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1 Preamble

This class is mostly about impossibility results — lower bounds on what can be accom-
plished by algorithms. However, our perspective will be unapologetically that of an algo-
rithm designer.! We’ll learn lower bound technology on a “need-to-know” basis, guided by
fundamental algorithmic problems that we care about (perhaps theoretically, perhaps prac-
tically). That said, we will wind up learning quite a bit of complexity theory — specifically,
communication complexity — along the way. We hope this viewpoint makes this course and
these notes complementary to the numerous excellent courses, books [10, 11}, and surveys
(e.g. [12, 13, 6, 15]) on communication complexity.? The theme of communication complexity
lower bounds also provides a convenient excuse to take a guided tour of numerous models,
problems, and algorithms that are central to modern research in the theory of algorithms
but missing from many algorithms textbooks: streaming algorithms, space-time trade-offs in
data structures, compressive sensing, sublinear algorithms, extended formulations for linear
programs, and more.

Why should an algorithm designer care about lower bounds? The best mathematical
researchers are able to work on an open problem simultaneously from both sides. Even if
you have a strong prior belief about whether a given mathematical statement is true or false,
failing to prove one direction usefully informs your efforts to prove the other. (And for most
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us, the prior belief is wrong surprisingly often!) In algorithm design, working on both sides
means striving simultaneously for better algorithms and for better lower bounds. For exam-
ple, a good undergraduate algorithms course teaches you both how to design polynomial-time
algorithms and how to prove that a problem is N P-complete — since when you encounter
a new computational problem in your research or workplace, both are distinct possibili-
ties. There are many other algorithmic problems where the fundamental difficulty is not the
amount of time required, but rather concerns communication or information transmission.
The goal of this course is to equip you with the basic tools of communication complexity —
its canonical hard problems, the canonical reductions from computation in various models to
the design of low-communication protocols, and a little bit about its lower bound techniques
— in the service of becoming a better algorithm designer.

This lecture and the next study the data stream model of computation. There are some
nice upper bounds in this model (see Sections 4 and 5), and the model also naturally mo-
tivates a severe but useful restriction of the general communication complexity setup (Sec-
tion 7). We'll cover many computational models in the course, so whenever you get sick of
one, don’t worry, a new one is coming up around the corner.

2 The Data Stream Model

The data stream model is motivated by applications in which the input it best thought of as
a firehose — packets arriving to a network switch at a torrential rate, or data being generated
by a telescope at a rate of one exobyte per day. In these applications, there’s no hope of
storing all the data, but we’d still like to remember useful summary statistics about what
we've seen.

Alternatively, for example in database applications, it could be that data is not thrown
away but resides on a big, slow disk. Rather than incurring random access costs to the
data, one would like to process it sequentially once (or a few times), perhaps overnight,
remembering the salient features of the data in a limited main memory for real-time use.
The daily transactions of Amazon or Walmart, for example, could fall into this category.

Formally, suppose data elements belong to a known universe U = {1,2,...,n}. The
input is a stream x1, xs, ..., x,,, € U of elements that arrive one-by-one. Our algorithms will
not assume advance knowledge of m, while our lower bounds will hold even if m is known
a priori. With space ~ mlog, n, it is possible to store all of the data. The central question
in data stream algorithms is: what is possible, and what is impossible, using a one-pass
algorithm and much less than m logn space? Ideally, the space usage should be sublinear or
even logarithmic in n and m. We're not going to worry about the computation time used by
the algorithm (though our positive results in this model have low computational complexity,
anyway).

Many of you will be familiar with a streaming or one-pass algorithm from the following
common interview question. Suppose an array A, with length m, is promised to have a
magority element— an element that occurs strictly more than m/2 times. A simple one-pass
algorithm, which maintains only the current candidate majority element and a counter for it



— 80 O(log n+log m) bits — solves this problem. (If you haven’t seen this algorithm before,
see the Exercises.) This can be viewed as an exemplary small-space streaming algorithm.?

3 Frequency Moments

Next we introduce the canonical problems in the field of data stream algorithms: computing
the frequency moments of a stream. These were studied in the paper that kickstarted the
field [1], and the data stream algorithms community has been obsessed with them ever since.

Fix a data stream x,%9,...,2,, € U. For an element j € U, let f; € {0,1,2,...,m}
denote the number of times that j occurs in the stream. For a non-negative integer k, the
kth frequency moment of the stream is

jeu

Note that the bigger k is, the more the sum in (1) is dominated by the largest frequencies.
It is therefore natural to define

Fo = max fi
as the largest frequency of any element of U.

