly k-sparse
0-1 vectors. Recalling that |X| =

(
n
k

)
and that(n

k

)k

≤︸︷︷︸
easy

(
n

k

)
≤︸︷︷︸

Stirling’s approx.

(en
k

)k

,

we see that m = Θ(k log n
k
) rows suffice.5

This exercise shows that, at least for the special case of exactly sparse 0-1 signals, we
can indeed achieve recovery with far fewer than n measurements. For example, if k ≈

√
n,

we need only O(
√
n log n) measurements.

Now that we have a proof of concept that recovering an unknown sparse vector is an
interesting problem, we’d like to do better in two senses. First, we want to move beyond the
toy version of the problem to the “real” version of the problem. Second, we have to wonder
whether even fewer measurements suffice.

2.3 Motivating Applications

To motivate the real version of the problem, we mention a couple of canonical applications of
compressive sensing. One buzzword you can look up and read more about is the “single-pixel
camera.” The standard approach to taking pictures is to first take a high-resolution picture
in the “standard basis” — e.g., a light intensity for each pixel — and then to compress the
picture later (via software). Because real-world images are typically sparse in a suitable
basis, they can be compressed a lot. The compressive sensing approach asks, then why
not just capture the image directly in a compressed form — in a representation where its
sparsity shines through? For example, one can store random linear combinations of light
intensities (implemented via suitable mirrors) rather than the light intensities themselves.
This idea leads to a reduction in the number of pixels needed to capture an image at a
given resolution. Another application of compressive sensing is in MRI. Here, decreasing the
number of measurements decreases the time necessary for a scan. Since a patient needs to
stay motionless during a scan — in some cases, not even breathing — shorter scan times can
be a pretty big deal.

2.4 The Real Problem

If the unknown signal x is an image, say, there’s no way it’s an exactly sparse 0-1 vector.
We need to consider more general unknown signals x that are real-valued and only “ap-

4We won’t focus on computational efficiency in this lecture, but positive results in compressive sensing
generally also have computationally efficient recovery algorithms. Our lower bounds will hold even for
recovery algorithms with unbounded computational power.

5If you read through the compressive sensing literature, you’ll be plagued by ubiquitous “k log n
k ” terms

— remember this is just ≈ log
(
n
k

)
.
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proximately sparse.” To measure approximate sparsity, with respect to a choice of k, we
define the residual res(x) of a vector x ∈ Rn as the contribution to x’s `1 norm by its n− k
coordinates with smallest magnitudes. Recall that the `1 norm is just ‖x‖1 =

∑n
i=1 |xi|. If

we imagine sorting the coordinates by |xi|, then the residual of x is just the sum of the |xi|’s
of the final n − k terms. If x has exactly k-sparse, it has at least n − k zeros and hence
res(x) = 0.

The goal is to design a sensing matrix A with a small number m of rows such that an
unknown approximately sparse vector x can be recovered from Ax. Or rather, given that x
is only approximately sparse, we want to recover a close approximation of x.

The formal guarantee we’ll seek for the matrix A is the following: for every x ∈ Rn, we
can compute from Ax a vector x′ such that

‖x′ − x‖1 ≤ c · res(x). (1)

Here c is a constant, like 2. The guarantee (1) is very compelling. First, if x is exactly
k-sparse, then res(x) = 0 and so (1) demands exact recovery of x. The guarantee is pa-
rameterized by how close x is to being sparse — the recovered vector x′ should lie in a ball
(in the `1 norm) around x, and the further x is from being k-sparse, the bigger this ball
is. Intuitively, the radius of this ball has to depend on something like res(x). For example,
suppose that x′ is exactly k-sparse (with res(x) = 0). The guarantee (1) forces the algorithm
to return x′ for every unknown signal x with Ax = Ax′. Recall that when m < n, there is
an (n−m)-dimensional subspace of such signals x. In the extreme case where there is such
an x with x− res(x) = x′ – i.e., where x is x′ with a little noise added to its zero coordinates
— the recovery algorithm is forced to return a solution x′ with ‖x′ − x‖1 = res(x).

Now that we’ve defined the real version of the problem, is there an interesting solution?
Happily, the real version can be solved as well as the toy version.

Fact 2.1 ([3, 5]) With high probability, a random m × n matrix A with Θ(k log n
k
) rows

admits a recovery algorithm that satisfies the guarantee in (1) for every x ∈ Rn.

