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1 Introduction to Part IV

With this lecture we commence the fourth part of the course. In the last two parts we took
incentive constraints, like DSIC or BIC, as a hard constraint, and subject to this designed
the best mechanisms possible. Most of the mechanisms discussed were quite complex —
interesting as proofs of concept of what is possible in principle, but not suitable for actual
use. This part of the course insists on simple auction formats as a hard constraint, and seeks
conditions under which they perform well. That is, we seek auctions with the following two
properties.

1. The auction format should be simple.

2. The equilibria should be good (e.g., near-optimal welfare).

Here, when we speak of “simplicity,” we’re only referring to the description and imple-
mentation of the auction itself. As we’ll see, intelligently participating in such an auction
need not be simple. Contrast this with DSIC mechanisms, which are trivial for bidders. Even
in BIC mechanism, the optimal strategy for a bidder (direct revelation) is trivial, as long as
the bidder believes in the prior distribution and that other bidders are bidding truthfully.
In the “simple” auction we study in the next several lecture, it is not at all clear what the
equilibria are.

In the second property above, “equilibria” could mean a few different things. In this
lecture, as a warm-up, we’ll focus on pure Nash equilibria of full-information games. Bayes-
Nash equilibria are better motivated in auction settings, however, and we’ll take them up in
subsequent lectures.
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2 Simultaneous Second-Price Auctions (S2A)

2.1 The Auction Format

We next introduce our first “simple” auction format. Let U denote a set of m non-identical
items.

Simultaneous Second-Price Auctions (S2A)

1. Each bidder i submits a bid bij for each item j.

2. Each item j is sold separately via a second-price auction — the highest bidder for the
item wins it, at a price equal to the second-highest bid.

One way to think about a S2A is simply as selling off the items of U on eBay at the same
time, with each item in its own single-item auction.

Another way to think about a S2A is as the VCG mechanism in the special case in which
every bidder has an additive valuation — i.e., bidder i has private values vi1, . . . , vim for
singletons and in general vi(S) =

∑
j∈S vij. In this case, setting bij = vij for every j is a

dominant strategy for every bidder i, and if all bidders follows these dominant strategies,
then the outcome of the auction has full welfare.

It’s more interesting to study the performance of a S2A when bidders’ valuations need not
be additive — presumably the auction’s performance deteriorates as bidders’ valuations be-
come increasingly non-additive, and we’d like to understand this precisely. For concreteness,
let’s return to the scenario of bidders with submodular valuations.

Scenario #6:

• Each bidder i has a private valuation vi : 2U → R+ that is submodular, meaning that
for every pair of sets S ⊆ T ⊆ U and item j,

vi(T ∪ {j})− vi(T ) ≤ vi(S ∪ {j})− vi(S). (1)

As always, we also assume that every valuation satisfies vi(∅) = 0 and is monotone
(i.e., S ⊆ T implies vi(S) ≤ v(T )).

We’ve mentioned in passing that there are constant-factor polynomial-time approxima-
tion algorithms for welfare maximization with submodular valuations, and that there is no
known DSIC mechanism with these properties. How good are the equilibria of a S2A in this
setting?

For a relatively rich class of valuations like Scenario #6, a S2A is fundamentally different
than the mechanisms we’ve been discussing thus far. Keep in mind that a bidder with a
submodular valuation effectively possesses 2m−1 private parameters, one for each non-empty
bundle of goods. A S2A only gives a bidder the vocabulary to articulate m numbers. Thus,
“direct revelation” doesn’t even make sense in an S2A with non-additive valuations. We also
don’t think of the valuations as being “input” to the mechanism in any sense. For equilibria
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to make sense, however, one should think of a bidder as being able to answer demand queries
with respect to its valuation.

Figuring out how to bid in a S2A is not easy; see also the discussion in Lecture #8 of
CS364A. For example, imagine that you just one item, and you don’t care which one. How
should you bid? Should you go all-in on a single item? Or should you place low bids on
numerous items, hoping to get one for a bargain? A bidder in a S2A must hedge the risks
of acquiring too many item — all of which must be paid for, even if only one is desired —
versus the risk of acquiring none.

