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1 Recall: Multi-Unit Auctions

The last several lectures focused on simultaneous single-item auctions, with both second-
price and first-price payment rules. The toolbox we developed for bounding the POA in
auctions can also be applied to many other auction formats. In this lecture we revisit an old
setting (from Lecture #4) and derive some new insights via this toolbox.

Recall the setting of multi-unit auctions with downward-sloping valuations.

Scenario #4:

• A set m identical items.

• Each bidder i has a private marginal valuation µi(j) for a jth item. Thus, bidder i’s
total valuation for ` units is vi(`) :=

∑`
j=1 µi(j).

• Valuations are downward-sloping, meaning that µi(1) ≥ µi(2) ≥ · · · ≥ µi(m) for every
i. Thus, additional units provide diminishing returns.

Recall that this is the special case of gross substitutes valuations (Lecture #5) where
all items are identical. Recall also that, in this scenario, the welfare-maximizing allocation
can be computed using a simple greedy algorithm. First, identify the set of the top m
µi(j)’s. Since the bids are downward-sloping, each bidder i will have a prefix of its first xi
reported marginal valuations in this set. A straightforward exchange argument shows that
giving xi items to each bidder i maximizes the welfare with respect to the reported marginal
valuations.
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As always, the welfare-maximizing allocation rule can be extended to a dominant-strategy
incentive compatible (DSIC) mechanism by charging VCG payments. Our concern back in
Lecture #4 was the clinching auction, an ascending ex post incentive-compatible (EPIC)
implementation of the VCG mechanism (both allocation and payments). Recall that these
mechanisms charge different prices for different items. For example, in the clinching auction,
there is a current price that rises over time, and each bidder clinches items at successively
higher prices.

We’ve already previously discussed the uniform price mechanism for multi-unit auctions,
which naively equates supply (i.e., m) with demand. Formally, the allocation rule of this
mechanism is the same as that of the VCG mechanism — award the m items to the highest
m bi(j)’s — and charge a common price for every item, equal to the (m + 1)th highest
bi(j). Another way to think about the uniform price mechanism is that it implements
the lowest Walrasian equilibrium (i.e., market-clearing price) with respect to the reported
valuations. The Walrasian equilibria in this scenario correspond to the prices between the
mth highest and the (m+ 1)th highest bi(j)’s. Note that, in contrast to simultaneous single-
item auctions, the bid space of the uniform price mechanism is the same as the valuation
space (all downward-sloping valuations) — its “simplicity” is of a different type.

The uniform price mechanism and the VCG mechanism coincide when all bidders are
unit-demand or when all bidders are additive. Even with a mixture of unit-demand and
additive bidders, however, the uniform price mechanism uses a simpler payment rule than
the VCG mechanism, and as a result the DSIC guarantee is lost. Let’s recall a concrete
illustration of this.

Example 1.1 (Demand Reduction) Suppose there are m = 2 identical items and n = 2
bidders. Suppose the true valuations are µ1(1) = µ1(2) = 3, µ2(1) = 2, and µ2(2) = 0. Thus,
the first bidder is additive and the second bidder is unit demand. Suppose the second bidder
bids truthfully. If the first bidder also bids truthfully, then it wins both items at a price of
2 each, and its utility is 2. (By contrast, the VCG mechanism would only charge 2 for both
items combined.) The first bidder is better off bidding b1(1) = 3 and b1(2) = 0 — it gets
one item for free, for a utility of 3.

Example 1.1 illustrates demand reduction — the first bidder misreports to receive fewer items
but at a much cheaper price. It shows that the uniform pricing rule is not DSIC — in effect,
it has the wrong payment rule for the welfare-maximization allocation.

We have now have the tools to understand the consequences of adopting the simpler
uniform-price payments rule — to analyze the POA of the uniform-price mechanism.

2 The POA of Demand Reduction

We prove the following guarantee for the uniform price mechanism.
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Theorem 2.1 ([1, 2]) For every (possibly correlated) prior distribution F over downward-
sloping valuations, the expected welfare of every Bayes-Nash equilibrium that satisfies a no
overbidding condition is at least 25% that of the expected optimal welfare.