Fact 2.1 is non-trivial and well outside the scope of this course. The fact is true for several
different distributions over matrices, including the case where each matrix entry is an inde-
pendent standard Gaussian. Also, there are computationally efficient recovery algorithms
that achieve the guarantee.6

3 A Lower Bound for Sparse Recovery

3.1 Context

At the end of Section 2.2, when we asked “can we do better?,” we meant this in two senses.
First, can we extend the positive results for the toy problem to a more general problem?

6See e.g. [7, Chapter 4] for an introduction to such positive results about sparse recovery. Lecture #9 of
the instructor’s CS264 course also gives a brief overview.
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Fact 2.1 provides a resounding affirmative answer. Second, can we get away with an even
smaller value of m — even fewer measurements? In this section we prove a relatively recent
(2011) result of Do Ba et al. [4], who showed that the answer is “no.”7 Amazingly, they
proved this fundamental result via a reduction to a lower bound in communication complexity
(for Index).

Theorem 3.1 ([4]) If an m × n matrix A admits a recovery algorithm R that, for every
x ∈ Rn, computes from Ax a vector x′ that satisfies (1), then m = Ω(k log n

k
).

The lower bound is information-theoretic, and therefore applies also to recovery algorithms
with unlimited computational power.

Note that there is an easy lower bound of m ≥ k.8 Theorem 3.1 offers a non-trivial
improvement when k = o(n); in this case, we’re asking whether or not it’s possible to shave
off the log factor in Fact 2.1. Given how fundamental the problem is, and how much a
non-trivial improvement could potentially matter in practice, this question is well worth
asking.

3.2 Proof of Theorem 3.1: First Attempt

Recall that we first proved our upper bound of m = O(k log n
k
) in the toy setting of Sec-

tion 2.2, and then stated in Fact 2.1 that it can be extended to the general version of the
problem. Let’s first try to prove a matching lower bound on m that applies even in the toy
setting. Recall that X denotes the set of all 0-1 vectors that have exactly k 1’s, and that
|X| =

(
n
k

)
.

For vectors x ∈ X, the guarantee (1) demands exact recovery. Thus, the sensing matrix
A that we pick has to satisfy Ax 6= Ax′ for all distinct x, x′ ∈ X. That is, Ax encodes x
for all x ∈ X. But X has

(
n
k

)
members, so the worst-case encoding length of Ax has to be

at least log2

(
n
k

)
= Θ(k log n

k
). So are we done?

The issue is that we want a lower bound on the number of rows m of A, not on the
worst-case length of Ax in bits. What is the relationship between these two quantities?
Note that, even if A is a 0-1 matrix, then each entry of Ax is generally of magnitude Θ(k),
requiring Θ(log k) bits to write down. For example, when k is polynomial in n (like our
running choice k =

√
n), then Ax generally requires Ω(m log n) bits to describe, even when

A is a 0-1 matrix. Thus our lower bound of Θ(k log n
k
) on the length of Ax does not yield a

lower bound on m better than the trivial lower bound of k.9

The argument above was doomed to fail. The reason is that, if you only care about
recovering exactly k-sparse vectors x — rather than the more general and robust guarantee

7Such a lower bound was previously known for various special cases — for particular classes of matrices,
for particular families of recovery algorithms, etc.

8For example, consider just the subset of vectors x that are zero in the final n − k coordinates. The
guarantee (1) demands exact recovery of all such vectors. Thus, we’re back to the boring version of the
problem mentioned at the beginning of the lecture, and A has to have rank at least k.

9This argument does imply that m = Ω(k log n
k ) is we only we report Ax modulo 2 (or some other

constant), since in this case the length of Ax is Θ(m).
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in (1) — then m = 2k suffices! One proof is via “Prony’s Method,” which uses the fact
that a k-sparse vector x can be recovered exactly from its first 2k Fourier coefficients (see
e.g. [7]).10 Our argument above only invoked the requirement (1) for k-sparse vectors x, and
such an argument cannot prove a lower bound of the form m = Ω(k log n

k
).

The first take-away from this exercise is that, to prove the lower bound that we want,
we need to use the fact that the matrix A satisfies the guarantee (1) also for non-k-sparse
vectors x. The second take-away is that we need a smarter argument — a straightforward
application of the Pigeonhole Principle is not going to cut it.