2.2 No Overbidding Conditions

Recall that the price of anarchy (POA) is defined as the ratio in objective function value
(here, welfare) of the worst equilibrium and an optimal outcome. A drawback of second-price
auction formats is the presence of “bluffing” equilibria — low-welfare equilibria caused by
overbidding.

Example 2.1 (Overbidding Yields Low Welfare-Equilibria) Consider a single-item Vick-
rey auction with two bidders with valuations v1 = 1 and v2 = ε for ε > 0 arbitrarily small.
Consider the full-information game induced by the Vickrey auction. The bid profile with
b1 = 0 and b2 = 1 is a pure Nash equilibrium. The second bidder clearly does not want to
deviate. For the first bidder, if the bids high enough to win the item, it has to pay 1 and
therefore continues to receive zero utility.

The bad pure Nash equilibrium in Example 2.1 is more of an annoyance than a fatal
flaw in the auction format. The second bidder is highly exposed: if the first bidder changes
its bid to 1− ε, for example, the second bidder winds up with significantly negative utility.
For this reason, the relevance of such equilibria is questionable.1 For this reason, we’ll prove
welfare bounds only for pure Nash equilibria that satisfy a “no overbidding” assumption.

We use the following notation. We denote a bid vector by b = (b1, . . . ,bn), where each
bi is itself an m-vector, indexed by U . We use Si(b) to denote the items won by bidder i —
that is, the items on which it is the highest bidder. We use pj(b) to denote the price paid
by the winner of item j — that is, the second-highest bid for j.

Definition 2.2 (Weak No Overbidding (WNO)) The bid vector b satisfies weak no
overbidding (WNO) if ∑

j∈Si(b)

bij ≤ vi(Si(b)) (2)

for every bidder i.

That is, no bidder bids more than its value for the bundle of goods that it wins. Definition 2.2
is badly violated in Example 2.1 — the second bidder wins an item for which it has value ε
with a bid of 1.

1With only one item, something stronger is true: overbidding in a Vickrey auction is dominated by
bidding one’s true valuation.
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The following stronger version of Definition 2.2 is also worth noting. Today’s results
apply with either definition.

Definition 2.3 (Strong No Overbidding (SNO))

(a) The bid vector bi of bidder i satisfies strong no overbidding (SNO) if∑
i∈S

bij ≤ vi(S) (3)

for every subset S ⊆ U .

(b) A bid profile b is satisfies strong no overbidding (SNO) if every constituent bid vector
bi does.

There are two interpretations of our bounds for pure Nash equilibria that satisfy no
overbidding. The first is that each bidder i simply does not consider overbidding — its
strategy space consists only of bid vectors that satisfy SNO. In this case, every equilibrium
obviously satisfies SNO (and WNO). In the second interpretation, bidders can bid whatever
they want; some equilibria will suffers from overbidding, other not.2 The bounds we give
will apply to all equilibria that satisfy no overbidding (the WNO condition is sufficient).

3 The Price of Anarchy in S2A with Submodular Val-

uations

Could it be that, with no overbidding, every pure Nash equilibrium in a S2A with bidders
with submodular valuations is fully efficient? The following example establishes a limit on
what we can hope for.

Example 3.1 (POA Can Be 1
2
) Consider two bidders and a set U = {x, y} of two items.

Both bidders are unit-demand (and hence submodular). The first really wants x but will
settle for y if need be: v1({x}) = v1(U) = 2 and v1({y}) = 1. The second bidder is the
opposite: v1({y}) = v1(U) = 2 and v1({x}) = 1. The optimal allocation clearly has welfare
4 (giving x to the first bidder and y to the second). There are also pure Nash equilibria that
yield this outcome. The price of anarchy, however, is determined by the worst equilibrium
(with no overbidding). Consider the bid profile with b1x = 0, b1y = 1, b2x = 1, and b2y = 0.
This profile satisfies the SNO condition (Definition 2.3). Each bidder gets its less desired
item for free in this profile, so each has utility 1. If a bidder deviates to win the item it
really wants, it has to pay the other bidders’ bid (1) and thus its utility does not increase.
This bad pure Nash equilibrium has welfare 2, so that POA in this example is at most 1

2
.

