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1 Subadditive Valuations

1.1 The Setup

In this lecture we study a scenario that generalizes almost all of the ones that we’ve studied
in the course.

Scenario #9:

• A set U of m non-identical items.

• Each bidder i has a private valuation vi : 2U → R+ that is subadditive, meaning that
for every pair of sets S, T ⊆ U ,

vi(S ∪ T ) ≤ vi(S) + vi(T ). (1)

As always, we also assume that every valuation satisfies vi(∅) = 0 and is monotone
(i.e., S ⊆ T implies vi(S) ≤ v(T )).

Subadditivity is yet another way to formalize the idea that items are not complements
— that getting some items don’t suddenly make other items more valuation. Of all the
articulations of this idea that we’ve seen, subadditivity is the most general; see Figure 1.

Proposition 1.1 The set of subadditive valuations strictly contains the set of XOS valua-
tions.
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Figure 1: Subadditive valuations are the most general valuation class we have seen.

Proof: For containment, fix an item set U . First, let v be an XOS valuation, meaning there
are additive valuations a1, . . . , ar on U such that

v(S) =
r

max
i=1

∑
j∈S

aij (2)

for every S. We show that v is subadditive. Fix subsets S, T ⊆ U . Since v is monotone, we
can assume that S and T are disjoint. Let a` determine the maximum in (2) for S∪T . Since
a` is additive, a`(S ∪ T ) = a`(S) + a`(T ). By (2), v(S) + v(T ) ≥ a`(S) + a`(T ), as desired.

We leave as an exercise a proof that the containment is strict. �

Welfare maximization for bidders with subadditive valuations appears to be strictly
harder than for bidders with submodular or XOS valuations. No constant-factor DSIC
mechanism for bidders with subadditive valuations is known. With a priori known val-
uations, the best polynomial-time approximation algorithm uses demand oracles and has
guarantee of 2 [3]. No simple constant-factor approximation algorithm is known. Subad-
ditive valuations are close to the most general valuation class for which computationally
tractable constant-factor approximations are known. What happens if just sell items using
simultaneous single-item auctions? What is the POA of S1A’s and S2A’s when bidder have
subadditive valuations?

1.2 Smoothness Gets Stuck

At this point in the course, you’ve been trained to immediately try to prove a suitable
smoothness condition. For subadditive valuations, however, smoothness arguments seem to
get stuck at a guarantee of Θ(1/ logm). To see why, recall that a smoothness condition
has the following form: for every valuation profile v, there exist hypothetical deviations
b∗1(v), . . . ,b∗n(v) such that, for every bid profile b, a certain inequality holds. In effect, the
deviations b∗1(v), . . . ,b∗n(v) are required to achieve some type of guarantee for worst-case
bidding behavior of the other bidders. With S2A’s with XOS valuations, for example, we
defined b∗i (v) by targeting the bundle S∗i (v) that i gets in an optimal allocation for v. By
“targeting” a bundle S we mean that the sum of i’s bids on items j ∈ S is comparable to
its value for S. The XOS assumption allows us to target a fixed bundle (like S∗i (v) without
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overbidding on any subsets of that bundle. Avoiding overbidding is crucial to obtaining
a utility guarantee (despite worst-case bidding behavior by others) in cases where, after
deviating to (b∗i ,b−i), the bidder i only receives a strict subset of the bundle S∗i (v) it was
targeting. When a valuation v is merely subadditive, targeting a specific bundle can require
overbidding on some subset of the bundle by a logm factor (see Exercises). For this reason,
extending the smoothness-based POA bounds for S2A’s and S1A’s from XOS to subadditive
valuations results in a loss of roughly logm in the bounds [1, 5].

1.3 A Direct Argument

We next show how to bypass the smoothness-based approach to prove the following remark-
able guarantees for simultaneous single-item auctions.

Theorem 1.2 ([4]) For every product valuation distribution over subadditive valuations:

(a) every Bayes-Nash equilibrium of a S1A has expected welfare at least 50% of the maxi-
mum possible;

(b) every Bayes-Nash equilibrium of a S2A that satisfies a no overbidding condition has
expected welfare at least 25% of the maximum possible.

We prove part (a); the proof of (b) is along the same lines, with some additional details.
Remarkably, the bound in (a) is as good as the best-known approximation algorithm for
welfare maximization with subadditive bidder valuations.

If we don’t prove a Bayes-Nash POA bound using a smoothness condition, then how
would we do it? Recall that a smoothness condition requires that the bid deviations
b∗1(v), . . . ,b∗n(v) be chosen independently of b — in effect, the same deviations are used
no matter which equilibrium we’re arguing about. If all we care about is a Bayes-Nash
POA bound and not the smoothness condition per se, then we’re free to choose a different
collection of bid deviations to bound the expected welfare of each equilibrium. This is how
the following analysis proceeds. A similar idea can be used to bound the POA of correlated
equilibria in the full-information model [2].