3.3 Proof of Theorem 3.1

3.3.1 A Communication Complexity Perspective

We can interpret the failed proof attempt in Section 3.2 as an attempted reduction from a
“promise version” of Index. Recall that in this communication problem, Alice has an input
x ∈ {0, 1}n, Bob has an index i ∈ {1, 2, . . . , n}, specified using ≈ log2 n bits, and the goal
is to compute xi using a one-way protocol. We showed last lecture that the deterministic
communication complexity of this problem is n (via an easy counting argument) and its
randomized communication complexity is Ω(n) (via a harder counting argument).

The previous proof attempt can be rephrased as follows. Consider a matrix A that
permits exact recovery for all x ∈ X. This induces a one-way protocol for solving Index
whenever Alice’s input x lies in X — Alice simply sends Ax to Bob, Bob recovers x, and
Bob can then solve the problem, whatever his index i might be. The communication cost of
this protocol is exactly the length of Ax, in bits. The deterministic one-way communication
complexity of this promise version of Index is k log n

k
, by the usual counting argument, so

this lower bound applies to the length of Ax.

3.3.2 The Plan

How can we push this idea further? We begin by assuming the existence of an m × n
matrix A, a recovery algorithm R, and a constant c ≥ 1 such that, for every x ∈ Rn, R
computes from Ax a vector x′ ∈ Rn that satisfies

‖x′ − x‖1 ≤ c · res(x). (2)

Our goal is to show that if m << k log n
k
, then we can solve Index with sublinear commu-

nication.
For simplicity, we assume that the recovery algorithm R is deterministic. The lower

bound continues to hold for randomized recovery algorithms that have success probability
at least 2

3
, but the proof requires more work; see Section 3.4.

10This method uses a sensing matrix A for which Ax will generally have Ω(m log n) = Ω(k log n) bits, so
this does not contradict out lower bound on the necessary length of Ax.
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3.3.3 An Aside on Bit Complexity

We can assume that the sensing matrix A has reasonable bit complexity. Roughly: (i) we
can assume without loss of generality that A has orthonormal rows (by a change of basis
argument); (ii) dropping all but the O(log n) highest-order bits of every entry has negligible
effect on the recovery algorithm R. We leave the details to the Exercises.

When every entry of the matrix A and of a vector x can be described in O(log n) bits
— equivalently, by scaling, is a polynomially-bounded integer — the same is true of Ax. In
this case, Ax has length O(m log n).

3.3.4 Redefining X

It will be useful later to redefine the set X. Previously, X was all 0-1 n-vectors with exactly
k 1’s. Now it will be a subset of such vectors, subject to the constraint that

dH(x,x′) ≥ .1k

for every distinct pair x,x′ of vectors in the set. Recall the dH(·, ·) denotes the Hamming
distance between two vectors — the number of coordinates in which they differ. Two distinct
0-1 vectors with k 1’s each have Hamming distance between 2 and 2k, so we’re restricting to
a subset of such vectors that have mostly disjoint supports. The following lemma says that
there exist sets of such vectors with size not too much smaller than the number of all 0-1
vectors with k 1’s; we leave the proof to the Exercises.

Lemma 3.2 Suppose k ≤ .01n. There is a set X of 0-1 n-bits vectors such that each x ∈ X
has k 1s, each distinct x,x′ ∈ X satisfy dH(x,x′) ≥ .1k, and log2 |X| = Ω(k log n

k
).

Lemma 3.2 is reminiscent of the fact that there are large error-correcting codes with large
distance. One way to prove Lemma 3.2 is via the probabilistic method — by showing that a
suitable randomized experiment yields a set with the desired size with positive probability.

Intuitively, our proof attempt in Section 3.2 used that, because each x ∈ X is exactly
k-sparse, it can be recovered exactly from Ax and thus there is no way to get confused
between distinct elements of X from their images. In the following proof, we’ll instead need
to recover “noisy” versions of the x’s — recall that our proof cannot rely only on the fact
that the matrix A performs exact recovery of exactly sparse vectors. This means we might
get confused between two different 0-1 vectors x,x′ that have small (but non-zero) Hamming
distance. The above redefinition of X, which is essentially costless by Lemma 3.2, fixes the
issue by restricting to vectors that all look very different from one another.

3.3.5 The Reduction

To obtain a lower bound of m = Ω(k log n
k
) rather than m = Ω(k), we need a more sophis-

ticated reduction than in Section 3.2.11 The parameters offer some strong clues as to what

11We assume from now on that k = o(n), since otherwise there is nothing to prove.
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the reduction should look like. If we use a protocol where Alice sends Ay to Bob, where A
is the assumed sensing matrix with a small number m of rows and y is some vector of Alice’s
choosing — perhaps a noisy version of some x ∈ X — then the communication cost will be
O(m log n). We want to prove that m = Ω(k log n

k
) = Ω(log |X|) (using Lemma 3.2). This

means we need a communication lower bound of Ω(log |X| log n). Since the communication
lower bound for Index is linear, this suggests considering inputs to Index where Alice’s
input has length log |X| log n, and Bob is given an index i ∈ {1, 2, . . . , log |X| log n}.