Let’s get some sense of these frequency moments. Fj is boring — since each data stream
element contributes to exactly one frequency f;, Fi = jep 7 1s simply the stream length m.
Fy is the number of distinct elements in the stream (we're interpreting 0° = 0) — it’s easy
to imagine wanting to compute this quantity, for example a network switch might want
to know how many different TCP flows are currently going through it. F,, is the largest
frequency, and again it’s easy to imagine wanting to know this — for example to detect a
denial-of-service attack at a network switch, or identify the most popular product on Amazon
yesterday. Note that computing F.,, is related to the aforementioned problem of detecting a
majority element. Finally, Fy =) jev 12 is sometimes called the “skew” of the data — it is
a measure of how non-uniform the data stream is. In a database context, it arises naturally
as the size of a “self-join” — the table you get when you join a relation with itself on a
particular attribute, with the f;’s being the frequencies of various values of this attribute.
Having estimates of self-join (and more generally join) sizes at the ready is useful for query
optimization, for example. We'll talk about F, extensively in the next section.?

It is trivial to compute all of the frequency moments in O(mlogn) space, just by storing
the z;’s, or in O(nlogm), space, just by computing and storing the f;’s (a log m-bit counter
for each of the n universe elements). Similarly, F} is trivial to compute in O(logm) space
(via a counter), and Fy in O(n) space (via a bit vector). Can we do better?

3Interestingly, the promise that a majority element exists is crucial. A consequence of the next lecture is
that there is no small-space streaming algorithm to check whether or not a majority element exists!

4The problem of computing F» and the solution we give for it are also quite well connected to other
important concepts, such as compressive sensing and dimensionality reduction.



Intuitively, it might appear difficult to improve over the trivial solution. For Fj, for ex-
ample, it seems like you have to know which elements you've already seen (to avoid double-
counting them), and there’s an exponential (in ) number of different possibilities for what
you might have seen in the past. As we’ll see, this is good intuition for deterministic algo-
rithms, and for (possibly randomized) exact algorithms. Thus, the following positive result
is arguably surprising, and very cool.’

Theorem 3.1 ([1]) Both Fy and F can be approzimated, to within a (1 & €) factor with
probability at least 1 — 9, in space

O ((e*(logn +logm)log 1) . (2)

Theorem 3.1 refers to two different algorithms, one for Fj and one for F». We cover the
latter in detail below. Section 5 describes the high-order bit of the Fj algorithm, which is a
modification of the earlier algorithm of [8], with the details in the exercises. Both algorithms
are randomized, and are approximately correct (to within (1 & €)) most of the time (except
with probability §). Also, the logm factor in (2) is not needed for the Fy algorithm, as you
might expect. Some further optimization are possible; see Section 4.3.

The first reason to talk about Theorem 3.1 is that it’s a great result in the field of
algorithms — if you only remember one streaming algorithm, the one below might as well
be the one.® You should never tire of seeing clever algorithms that radically outperform the
“obvious solution” to a well-motivated problem. And Theorem 3.1 should serve as inspiration
to any algorithm designer — even when at first blush there is no non-trivial algorithm for
problem in sight, the right clever insight can unlock a good solution.

On the other hand, there unfortunately are some important problems out there with no
non-trivial solutions. And it’s important for the algorithm designer to know which ones they
are — the less effort wasted on trying to find something that doesn’t exist, the more energy
is available for formulating the motivating problem in a more tractable way, weakening the
desired guarantee, restricting the problem instances, and otherwise finding new ways to make
algorithmic progress. A second interpretation of Theorem 3.1 is that it illuminates why such
lower bounds can be so hard to prove. A lower bound is responsible for showing that every
algorithm, even fiendishly clever ones like those employed for Theorem 3.1, cannot make
significant inroads on the problem.

4 Estimating F5: The Key Ideas

In this section we give a nearly complete proof of Theorem 3.1 for the case of F, = Zj U 12
estimation (a few details are left to the Exercises).

5The Alon-Matias-Szegedy paper [1] ignited the field of streaming algorithms as a hot area, and for this
reason won the 2005 Godel Prize (a “test of time”-type award in theoretical computer science). The paper
includes a number of other upper and lower bounds as well, some of which we’ll cover shortly.

SEither algorithm, for estimating Fy or for F,, could serve this purpose. We present the Fb estimation
algorithm in detail, because the analysis is slightly slicker and more canonical.
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4.1 The Basic Estimator

The high-level idea is very natural, especially once you start thinking about randomized
algorithms.

1. Define a randomized unbiased estimator of F3, which can be computed in one pass.
Small space seems to force a streaming algorithm to lose information, but maybe it’s
possible to produce a result that’s correct “on average.”