The following key lemma will substitute for a smoothness condition in the proof of The-
orem 1.2(a).

Lemma 1.3 In a S1A with item set U , fix a bidder i with subadditive valuation vi, a distri-
bution D over the bids b−i of the other bidders, a subset S ⊆ U . There exists a bid vector
b∗i such that

Eb−i∼D[ui(b
∗
i ,b−i)] ≥

1

2
· vi(S)− Eb−i∼D

[∑
j∈S

max
k 6=i

bkj

]
. (3)

When we apply Lemma 1.3, the distribution D will be σ−i(v−i) in a Bayes-Nash equilibrium
σ(v), and S will be i’s bundle in a hypothetical welfare-maximizing allocation. Note that
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the hypothetical deviation b∗i in Lemma 1.3 is a function of D (in addition to S), and in this
sense is not a smoothness condition. We proceed to the very neat proof.

Proof of Lemma 1.3: It is enough to show that a randomly chosen bid vector b∗i satisfies (3)
in expectation — this implies that there exists a choice of b∗i for which (3) holds.

We generate b∗i using the following randomized algorithm. First, choose a−i ∼ D. Sec-
ond, set

b∗ij =

{
maxk 6=i akj if j ∈ S

0 otherwise.
(4)

In effect, bidder i simulates the behavior of the other bidders under the bidding distribution
D, and bids on each j ∈ S as if it was the highest other bidder.

To lower bound the expected value (over b∗i ) of the left-hand side of (3), we consider the
expected payment and expected welfare of bidder i separately. Its expected payment (over
b∗i and b−i) is at most the expected sum of its bids (over b∗i ), which by definition is

Ea−i∼D

[∑
j∈S

max
k 6=i

bkj

]
,

which equals the final term of (3).
Next, by the symmetry of a−i and b−i, we claim that

Prb∗i ,b−i
[i wins set A in (b∗i ,b−i)] = Prb∗i ,b−i

[i wins set S \ A in (b∗i ,b−i)] (5)

for every A ⊆ S.1 This follows from the definition of b∗i : the items of S that i wins are
precisely those on which its sample a−i is bigger than b−i, and the realizations (a−i =

b
(1)
−i ,b−i = b

(2)
−i ) and (a−i = b

(2)
−i ,b−i = b

(1)
−i ) are equally likely for every pair b

(1)
−i ,b

(2)
−i of bid

vectors.2

Equation (5) suggests pairing up the contributions of complementary item sets when
computing i’s expected welfare. Formally, letting j∗ ∈ S be an arbitrary item of S, i’s
expected welfare (over b∗i and b−i) is∑
A⊆S

Prb∗i ,b−i
[i wins S \ A ] vi(A) =

∑
A : j∗∈A⊆S

Prb∗i ,b−i
[i wins set S \ A in (b∗i ,b−i)] (vi(A) + vi(S \ A))

≥ vi(S)
∑

A : j∗∈A⊆S

Prb∗i ,b−i
[i wins set S \ A in (b∗i ,b−i)]︸ ︷︷ ︸

Pr[i wins j∗]

=
1

2
· vi(S),

where the inequality follows from the subadditivity of vi the last equation follows the fact
that b∗j and maxk 6=i bkj are identically distributed.

1We can ignore items outside S that i wins (at price 0), with can only contribute additional expected
utility.

2For simplicity, we are ignoring the possibility of ties.
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Summarizing, we’ve exhibited a distribution over bids b∗i such that

Eb∗i ,b−i∼D[ui(b
∗
i ,b−i)] ≥

1

2
· vi(S)− Eb−i∼D

[∑
j∈S

max
k 6=i

bkj

]
.

Hence, there is a choice of b∗i satisfying (3), which proves the lemma. �

We now prove part (a) of Theorem 1.2. It proceeds similarly to our extension theorems
for Bayes-Nash equilibria for product distributions (based on the doppelganger trick), with
Lemma 1.3 substituting for a smoothness condition, although some of the details differ.

Proof of Theorem 1.2: Let σ denote an arbitrary Bayes-Nash equilibrium. As usual, to
minimize notation we write the following derivation for pure Bayes-Nash equilibria. Adding
an extra expectation over players’ random actions extends the derivation to mixed Bayes-
Nash equilibria.