The main result of this lecture is matching positive result.

2It is harder for a bid profile to be an equilibrium in this second interpretation, because there is a larger
set of potentially profitable unilateral deviations.
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Theorem 3.2 ([1]) If every bidder i has a submodular valuation vi, and b is a pure Nash
equilibrium of a S2A that satisfies weak no overbidding, then the welfare

∑n
i=1 vi(Si(b)) of

the allocation under b is at least 50% of the maximum possible.

For comparison, recall that there are constant-factor polynomial-time approximation algo-
rithms for welfare-maximization with bidders submodular valuations, but no such DSIC
mechanisms are known. It is remarkable that the equilibria of such a simple auction for-
mat are competitive with state-of-the-art approximation algorithms. To be fair, comparing
equilibria with polynomial-time approximation algorithms can be an “apples vs. oranges”
discussion, since equilibria are not always easy to compute.

Theorem 3.2 is stated only for pure Nash equilibria. Such equilibria need not exist in
general games, although they are guaranteed to exist (while also respecting the WNO or SNO
condition) in S2As with submodular valuations. More interesting are bounds for Bayes-Nash
equilibria and other more equilibrium concepts; we’ll prove these in subsequent lectures.

3.1 Warm-Up: Unit-Demand Bidders

We begin by proving Theorem 3.2 for the special case of unit-demand valuations. Recall
that it’s hard to figure out what to bid, and what equilibria look like, even in this special
case. Also, recall from Example 3.1 that, even with these valuations, the worst-case POA in
S2As is no better than 1

2
. Proving a matching positive result already requires most of the

ideas needed for the general case, but with less notation.
In CS364A, we introduced a template for proving bounds on the price of anarchy.

1. Given an arbitrary pure Nash equilibrium (PNE) b — in this case, one that also
satisfies a no-overbidding condition — the PNE hypothesis is invoked once per player
i, with a hypothetical deviation suggested by the optimal outcome, to derive a lower
bound on i’s equilibrium utility.

2. The n inequalities on individuals’ equilibrium utilities are summed over the players.
This gives a relationship between the equilibrium and optimal welfares, modulo an
additional function of the equilibrium and an optimal outcome.

3. The entangled term is related back to the only two quantities we care about, the
equilibrium and optimal welfares.

4. Solve for the POA.

This same template is useful for auctions games such as S2As. The primary new challenge
in auction games is the level of indirection between players’ actions and the ensuing outcome.
The welfare objective function is defined on allocations, and players affect the allocation
indirectly through bids. In particular, there are many different bid profiles that induce a
welfare-maximizing allocation — which one should we single out for the purpose of deriving
lower bounds on bidders’ equilibrium utilities?
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With unit-demand valuations, there is an intuitive way to proceed. Let b be a PNE that
satisfies the WNO condition. Fix an optimal allocation; since bidders are unit-demand, we
can assume that each bidder i received at most one item in it, denoted j∗(i). We then define
the hypothetical deviation b∗i for bidder i by

b∗ij =

{
vij if j = j∗(i)
0 otherwise.

Intuitively, in b∗i , bidder i goes all-in for the item j∗(i) that it receives in the optimal
allocation. This deviation satisfies the SNO condition (Definition 2.3(a)).

Because b is a PNE, the fact that bidder i bids bi instead of going all-in for j∗(i) via b∗I
implies that bi nets it higher utility:

vi(Si(b))−
∑

j∈Si(b)

pj(b)︸ ︷︷ ︸
≥0

≥ vi(Si(b
∗
i ,b−i))−

∑
j∈Si(b∗i ,b−i)

pj(b
∗
i ,b−i). (4)