2. Aggregate many independent copies of the estimator, computed in parallel, to get an
estimate that is very accurate with high probability.

This is very hand-wavy, of course — does it have any hope of working? It’s hard to answer
that question without actually doing some proper computations, so let’s proceed to the
estimator devised in [1].

The Basic Estimator:”

1. Let h: U — {£1} be a function that associates each universe element with a random
sign. On a first reading, to focus on the main ideas, you should assume that h is a
totally random function. Later we’ll see that relatively lightweight hash functions are
good enough (Section 4.2), which enables a small-space implementation of the basic
ideas.

2. Initialize Z = 0.

3. Every time a data stream element j € U appears, add h(j) to Z. That is, increment
Z if h(j) = +1 and decrement Z if h(j) = —1.8

4. Return the estimate X = Z2.

Remark 4.1 A crucial point: since the function h is fixed once and for all before the data
stream arrives, an element j € U is treated consistently every time it shows up. That is, Z
is either incremented every time j shows up or is decremented every time j shows up. In the
end, element j contributes h(j)f; to the final value of Z.

First we need to prove that the basic estimator is indeed unbiased.

Lemma 4.2 For every data stream,

"This is sometimes called the “tug-of-war” estimator.
8This is the “tug of war,” between elements j with h(j) = +1 and those with h(j) = —1.



Proof: We have
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where in (3) we use linearity of expectation and the fact that h(j) € {£1} for every j, and
in (4) we use the fact that, for every distinct j, ¢, all four sign patterns for (h(j),h(f)) are
equally likely. H

Note the reason for both incrementing and decrementing in the running sum 2 — it
ensures that the “cross terms” h(j)h({)f;f, in our basic estimator X = Z? cancel out in
expectation. Also note, for future reference, that the only time we used the assumption that
h is a totally random function was in (4), and we only used the property that all four sign
patterns for (h(j), h(¢)) are equally likely — that h is “pairwise independent.”

Lemma 4.2 is not enough for our goal, since the basic estimator X is not guaranteed to
be close to its expectation with high probability. A natural idea is to take the average of
many independent copies of the basic estimator. That is, we’ll use ¢ independent functions
hi,ha, ... hy : U — {£1} to define estimates Xi,..., X;. On the arrival of a new data
stream element, we update all ¢ of the counters 71, ..., Z; appropriately, with some getting
incremented and others decremented. Our final estimate will be

1 t

Since the X;’s are unbiased estimators, so is Y (i.e., Es, 5, [Y] = F3). To see how quickly
the variance decreases with the number ¢ of copies, note that

_ Var [X]
Var[Y| = Var [— Z X] 2 Z Var[X o

where X denotes a single copy of the basic estimator. That is, averaging reduces the variance
by a factor equal to the number of copies. Unsurprisingly, the number of copies ¢ (and in
the end, the space) that we need to get the performance guarantee that we want is governed
by the variance of the basic estimator. So there’s really no choice but to roll up our sleeves
and compute it.




Lemma 4.3 For every data stream,
Var, [X] < 2F;.

Lemma 4.3 states the standard deviation of the basic estimator is in the same ballpark
as its expectation. That might sound ominous, but it’s actually great news — a constant
(depending on € and § only) number of copies is good enough for our purposes. Before
proving Lemma 4.3, let’s see why.

Corollary 4.4 For every data stream, with t = %,

Prp, . n[Y € (1£e) F]>1-4

Proof: Recall that Chebyshev’s inequality is the inequality you want when bounding the
deviation of a random variable from its mean parameterized by the number of standard
deviations. Formally, it states that for every random variable Y with finite first and second
moments, and every ¢ > 0,

Var[Y]

Pr]Y —E[Y]|>d < —;

(5)

Note that (5) is non-trivial (i.e., probability less than 1) once ¢ exceeds Y'’s standard devia-
tion, and the probability goes down quadratically with the number of standard deviations.
It’s a simple inequality to prove; see the separate notes on tail inequalities for details.

We are interested in the case where Y is the average of ¢ basic estimators, with variance
as in Lemma 4.3. Since we want to guarantee a (1 £ €)-approximation, the deviation ¢
of interest to us is €F». We also want the right-hand side of (5) to be equal to §. Using
Lemma 4.3 and solving, we get t = 2/¢%6.° W

We now stop procrastinating and prove Lemma 4.3.