To describe the reduction formally, let enc : X → {0, 1}log2 |X| be a binary encoding of
the vectors of X. (We can assume that |X| is a power of 2.) Here is the communication
protocol for solving Index.

(1) Alice interprets her (log |X| log n)-bit input as log n blocks of log |X| bits each. For
each j = 1, 2, . . . , log n, she interprets the bits of the jth block as enc(xj) for some
xj ∈ X. See Figure 2.

(2) Alice computes a suitable linear combination of the xj’s:

y =

log n∑
i=1

αjxj,

with the details provided below. Each entry of y will be a polynomially-bounded
integer.

(3) Alice sends Ay to Bob. This uses O(m log n) bits of communication.

(4) Bob uses Ay and the assumed recovery algorithm R to recover all of x1, . . . ,xlog n.
(Details TBA.)

(5) Bob identifies the block j of log |X| bits that contains his given index i ∈ {1, 2, . . . , log |X| log n},
and outputs the relevant bit of enc(xj).

If we can implement steps (2) and (4), then we’re done: this five-step deterministic proto-
col would solve Index on log |X| log n-bit inputs using O(m log n) communication. Since
the communication complexity of Index is linear, we conclude that m = Ω(log |X|) =
Ω(k log n

k
).12

For step (2), let α ≥ 2 be a sufficiently large constant, depending on the constant c in
the recovery guarantee (2) that the matrix A and algorithm R satisfy. Then

y =

log n∑
i=1

αjxj. (3)

12Thus even the deterministic communication lower bound for Index, which is near-trivial to prove (Lec-
ture #2), has very interesting implications. See Section 3.4 for the stronger implications provided by the
randomized communication complexity lower bound.
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Figure 2: In the reduction, Alice interprets her log |X| log n-bit input as log n blocks, with
each block encoding some vector xj ∈ X.

Recall that each xj is a 0-1 n-vector with exactly k 1’s, so y is just a superposition of

log n scaled copies of such vectors. For example, the `1 norm of y is simply k
∑log n

j=1 α
j. In

particular, since α is a constant, the entries of y are polynomially bounded non-negative
integers, as promised earlier, and Ay can be described using O(m log n) bits.

3.3.6 Bob’s Recovery Algorithm

The interesting part of the protocol and analysis is step (4), where Bob wants to recover the
vectors x1, . . . ,xlog n encoded by Alice’s input using only knowledge of Ay and black-box
access to the recovery algorithm R. To get started, we explain how Bob can recover the last
vector xlog n, which suffices to solve Index in the lucky case where Bob’s index i is one of the
last log2 |X| positions. Intuitively, this is the easiest case, since xlog n is by far (for large α)
the largest contributor to the vector y Alice computes in (3). With y = αlog nxlog n + noise,
we might hope that the recovery algorithm can extract αlog nxlog n from Ay.

Bob’s first step is the only thing he can do: invoke the recovery algorithm R on the
message Ay from Alice. By assumption, R returns a vector ŷ satisfying

‖ŷ − y‖1 ≤ c · res(y),

where res(y) is the contribution to y’s `1 norm by its smallest n− k coordinates.
Bob then computes ŷ’s nearest neighbor x∗ in a scaled version of X under the `1 norm

— argminx∈X ‖ŷ − αlog nx‖1. Bob can do this computation by brute force.
The key claim is that the computed vector x∗ is indeed xlog n. This follows from a

geometric argument, pictured in Figure 3. Briefly: (i) because α is large, y and αlog nxlog n

are close to each other; (ii) since y is approximately k-sparse (by (i)) and since R satisfies the
approximate recovery guarantee in (2), ŷ and y are close to each other and hence αlog nxlog n

and ŷ are close; and (iii) since distinct vectors in X have large Hamming distance, for every
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Figure 3: The triangle inequality implies that the vector x∗ computed by Bob from ŷ must
be xlog n.

x ∈ X other than xlog n, αlog nx is far from xlog n and hence also far from ŷ. We conclude
that αlog nxlog n is closer to ŷ than any other scaled vector from X.

We now supply the details.