As in our previous Bayes-Nash POA examples, Theorem 2.1 boils down to proving the
following smoothness condition: for every valuation profile µ, there exist hypothetical devi-
ations b∗1(µ1), . . . ,b

∗
n(µn) such that, for every bid profile b,

n∑
i=1

ui(b
∗
i (µi),b−i) ≥

1

2
·OPT welfare(µ)−

n∑
i=1

xi(b)∑
j=1

bi(j), (1)

where xi(b) denotes the number of items that bidder i receives in an outcome b. The proof
that (1) implies Theorem 2.1 is exactly the same as the one we used to prove a POA bound
of 1

2
for S2A’s in Lecture #15, and we leave those details as an exercise. The no overbidding

condition is the same as the one for S2A’s, stating that the expected welfare of every bidder
i is at most the expected value of its winning bids:

Eµ∼F

xi(σ(v))∑
j=1

µi(j)

 ≤ Eµ∼F

xi(σ(v))∑
j=1

bi(j)

 .
We obtain a bound of 1

4
here, as opposed to the 1

2
bound for S2A’s, because of the extra

coefficient of 1
2

on the first term of the right-hand side of (1). We obtain this bound for all
correlated valuation distributions, as opposed to merely all product valuation distributions
for S2A’s, because in (1) each hypothetical deviation b∗i (µi) depends only on µi’s valuation,
and not on the full valuation profile µ.1

Proving (1) boils down to exhibiting good hypothetical deviations b∗1(µ1), . . . ,b
∗
n(µn).

Let’s try adapt the ideas that have worked in the past. For S2A’s (Lecture #14), we defined
b∗i as follows: compute the optimal allocation for the full valuation profile, and go “all in”
for the bundle of items that i gets in this allocation. In the present context, this initial idea
translates to the deviation

b∗ij =

{
µi(j) if j ≤ x∗i (µ)

0 otherwise,
(2)

where x∗i (µ) denotes the number of items that i gets in a welfare-maximizing allocation for
the valuation profile µ. Leaving aside the criticism that this deviation demands on the full
profile µ, and not just the valuation µi, there is a more basic problem: there are bid profiles b

1Recall the discussion of the different extension theorems at the end of last lecture. When a hypothetical
deviation depends only on the deviator’s valuation, it can execute it directly. The corresponding extension
theorem relies only linearity of expectation and applies to all correlated distributions. When a hypothetical
deviation depends also on others’ valuations, which are unknown to the deviator, we resort to the “dop-
pelganger trick” and consider executing the deviation with randomly sampled valuations. The resulting
extension theorem applies only to product valuation distributions.

We’ve only seen good POA bounds for correlated valuation distributions once before, for first-price single-
item auctions (Lecture #16).
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Figure 1: Winning bids for the strategy b∗i = µi/2.

such that (1) does not hold. Intuitively, this choice of b∗i is too aggressive, and the left-hand
side of (1) might be zero while the right-hand side is arbitrarily large (see Exercises). We
encountered a similar setback when we studied S1A’s last lecture. The obvious second idea
is to reuse the solution for S1A’s from last lecture: just cut the definition in (2) in half.
This choice of b∗1, . . . , b

∗
n satisfies (1), as the following derivation shows, but we’re still left

with the drawback that these deviations depend on the full valuation profile µ, and so are
useful only for deriving Bayes-Nash POA bounds with respect to product distributions. Our
final definition of b∗1, . . . , b

∗
n takes its cue from our single-item first-price auction analysis,

and implements the “bid half your value” idea in the obvious way: set b∗i = µi/2 for every
i.2 We now proceed to verify (1) for the deviations, which then implies Theorem 2.1 via the
appropriate extension theorem.

Fix an arbitrary bid vector b. Consider a term ui(b
∗
i ,b−i) = ui(

µi

2
,b−i) on the left-hand

side of (1). Some prefix of i’s bids are in the top m (out of the m µi(j)
2

’s and the (n − 1)m
bk(j)’s for k 6= i), and the rest are not. The price of each item that i gets equals the (m+1)th
highest bid. See also Figure 1.