Proof of Lemma 4.3: Recall that

Var[X] = E[X?] - E[)’(:l : (6)

=F5 by Lemma 4.2

Zooming in on the E[X?] term, recall that X is already defined as the square of the running
sum Z, so X2 is Z*. Thus,

E[X? =E (Zh(j)f]) . (7)

Expanding the right-hand side of (7) yields |U|* terms, each of the form
h(71)h(52)h(J3)h(ja) fir fio fis fis- (Remember: the h-values are random, the f-values are

9The dependence on % can be decreased to logarithmic; see Section 4.3.
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fixed.) This might seem unwieldy. But, just as in the computation (4) in the proof of
Lemma 4.2, most of these are zero in expectation. For example, suppose 7ji, Jo, J3, Jja are
distinct. Condition on the h-values of the first three. Since h(j4) is equally likely to be
+1 or -1, the conditional expected value (averaged over the two cases) of the corresponding
term is 0. Since this holds for all possible values of h(j1),h(j2),h(j3), the unconditional
expectation of this term is also 0. This same argument applies to any term in which some
element j € U appears an odd number of times. Thus, when the dust settles, we have

E[X?] = Zh ) f +6Zh fff (8)
gEU :1
= > f +6fofz,
jeu j<t

where the “6” appears because a given h(j)?h(€)?f7 f7 term with j < ¢ arises in (
different ways.
Expanding terms, we see that

F=Y e n
jeu j<t

and hence
E[X?] < 3F;.

Recalling (6) proves that Var[X]| < 2F}, as claimed. B

Looking back over the proof of Lemma 4.3, we again see that we only used the fact
that h is random in a limited way. In (8) we used that, for every set of four distinct universe
elements, their 16 possible sign patterns (under h) were equally likely. (This implies the
required property that, if j appears in a term an odd number of times, then even after
conditioning on the h-values of all other universe elements in the term, h(j) is equally likely
to be +1 or -1.) That is, we only used the “4-wise independence” of the function h.

4.2 Small-Space Implementation via 4-Wise Independent Hash
Functions

Let’s make sure we’re clear on the final algorithm.
1. Choose functions hy,...,hy : U — {£1}, where t = %.
2. Initialize Z; =0 fori =1,2,...,t
3. When a new data stream element j € U arrives, add h;(j) to Z; for every i = 1,2,...,t

4. Return the average of the Z?2’s.



Last section proved that, if the h;’s are chosen uniformly at random from all functions, then
the output of this algorithm lies in (1 4 €)F, with probability at least 1 — .

How much space is required to implement this algorithm? There’s clearly a factor of %,
since we're effectively running this many streaming algorithms in parallel, and each needs
its own scratch space. How much space does each of these need? To maintain a counter Z;,
which always lies between —m and m, we only need O(logm) bits. But it’s easy to forget
that we have to also store the function h;. Recall from Remark 4.1 the reason: we need to
treat an element j € U consistently every time it shows up in the data stream. Thus, once
we choose a sign h;(j) for j we need to remember it forevermore. Implemented naively, with
h; a totally random function, we would need to remember one bit for each of the possibly
Q(n) elements that we’ve seen in the past, which is a dealbreaker.

Fortunately, as we noted after the proofs of Lemmas 4.2 and 4.3, our entire analysis has
relied only on 4-wise independence — that when we look at an arbitrary 4-tuple of universe
elements, the projection of h on their 16 possible sign patterns is uniform. (Exercise: go
back through this section in detail and double-check this claim.) And happily, there are
small families of simple hash functions that possess this property.

Fact 4.5 For every universe U with n = |U|, there is a family H of 4-wise independent hash
functions (from U to {£1}) with size polynomial in n.

Fact 4.5 and our previous observations imply that, to enjoy an approximation of (1 =+ ¢)
with probability at least 1 — J, our streaming algorithm can get away with choosing the
functions hq, ..., h; uniformly and independently from H.

If you've never seen a construction of a k-wise independent family of hash functions with
k > 2, check out the Exercises for details. The main message is to realize that you shouldn’t
be scared of them — heavy machinery is not required. For example, it suffices to map the
elements of U injectively into a suitable finite field (of size roughly |U|), and then let H be
the set of all cubic polynomials (with all operations occurring in this field). The final output
is then 41 if the polynomial’s output (viewed as an integer) is even, and -1 otherwise. Such
a hash function is easily specified with O(logn) bits (just list its four coefficients), and can
also be evaluated in O(logn) space (which is not hard, but we won’t say more about it here).