This corresponds to the first step of our template for deriving POA bounds.
We next simplify the inequality (4). On the left-hand side, since price are nonnegative, we

can throw out the second term. On the right-hand side, by the definition of b∗i , only the good
j∗(i) matters. If vij > maxk 6=i bkj, then bidder i wins the item j∗(i) in the bid profile (b∗i ,b−i)
at a price of maxk 6=i bkj; if not, then bidder i loses the item and pays nothing. In any event,
the contribution of item j∗(i) to the right-hand side of (4) is at least vij∗(i)−maxk 6=i bkj∗(i) ≥
vij∗(i) −maxnk=1 bkj∗(i). Other items contribute nothing (we can ignore the edge case where i
wins additional items with a bid of 0). Combining these observations, the following inequality
is only weaker than (4):

vi(Si(b)) ≥ vij∗(i) −
n

max
k=1

bkj∗(i). (5)

Next, as per the second step in our analysis template, we sum (5) over the bidders i:

n∑
i=1

vi(Si(b))︸ ︷︷ ︸
welfare of b

≥
n∑
i=1

vij∗(i)︸ ︷︷ ︸
OPT welfare

−
n∑
i=1

n
max
k=1

bkj∗(i). (6)

The third step is to related the “entangled term”
∑n

i=1 maxnk=1 bkj∗(i) to the only two
quantities we care about, the optimal and equilibrium welfares. In this case, we can directly
bound this term from above by the equilibrium welfare. Precisely:

n∑
i=1

n
max
k=1

bkj∗(i) ≤
n∑
i=1

∑
j∈Si(b)

n
max
k=1

bkj (7)

=
n∑
i=1

∑
j∈Si(b)

bij (8)

≤
n∑
i=1

vi(Si(b)), (9)
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where (7) follows from the facts that every item is allocated at most once in the optimal
solution and exactly once in b, equation (8) follows from the fact that i is the highest bidder
on every item j ∈ Si(b) that it wins in b, and inequality (9) follows from the assumption
that b satisfies the WNO condition (2).

For the fourth and final step of the analysis template, we combine (6) and (9) and
rearrange to derive that the welfare of b is at least that of the maximum possible. This
complete the proof of the POA bound for bidders with unit-demand valuations.

3.2 Submodular and XOS Bidders

We now proceed to the general case of Theorem 3.2, with bidders with arbitrary submodular
valuations. The main steps of the proof are the same as for the unit-demand special case.
The key challenge is how to implement the very first step. A unit-demand bidder i only wins
one item j∗(i) in an optimal allocation, so it’s easy to construct a hypothetical deviation in
which i goes all out for j∗(i). With general submodular valuations, a bidder i might receive
a bundle Si of items — what hypothetical deviation constitutes going all out for Si? How
should the valuation vi(Si) be distributed amongst i’s bids for the items of Si?

The following lemma provides an elegant solution to this challenge. It shows that every
submodular function can be represented as a maximum of additive valuations. The repre-
sentation can be exponentially large, but we will only use this representation for the sake of
analysis.

Lemma 3.3 If vi is a submodular valuation on the item set U , then there exist additive
valuations a1

i , . . . , a
r
i on U such that, for every S ⊆ U ,

vi(S) =
r

max
`=1

{∑
j∈S

a`ij

}
. (10)

For example, if vi is a unit-demand valuation with singleton values vi1, . . . , vim, then vi
is the maximum of m additive valuations a1

i , . . . , a
m
i , where

a`ij =

{
vij if ` = j
0 otherwise.

Proof of Lemma 3.3: We define m! additive valuations, one for each ordering π of the items
of U . For such a π, we set

aπij = vi(S
π
j ∪ {j})− vi(Sπj ),

where Sπj is the set of items that precede j in π. In words, we add the items of U to the
empty set one-by-one according to the order π, and set aπij to the increase in i’s valuation
when the item j is added.