(i) Recall that y is the superposition (i.e., sum) of scaled versions of the vectors x1, . . . ,xlog n.
y − αlog nxlog n is just y with the last contributor omitted. Thus,

‖y − αlog nxlog n‖1 =

log n−1∑
j=1

αjk.

Assuming that α ≥ max{2, 200c}, where c is the constant that A and R satisfy in (2),
we can bound from above the geometric sum and derive

‖y − αlog nxlog n‖1 ≤
.01

c
kαlog n. (4)

(ii) By considering the n − k coordinates of y other than the k that are non-zero in
xlog n, we can upper bound the residual res(y) by the contributions to the `1 weight

by αx1, . . . , α
log n−1xlog n−1. The sum of these contributions is k

∑log n−1
j=1 αj, which we

already bounded above in (4). In light of the recovery guarantee (2), we have

‖ŷ − y‖1 ≤ .01kαlog n. (5)

(iii) Let x,x′ ∈ X be distinct. By the definition of X, dH(x,x′) ≥ .1k. Since x,x′ are both
0-1 vectors,

‖αlog nx− αlog nx′‖1 ≥ .1kαlog n. (6)

Combining (4) and (5) with the triangle inequality, we have

‖ŷ − αlog nxlog n‖1 ≤ .02kαlog n. (7)
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Meanwhile, for every other x ∈ X, combining (6) and (7) with the triangle inequality gives

‖ŷ − αlog nx‖1 ≥ .08kαlog n. (8)

Inequalities (7) and (8) imply that Bob’s nearest-neighbor computation will indeed recover
xlog n.

You’d be right to regard the analysis so far with skepticism. The same reason that Bob
can recover xlog n — because y is just a scaled version of xlog n, plus some noise — suggests
that Bob should not be able to recover the other xj’s, and hence unable to solve Index for
indices i outside of the last block of Alice’s input.

The key observation is that, after recovering xlog n, Bob can “subtract it out” without any
further communication from Alice and then recover xlog n−1. Iterating this argument allows
Bob to reconstruct all of x1, . . . ,xlog n and hence solve Index, no matter what his index i is.

In more detail, suppose Bob has already reconstructed xj+1, . . . ,xlog n. He’s then in a
position to form

z = αj+1xj+1 + · · ·+ αlog nxlog n. (9)

Then, y − z equals the first j contributors to y — subtracting z undoes the last log n − j
of them — and is therefore just a scaled version of xj, plus some relatively small noise (the
scaled x`’s with ` < j). This raises the hope that Bob can recover a scaled version of xj

from A(y − z). How can Bob get his hands on the latter vector? (He doesn’t know y, and
we don’t want Alice to send any more bits to Bob.) The trick is to use the linearity of A
— Bob knows A and z and hence can compute Az, Alice has already sent him Ay, so Bob
just computes Ay −Az = A(y − z)!

After computing A(y − z), Bob invokes the recovery algorithm R to obtain a vector
ŵ ∈ Rn that satisfies

‖ŵ − (y − z)‖1 ≤ c · res(y − z),

and computes (by brute force) the vector x ∈ X minimizing ‖ŵ − αjx‖1. The minimizing
vector is xj — the reader should check that the proof of this is word-for-word the same as our
recovery proof for xlog n, with every “log n” replaced by “j,” every “y” replaced by “y− z,”
and every “ŷ” replaced by “ŵ.”

This completes the implementation of step (4) of the protocol, and hence of the reduction
from Index to the design of a sensing matrix A and recovery algorithm R that satisfy (2).
We conclude that A must have m = Ω(k log n

k
), which completes the proof of Theorem 3.1.

3.4 Lower Bounds for Randomized Recovery

We proved the lower bound in Theorem 3.1 only for fixed matrices A and deterministic
recovery algorithms R. This is arguably the most relevant case, but it’s also worth ask-
ing whether or not better positive results (i.e., fewer rows) are possible for a randomized
recovery requirement, where recovery can fail with constant probability. Superficially, the
randomization can come from two sources: first, one can use a distribution over matrices
A; second, the recovery algorithm (given Ax) can be randomized. Since we’re not worrying
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about computational efficiency, we can assume without loss of generality that R is determin-
istic — a randomized recovery algorithm can be derandomized just be enumerating over all
of its possible executions and taking the majority vote.