Putting it all together, we get a space bound of

1

O 25 logm+ logn : 9)
€ N——" N——
v. counter  hash function
# of copies

4.3 Further Optimizations

The bound in (9) is worse than that claimed in Theorem 3.1, with a dependence on %

instead of log%. A simple trick yields the better bound. In Section 4.1, we averaged t
copies of the basic estimator to accomplish two conceptually different things: to improve the
approximation ratio to (14e¢), for which we suffered an % factor, and to improve the success

€



probability to 1 — 9, for which we suffered an additional %. It is more efficient to implement
these improvements one at a time, rather than in one shot. The smarter implementation
first uses &~ % copies to obtain an approximation of (1+¢) with probably at least 2 (say). To
boost the success probability from % to 1 — 9, it is enough to run ~ log% different copies of
this solution, and then take the median of their ~ log % different estimates. Since we expect
at least two-thirds of these estimates to lie in the interval (1 4 €)Fy, it is very likely that the
median of them lies in this interval. The details are easily made precise using a Chernoff
bound argument; see the Exercises for details.

Second, believe it or not, the logm term in Theorem 3.1 can be improved to loglogm.
The reason is that we don’t need to count the Z;’s exactly, only approximately and with high
probability. This relaxed counting problem can be solved using Morris’s algorithm, which
can be implemented as a streaming algorithm that uses O(e~2loglogm log %) space. See the
Exercises for further details.

5 Estimating Fj: The High-Order Bit

Recall that Fjy denotes the number of distinct elements present in a data stream. The high-
level idea of the Fj estimator is the same as for the F, estimator above. The steps are to
define a basic estimator that is essentially unbiased, and then reduce the variance by taking
averages and medians. (Really making this work takes an additional idea; see [3] and the
Exercises.)

The basic estimator for F — originally from [8] and developed further in [1] and [3] —
is as simple as but quite different from that used to estimate F,. The first step is to choose
a random permutation h of U.'® Then, just remember (using O(logn) space) the minimum
value of h(x) that ever shows up in the data stream.

Why use the minimum? One intuition comes from the suggestive match between the
idempotence of Fy and of the minimum — adding duplicate copies of an element to the
input has no effect on the answer.

Given the minimum h(z)-value in the data stream, how do we extract from it an estimate
of Iy, the number of distinct elements? For intuition, think about the uniform distribution
on [0,1] (Figure 1). Obviously, the expected value of one draw from the distribution is 1.
For two i.i.d. draws, simple calculations show that the expected minimum and maximum are
% and %, respectively. More generally, the expected order statistics of k i.i.d. draws split the
interval into k£ + 1 segments of equal length. In particular, the expected minimum is k:+r1 In
other words, if you are told that some number of i.i.d. draws were taken from the uniform
distribution on [0, 1] and the smallest draw was ¢, you might guess that there were roughly

1/c draws.
Translating this idea to our basic Fj estimator, if there are k distinct elements in a
data stream w1, ..., Z,,, then there are k different (random) hash values h(zx;), and we ex-

pect the smallest of these to be roughly |U|/k. This leads to the basic estimator X =

100r rather, a simple hash function with the salient properties of a random permutation.
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Figure 1: The expected order statistics of i.i.d. samples from the uniform distribution on the
unit interval are spaced out evenly over the interval.

|U|/(minf, h(x;)). Using averaging and an extra idea to reduce the variance, and medians
to boost the success probability, this leads to the bound claimed in Theorem 3.1 (without
the logm term). The details are outlined in the exercises.

Remark 5.1 You’d be right to ask if this high-level approach to probabilistic and approxi-
mate estimation applies to all of the frequency moments, not just Fy and F,. The approach
can indeed be used to estimate Fj, for all k. However, the variance of the basic estimators
will be different for different frequency moments. For example, as k grows, the statistic F}
becomes quite sensitive to small changes in the input, resulting in probabilistic estimators
with large variance, necessitating a large number of independent copies to obtain a good ap-
proximation. More generally, no frequency moment Fj with k& ¢ {0,1,2} can be computed
using only a logarithmic amount of space (more details to come).

6 Can We Do Better?

Theorem 3.1 is a fantastic result. But a good algorithm designer is never satisfied, and

always wants more. So what are the weaknesses of the upper bounds that we’ve proved so
far?

1. We only have interesting positive results for Fj and F, (and maybe F}, if you want to
count that). What about for k£ > 2 and k = co?

2. Our F, and F;, algorithms only approximate the corresponding frequency moment.
Can we compute it exactly, possibly using a randomized algorithm?

3. Our Fy and Fy algorithms are randomized, and with probability ¢ fail to provide a
good approximation. (Also, they are Monte Carlo algorithms, in that we can’t tell
when they fail.) Can we compute Fy or Fy deterministically, at least approximately?

4. Our Fy and F; algorithms use 2(logn) space. Can we reduce the dependency of the

11



space on the universe size?!!