First, we write

Ev∼F[welfare(σ(v))] = Ev∼F

[
n∑
i=1

ui(σ(v))

]
+ Ev∼F


n∑
i=1

pi(σ(v))︸ ︷︷ ︸
=

P
j∈U maxn

i=1(σij(vi))

 , (6)

where σij(vi) denotes bidders i’s bid on item j when its valuation is vi.
As always, the next step to derive a lower bound on each bidder’s equilibrium through a

judicious choice of a hypothetical deviation. Lemma 1.3 is an obvious tool for choosing a de-
viation. The distribution D over b−i in Lemma 1.3 naturally corresponds to the equilibrium
bids σ−i(v−i) of bidders other than i. But what about the set S? To relate the equilibrium
welfare to the optimal welfare, the natural choice of S is bundle i gets in a welfare-maximizing
allocation. But this does make sense: when bidder i contemplates deviations, it knows only
its own valuation vi and not the others v−i, so it is does not have enough information to
compute a welfare-maximizing allocation. As in our previous extension theorems, we salvage
this idea using the doppelganger trick.

Formally, for each bidder i and valuation vi, we define the (mixed) deviation b∗i according
to the following randomized algorithm:

1. Sample doppelganger valuations w ∼ F.3

2. Let S∗i (vi,w−i) denote the bundle i receives in a welfare-maximizing allocation for the
valuation profile (vi,w−i).

3. Bid b∗i (vi,w−i, σ−i(v−i)) as in Lemma 1.3, with target bundle S = S∗i (vi,w−i) and
opposing bid distribution D = {σ−i(v−i)}v−i∼F−i

.

3Since F is a product distribution, there is no need to condition on vi, and (vi,w−i) is distributed
according to F.
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Since σ is a Bayes-Nash equilibrium, for every i and vi, the unilateral deviation b∗i (vi,w−i, σ−i(v−i))
can only decrease i’s expected utility, where the expectation is over the randomness in others’
valuations and in i’s action:

Ev−i∼F−i
[ui(σ(v))] ≥ Ev−i∼F−i,w∼F[ui(b

∗
i (vi,w−i, σ−i(v−i)), σ−i(v−i))] (7)

≥ Ew∼F

[
1

2
vi(S

∗
i (vi,w−i))

]
− Ev−i∼F−i

 ∑
j∈S∗i (vi,w−i)

max
k 6=i

σkj(vk)

 ,(8)

where the second inequality follows from the guarantee provided by Lemma 1.3.
Next, we integrate the inequality (7)–(8) over vi ∼ Fi and sum over all the bidders i.

Consider the term Ew∼F[vi(S
∗
i (vi,w−i))] in (8). Since S∗i (vi,w−i) is i’s contribution to the

optimal welfare when the valuation profile is (vi,w−i), this term is i’s expected contribution
to the optimal welfare when its valuation in vi. After integrating over v−i ∼ Fi, the term
becomes i’s contribution to the expected optimal welfare. Thus, summing over all bidders i
yields the following:

Ev∼F

[
n∑
i=1

ui(σ(v))

]
≥ 1

2
· Ev∼F[OPT welfare(v)]−

n∑
i=1

Ev,w∼F

 ∑
j∈S∗i (vi,w−i)

max
k 6=i

σkj(vk)

 .
If you think about it, we are free to replace the sum over j ∈ S∗i (vi,w−i) by a sum over j ∈
S∗i (w). After all, the summands maxk 6=i σkj(vk) are just numbers (for fixed v−i), independent
of i’s valuation, and (vi,w−i) and (wi,w−i) are identically distributed. This, with linearity
of expectation, gives

Ev∼F

[
n∑
i=1

ui(σ(v))

]
≥ 1

2
· Ev∼F[OPT welfare(v)]− Ev,w∼F

 n∑
i=1

∑
j∈S∗i (w)

max
k 6=i

σkj(vk)

 . (9)

The bundles {S∗i (w)}ni=1 are by definition disjoint for every w, so

n∑
i=1

∑
j∈S∗i (w)

max
k 6=i

σkj(vk) ≤
∑
j∈U

n
max
k=1

σkj(vk)

=
n∑
i=1

pi(σ(v)) (10)

for every w and v, where the equality follows from the first-price payment rule. Substitut-
ing (10) into (9) and integrating out over w yields

Ev∼F

[
n∑
i=1

ui(σ(v))

]
≥ 1

2
· Ev∼F[OPT welfare(v)]− Ev∼F

[
n∑
i=1

pi(σ(v))

]
, (11)

and combining (11) with (6) proves the theorem. �
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Lemma 1.3 can be modified to hold for S2A’s as well [4]. Combining with the proof
above and imposing the same no overbidding condition as in Lecture #15 yields part (b)
of Theorem 1.2. The POA bound is only 1

4
because, with second-price payment rules, the

revenue in (6) cannot be canceled with sum of winning bids in (11) (which might be much
larger).
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