Fix a set S ⊆ U . To prove (10), we show that one of the additive valuations agrees with
vi on S and that the rest only underestimate it. We show the second statement first. Fix an
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arbitrary ordering π of U , and write S = {1, 2, . . . , `}, with j denoting the jth item of S in
the ordering π. Then,

aπi (S) =
∑
j∈S

aπij

=
∑
j∈S

(
vi(S

π
j ∪ {j})− vi(Sπj )

)
≤

∑
j∈S

(vi({1, 2, . . . , j})− vi({1, 2, . . . , j − 1}))

= vi(S)− vi(∅) = vi(S),

where the inequality follows from submodularity (1). (Note that Sπj certainly includes all of
{1, 2, . . . , j − 1}.) When π is an ordering of U in which all of the items of S come first (in
arbitrary relative order), the inequality is trivially an equality. Since S was arbitrary, the
proof is complete. �

The converse of Lemma 3.3 does not hold. That is, the class of valuations representable
as maxima of additive valuations is strictly larger than the class of submodular valuations
(see Exercises). The former valuations are called XOS (for “exclusive or of or singletons”)
or fractionally subadditive valuations (see Exercises). As we’ll see, Theorem 3.2 holds more
generally for bidders with fractionally subadditive valuations.

Proof of Theorem 3.2: Let b be a pure Nash equilibrium that satisfies weak no-overbidding
(Definition 2.2). Fix a welfare-maximizing allocation, which awards the items S∗i to each
bidder i. By Lemma 3.3, for each bidder i we choose an additive valuation a∗i that satisfies

vi(S
∗
i ) =

∑
j∈S∗i

a∗ij (11)

and, for every S ⊆ U ,

vi(S) ≥
∑
j∈S

a∗ij. (12)

For bidder i, we use the hypothetical deviation

b∗ij =

{
a∗ij if j ∈ S∗i
0 otherwise.

Intuitively, in b∗i , bidder i goes all-in for the bundle S∗i that is receives in the optimal
allocation. This deviation satisfies the SNO condition (Definition 2.3(a)).

We now follow the proof for the unit-demand special case. Because b is a pure Nash
equilibrium,

vi(Si(b))−
∑

j∈Si(b)

pj(b)︸ ︷︷ ︸
≥0

≥ vi(Si(b
∗
i ,b−i))−

∑
j∈Si(b∗i ,b−i)

pj(b
∗
i ,b−i). (13)
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We can throw out the second term on the left-hand side to get an only weaker inequality.
On the right-hand side, our additive lower bound a∗i on vi essentially lets us get away with
analyzing each item of S∗i separately. More formally, for each j ∈ S∗i , either a∗ij ≥ maxk 6=i bkj
(so bidder i wins j at the price maxk 6=i bkj) or not. If bidder i’s valuation vi was precisely
the additive valuation a∗i , each item j ∈ S∗i would contribute at least

a∗ij −max
k 6=i

bkj ≥ a∗ij −
n

max
k=1

bkj

to its utility. Since i’s valuation is at least as large as a∗i (12), the ensuing sum over items∑
j∈S∗i

(
a∗ij −

n
max
k=1

bkj

)
remains a legitimate lower bound on i’s utility on the right-hand side of (13). Summarizing,
and discarding any contributions to the right-hand size of (13) by items outside of S∗i (which
can only be won at price 0), we have

vi(Si(b)) ≥
∑
j∈S∗i

(
a∗ij −

n
max
k=1

bkj

)
. (14)

Summing (5) over the bidders i, we have

n∑
i=1

vi(Si(b))︸ ︷︷ ︸
welfare of b

≥
n∑
i=1

vi(S
∗
i )︸ ︷︷ ︸

OPT welfare

−
n∑
i=1

∑
j∈S∗i

n
max
k=1

bkj. (15)

We bound the “error term” as in the unit-demand case:

n∑
i=1

n
max
k=1

∑
j∈S∗i

bkj ≤
n∑
i=1

∑
j∈Si(b)

n
max
k=1

bkj (16)

=
n∑
i=1

∑
j∈Si(b)

bij (17)

≤
n∑
i=1

vi(Si(b)), (18)

where (16) follows from the facts that every item is allocated at most once in the optimal
solution and exactly once in b, equation (17) follows from the fact that i is the highest bidder
on every item j ∈ Si(b) that it wins in b, and inequality (18) follows from the assumption
that b satisfies the WNO condition (2). Rearranging terms completes the proof. �

Theorem 3.2 and its proof extend easily to a parameterized version of the WNO condition.
As long as every bidder bids at most γ times its value for the set it receives at equilibrium, the
equilibrium welfare is at least 1/(γ + 1) times that of an optimal allocation (see Exercises).
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