5. Our Fy and F; algorithms use Q(e~2) space. Can the dependence on ¢! be improved?
The e~ 2 dependence can be painful in practice, where you might want to take ¢ = .01,
resulting in an extra factor of 10,000 in the space bound. An improvement to ~ e !,

for example, would be really nice.

Unfortunately, we can’t do better — the rest of this lecture and the next (and the exercises)
explain why all of these compromises are necessary for positive results. This is kind of
amazing, and it’s also pretty amazing that we can prove it without overly heavy machinery.
Try to think of other basic computational problems where, in a couple hours of lecture and
with minimal background, you can explain complete proofs of both a non-trivial upper bound
and an unconditional (independent of P vs. NP, etc.) matching lower bound.'?

7 One-Way Communication Complexity

We next describe a simple and clean formalism that is extremely useful for proving lower
bounds on the space required by streaming algorithms to perform various tasks. The model
will be a quite restricted form of the general communication model that we study later — and
this is good for us, because the restriction makes it easier to prove lower bounds. Happily,
even lower bounds for this restricted model typically translate to lower bounds for streaming
algorithms.

In general, communication complexity is a sweet spot. It is a general enough concept to
capture the essential hardness lurking in many different models of computation, as we’ll see
throughout the course. At the same time, it is possible to prove numerous different lower
bounds in the model — some of these require a lot of work, but many of the most important
ones are easier that you might have guessed. These lower bounds are “unconditional” —
they are simply true, and don’t depend on any unproven (if widely believed) conjectures like
P # NP. Finally, because the model is so clean and free of distractions, it naturally guides
one toward the development of the “right” mathematical techniques needed for proving new
lower bounds.

In (two-party) communication complexity, there are two parties, Alice and Bob. Alice
has an input x € {0,1}%, Bob an input y € {0,1}°. Neither one has any idea what the
other’s input is. Alice and Bob want to cooperate to compute a Boolean function (i.e., a
predicate) f : {0,1}* x {0,1}* — {0,1} that is defined on their joint input. We’ll discuss
several examples of such functions shortly.

For this lecture and the next, we can get away with restricting attention to one-way
communication protocols. All that is allowed here is the following:

1 This might seem like a long shot, but you never know. Recall our comment about reducing the space
dependency on m from O(logm) to O(loglogm) via probabilistic approximate counters.

120K, comparison-based sorting, sure. And we’ll see a couple others later in this course. But I don’t know
of that many examples!
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1. Alice sends Bob a message z, which is a function of her input x only.

2. Bob declares the output f(x,y), as a function of Alice’s message z and his input y
only.

Since we're interested in both deterministic and randomized algorithms, we’ll discuss both
deterministic and randomized 1-way communication protocols.

The one-way communication complexity of a Boolean function f is the minimum worst-
case number of bits used by any 1-way protocol that correctly decides the function. (Or for
randomized protocols, that correctly decides it with probability at least 2/3.) That is, it is

rrgn max{length (in bits) of Alice’s message z when Alice’s input is x},
X,y

where the minimum ranges over all correct protocols.

Note that the one-way communication complexity of a function f is always at most a,
since Alice can just send her entire a-bit input x to Bob, who can then certainly correctly
compute f. The question is to understand when one can do better. This will depend on the
specific function f. For example, if f is the parity function (i.e., decide whether the total
number of 1s in (x,y) is even or odd), then the 1-way communication complexity of f is 1
(Alice just sends the parity of x to Bob, who'’s then in a position to figure out the parity of

(x,¥))-

8 Connection to Streaming Algorithms

If you care about streaming algorithms, then you should also care about 1-way communica-
tion complexity. Why? Because of the unreasonable effectiveness of the following two-step
plan to proving lower bounds on the space usage of streaming algorithms.

1. Small-space streaming algorithms imply low-communication 1-way protocols.

2. The latter don’t exist.

Both steps of this plan are quite doable in many cases.

Does the connection in the first step above surprise you? It’s the best kind of statement
— genius and near-trivial at the same time. We’ll be formal about it shortly, but it’s worth
remembering a cartoon meta-version of the connection, illustrated in Figure 2. Consider
a problem that can be solved using a streaming algorithm S that uses space only s. How
can we use it to define a low-communication protocol? The idea is for Alice and Bob to
treat their inputs as a stream (x,y), with all of x arriving before all of y. Alice can feed
x into S without communicating with Bob (she knows x and S). After processing x, S’s
state is completely summarized by the s bits in its memory. Alice sends these bits to Bob.
Bob can then simply restart the streaming algorithm S seeded with this initial memory;,
and then feed his input y to the algorithm. The algorithm S winds up computing some
function of (x,y), and Alice only needs to communicate s bits to Bob to make it happen.
The communication cost of the induced protocol is exactly the same as the space used by
the streaming algorithm.
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Q(x; y)

Figure 2: Why a small-space streaming algorithm induces a low-communication one-way
protocol. Alice runs the streaming algorithm on her input, sends the memory contents of
the algorithm to Bob, and Bob resumes the execution of the algorithm where Alice left off
on his input.