For technical convenience, we imagine that there is an (n+ 1)th bidder who submits the
bids bi that bidder i originally submitted in b. Bidder i’s utility in the new outcome (b∗i ,b)
is only lower than in (b∗i ,b−i) — the two effects of the new m bids by the extra bidder are
to cause bidder i to lose some items that it previously won (for nonnegative utility), and to
increase the price of the items that i still wins.

For each bidder i, let x∗i and xi denote the number of items that i gets in an optimal
allocation for the valuation profile µ and in the outcome (b∗i ,b), respectively. Each item j

that bidder i wins in (b∗i ,b) contributes at least µi(j)− µi(j)
2

= µi(j)
2

to its utility, where we
are using that the price for an item is always at most the winning bid for it. Thus, in the
happy event that xi ≥ x∗i , we have

ui(
µi

2
,b−i) ≥ 1

2

x∗i∑
j=1

µi(j). (3)

2Given that this deviation is so simple, why didn’t we just do it for simultaneous single-item auctions?
The reason is that for S2A’s and S1A’s, vi/2 is not generally an allowable bid. Each bidder is required
to bid separately on each item — equivalently, each is forced to declare an additive bid despite having a
non-additive valuation.

4



The right-hand side of the inequality is i’s contribution to OPT welfare(µ), so this lower
bound is even stronger than we we’re shooting for in (1). When xi < x∗i , we can still write

ui(
µi

2
,b−i) ≥ 1

2

xi∑
j=1

µi(j) +

x∗i∑
j=xi+1

(
1

2
µi(j)− b(m−j+1)

)
, (4)

where b(`) denote the ` biggest of the bk(j)’s. The first term on the right-hand side of (4) is,
by (3), a lower bound on i’s utility in the outcome (µi

2
,b). We claim that each summand in

the second term is nonpositive; this verifies (4). To see this, observe that none of bidder i’s

bids µi(xi+1)
2

, . . . ,
µi(x

∗
i )

2
are amongst the top m bids. Thus, even the smallest (x∗i − xi) of the

top m− xi bk(j)’s are bigger.
For convenience, we simplify the inequality in (4) and make it even more true by sub-

tracting additional terms from the right-hand side:

ui(
µi

2
,b−i) ≥ 1

2

x∗i∑
j=1

µi(j)−
x∗i∑
j=1

b(m−j+1). (5)

Write X∗
i for

∑
k≤i x

∗
i . We complete the verification of (1) by summing over all bidders i

and manipulating the final term; we derive

n∑
i=1

ui(
µi

2
,b−i) ≥ 1

2
OPT welfare(µ)−

n∑
i=1

x∗i∑
j=1

b(m−j+1)

≥ 1

2
OPT welfare(µ)−

n∑
i=1

X∗
i∑

j=X∗
i−1+1

b(m−j+1)

=
1

2
OPT welfare(µ)−

m∑
j=1

b(m−j+1). (6)

Since the final terms of (1) and (5) are both equal to the sum of the m highest bk(j)’s, this
verifies (1) (and implies Theorem 2.1).

The POA bound in Theorem 2.1 can be extended in several ways [1, 2]. For example,
the bound of 1

4
extends to the case where both the valuation space and the bid space are the

set of gross substitutes valuations (Lecture #5), where the mechanism outputs a Walrasian
equilibrium with respect to the reported valuations.3 This POA bound can be interpreted
as a welfare guarantee for the venerable Kelso-Crawford auction. As noted in Lecture #5,
straightforward bidding in that auction leads to a (fully efficient) Walrasian equilibrium, but
is not generally optimal for players. This POA bound of 1

4
limits the damage of strategic

behavior in the Kelso-Crawford auction when bidders have GS valuations and do not overbid.

3This requires generalizing the arguments in (3)–(6), but this is not overly difficult given all the structure
of GS valuations that we identified in several previous lectures.
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