Formally, the relaxed requirement for a positive result is: there exists a constant c ≥ 1,
a distribution D over m × n matrices A, and a (deterministic) recovery algorithm R such
that, for every x ∈ Rn, with probability at least 2/3 (over the choice of A), R returns a
vector x′ ∈ Rn that satisfies

‖x′ − x‖1 ≤ c · res(x).

The lower bound in Theorem 3.1 applies even to such randomized solutions. The obvious
idea is to follow the proof of Theorem 3.1 to show that a randomized recovery guarantee
yields a randomized protocol for Index. Since even randomized protocols for the latter
problem require linear communication, this would imply the desired lower bound.

The first attempt at modifying the proof of Theorem 3.1 has Alice and Bob using the
public coins to pick a sensing matrix A at random from the assumed distribution — thus, A
is known to both Alice and Bob with no communication. Given the choice of A, Alice sends
Ay to Bob as before and Bob runs the assumed recovery algorithm R. With probability at
least 2/3, the result is a vector ŷ from which Bob can recover xlog n. The issue is that Bob
has to run R on log n different inputs, once to recover each of x1, . . . ,xlog n, and there is a
failure probability of 1

3
each time.

The obvious fix is to reduce the failure probability by independent trials. So Alice and
Bob use the public coins to pick ` = Θ(log log n) matrices A1, . . . ,A` independently from the
assumed distribution. Alice sends A1y, . . . ,A`y to Bob, and Bob runs the recovery algorithm
R on each of them and computes the corresponding vectors x1, . . . ,x` ∈ X. Except with
probability O(1/ log n), a majority of the xj’s will be the vector xlog n. By a Union Bound
over the log n iterations of Bob’s recovery algorithm, Bob successfully reconstructs each of
x1, . . . ,xlog n with probability at least 2/3, completing the randomized protocol for Index.
This protocol has communication cost O(m log n log log n) and the lower bound for Index
is Ω(log |X| log n), which yields a lower bound of m = Ω(k log n

k
/ log log n) for randomized

recovery.
The reduction in the proof of Theorem 3.1 can be modified in a different way to avoid the

log log n factor and prove the same lower bound of m = Ω(k log n
k
) that we established for

deterministic recovery. The trick is to modify the problem being reduced from (previously
Index) so that it becomes easier — and therefore solvable assuming only a randomized
recovery guarantee — subject to its randomized communication complexity remaining linear.

The modified problem is called Augmented Index— it’s a contrived problem but has
proved technically convenient in several applications. Alice gets an input x ∈ {0, 1}`. Bob
gets an index i ∈ {1, 2, . . . , `} and also the subsequent bits xi+1, . . . , x` of Alice’s input. This
problem is obviously only easier than Index, but it’s easy to show that its deterministic
one-way communication complexity is ` (see the Exercises). With some work, it can be
shown that its randomized one-way communication complexity is Ω(`) (see [2, 4, 6]).

The reduction in Theorem 3.1 is easily adapted to show that a randomized approximate
sparse recovery guarantee with matrices with m rows yields a randomized one-way commu-
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nication protocol for Augmented Index with log |X| log n-bit inputs with communication
cost O(m log n) (and hence m = Ω(log |X|) = Ω(k log n

k
)). We interpret Alice’s input in the

same way as before. Alice and Bob use the public coins to a pick a matrix A from the assumed
distribution and Alice sends Ay to Bob. Bob is given an index i ∈ {1, 2, . . . , log |X| log n}
that belongs to some block j. Bob is also given all bits of Alice’s input after the ith one.
These bits include enc(xj+1), . . . , enc(xlog n), so Bob can simply compute z as in (9) (with
no error) and invoke the recovery algorithm R (once). Whenever A is such that the guar-
antee (2) holds for y − z, Bob will successfully reconstruct xj and therefore compute the
correct answer to Augmented Index.

3.5 Digression

One could ask if communication complexity is “really needed” for this proof of Theorem 3.1.
Churlish observers might complain that, due to the nature of communication complexity
lower bounds (like those last lecture), this proof of Theorem 3.1 is “just counting.”13 While
not wrong, this attitude is counterproductive. The fact is that adopting the language and
mindset of communication complexity has permitted researchers to prove results that had
previously eluded many smart people — in this case, the ends justifies the means.

The biggest advantage of using the language of communication complexity is that one
naturally thinks in terms of reductions between different lower bounds.14 Reductions can
repurpose a single counting argument, like our lower bound for Index, for lots of different
problems. Many of the more important lower bounds derived from communication complex-
ity, including today’s main result, involve quite clever reductions, and it would be difficult
to devise from scratch the corresponding counting arguments.
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