9 The Disjointness Problem

To execute the two-step plan above to prove lower bounds on the space usage of streaming
algorithms, we need to come up with a Boolean function that (i) can be reduced to a
streaming problem that we care about and (ii) does not admit a low-communication one-
way protocol.

9.1 Disjointness Is Hard for One-Way Communication

If you only remember one problem that is hard for communication protocols, it should be
the Fproblem. This is the canonical hard problem in communication complexity, analogous
to satisfiability (SAT) in the theory of N P-completeness. We’ll see more reductions from
the Fproblem than from any other in this course.

In an instance of DISJOINTNESS, both Alice and Bob hold n-bit vectors x and y. We
interpret these as characteristic vectors of two subsets of the universe {1,2,...,n}, with the
subsets corresponding to the “1” coordinates. We then define the Boolean function DI1.SJ in
the obvious way, with DISJ(x,y) = 0 if there is an index i € {1,2,...,n} with z; = y; = 1,
and DISJ(x,y) = 1 otherwise.

To warm up, let’s start with an easy result.

Proposition 9.1 Fvery deterministic one-way communication protocol that computes the
function DISJ uses at least n bits of communication in the worst case.

That is, the trivial protocol is optimal among deterministic protocols.!> The proof follows
pretty straightforwardly from the Pigeonhole Principle — you might want to think it through
before reading the proof below.

Formally, consider any 1-way communication protocol where Alice always sends at most
n —1 bits. This means that, ranging over the 2" possible inputs x that Alice might have, she

13We'll see later that the communication complexity remains n even when we allow general communication
protocols.
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only sends 277! distinct messages. By the Pigeonhole Principle, there are distinct messages
x! and x? where Alice sends the same message z to Bob. Poor Bob, then, has to compute
DISJ(x,y) knowing only z and y and not knowing x — x could be x!, or it could be x?.
Letting ¢ denote an index in which x' and x? differ (there must be one), Bob is really in
trouble if his input y happens to be the ith basis vector (all zeroes except y; = 1). For then,
whatever Bob says upon receiving the message z, he will be wrong for exactly one of the
cases X = x! or x = x2. We conclude that the protocol is not correct.

A stronger, and more useful, lower bound also holds.

Theorem 9.2 Every randomized protocol™* that, for every input (x,y), correctly decides the

function DISJ with probability at least %, uses (n) communication in the worst case.

The probability in Theorem 9.2 is over the coin flips performed by the protocol (there is no
randomness in the input, which is “worst-case”). There’s nothing special about the constant
2 in the statement of Theorem 9.2 — it can be replaced by any constant strictly larger than

N[0

Theorem 9.2 is certainly harder to prove than Proposition 9.1, but it’s not too bad —
we'll kick off next lecture with a proof.!® For the rest of this lecture, we’ll take Theorem 9.2
on faith and use it to derive lower bounds on the space needed by streaming algorithms.

9.2 Space Lower Bound for F, (even with Randomization and
Approximation)

Recall from Section 6 that the first weakness of Theorem 3.1 is that it applies only to Fy
and Fy (and Fj is easy). The next result shows that, assuming Theorem 9.2, there is no
sublinear-space algorithm for computing F,,, even probabilistically and approximately.

Theorem 9.3 ([1]) Every randomized streaming algorithm that, for every data stream of
length m, computes F, to within a (1 £ .2) factor with probability at least 2/3 uses space
Q(min{m, n}).

Theorem 9.3 rules out, in a strong sense, extending our upper bounds for Fy, Fi, 5 to

all Fy. Thus, the different frequency moments vary widely in tractability in the streaming
model.'6

Proof of Theorem 9.3: The proof simply implements the cartoon in Figure 2, with the
problems of computing F., (in the streaming model) and DI1SJOINTNESS (in the one-way
communication model). In more detail, let S be a space-s streaming algorithm that for

4There are different flavors of randomized protocols, such as “public-coin” vs. “private-coin” versions.
These distinctions won’t matter until next lecture, and we elaborate on them then.

15 A more difficult and important result is that the communication complexity of DISJOINTNESS remains
Q(n) even if we allow arbitrary (not necessarily one-way) randomized protocols. We’ll use this stronger
result several times later in the course. We’ll also briefly discuss the proof in Lecture #4.

6For finite k strictly larger than 2, the optimal space of a randomized (1 + €)-approximate streaming
algorithm turns out to be roughly ©(n'~1/2¥) [2, 4, 9]. See the exercises for a bit more about these problems.
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every data stream, with probability at least 2/3, outputs an estimate in (1 + .2)F,. Now
consider the following one-way communication protocol P for solving the DISJOINTNESS
problem (given an input (x,y)):

1. Alice feeds into S the indices ¢ for which z; = 1; the order can be arbitrary. Since
Alice knows S and x, this step requires no communication.

2. Alice sends S’s current memory state o to Bob. Since S uses space s, this can be
communicated using s bits.

3. Bob resumes the streaming algorithm S with the memory state o, and feeds into S the
indices i for which y; = 1 (in arbitrary order).

4. Bob declares “disjoint” if and only if S’s final answer is at most 4/3.

To analyze this reduction, observe that the frequency of an index i € {1,2,...,n} in
the data stream induced by (x,y) is 0 if z; = y; = 0, 1 if exactly one of z;,y; is 1, and 2 if
x; = y; = 2. Thus, F, of this data stream is 2 if (x,y) is a “no” instance of Disjointness, and
is at most 1 otherwise. By assumption, for every “yes” (respectively, “no”) input (x,y), with
probability at least 2/3 the algorithm S outputs an estimate that is at most 1.2 (respectively,
at least 2/1.2); in this case, the protocol P correctly decides the input (x,y). Since P is a
one-way protocol using s bits of communication, Theorem 9.2 implies that s = 2(n). Since
the data stream length m is n, this reduction also rules out o(m)-space streaming algorithms
for the problem. W

Remark 9.4 (The Heavy Hitters Problem) Theorem 9.3 implies that computing the
maximum frequency is a hard problem in the streaming model, at least for worst-case inputs.
As mentioned, the problem is nevertheless practically quite important, so it’s important to
make progress on it despite this lower bound. For example, consider the following relaxed
version, known as the “heavy hitters” problem: for a parameter k, if there are any elements
with frequency bigger than m/k, then find one or all such elements. When k is constant,
there are good solutions to this problem: the exercises outline the “Mishra-Gries” algorithm,
and the “Count-Min Sketch” and its variants also give good solutions [5, 7].'7 The heavy
hitters problem captures many of the applications that motivated the problem of computing
F.

9.3 Space Lower Bound for Randomized Exact Computation of
FO and F2

In Section 6 we also criticized our positive results for Fy and F5 — to achieve them, we had
to make two compromises, allowing approximation and a non-zero chance of failure. The
reduction in the proof of Theorem 9.3 also implies that merely allowing randomization is not
enough.

1"This does not contradict Theorem 9.2 — in the hard instances of F., produced by that proof, all
frequencies are in {0, 1,2} and hence there are no heavy hitters.
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Theorem 9.5 ([1]) For every non-negative integer k # 1, every randomized streaming al-
gorithm that, for every data stream, computes F, exactly with probability at least 2/3 uses
space Q(min{n,m}).

The proof of Theorem 9.5 is almost identical to that of Theorem 9.2. The reason the
proof of Theorem 9.2 rules out approximation (even with randomization) is because Fj,
differs by a factor of 2 in the two different cases (“yes” and “no” instances of F'). For finite k,
the correct value of Fj will be at least slightly different in the two cases, which is enough to
rule out a randomized algorithm that is exact at least two-thirds of the time.!8

The upshot of Theorem 9.5 is that, even for Iy and F3, approximation is essential to
obtain a sublinear-space algorithm. It turns out that randomization is also essential —
every deterministic streaming algorithm that always outputs a (1 4 €)-estimate of F}, (for
any k # 1) uses linear space [1]. The argument is not overly difficult — see the Exercises for
the details.

10 Looking Backward and Forward

Assuming that randomized one-way communication protocols require 2(n) communication
to solve the DISJOINTNESS problem (Theorem 9.2), we proved that some frequency moments
(in particular, Fi,) cannot be computed in sublinear space, even allowing randomization and
approximation. Also, both randomization and approximation are essential for our sublinear-
space streaming algorithms for Fy and F5.

The next action items are:

1. Prove Theorem 9.2.

2. Revisit the five compromises we made to obtain positive results (Section 6). We've
showed senses in which the first three compromises are necessary. Next lecture we’ll
see why the last two are needed, as well.
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