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1 Introduction

Thus far, we’ve studied four scenarios that admit tractable auctions that maximize wel-
fare subject to strong incentive guarantees. The first two were simple enough that English
auctions did the trick. The last two scenarios — unit-demand valuations with non-identical
items, and downward-sloping valuations with identical items — were not so simple. While we
got everything we wanted, we had to work to get it, and the two solutions — the Crawford-
Knoer (CK) auction and Ausubel’s clinching auction — don’t really resemble each other.

This lecture introduces the gross substitutes condition, which generalizes all four of the
scenarios we’ve seen thus far. This condition captures the “frontier of tractability” for a
surprisingly wide range of properties, and we’ll only have time to touch on a couple of them.
In this lecture, we’ll motivate the condition as necessary for auctions in the spirit of the CK
auction to plausibly work, and we’ll see that it more generally represents a natural limit for
the guaranteed existence of Walrasian equilibria. Next lecture, we study the computational
complexity of welfare maximization (and hence the VCG mechanism), where again gross
substitutes valuations represent the most general class of preferences for which strong positive
results are possible.

2 A General Valuation Model

The most general welfare-maximization problem we’ll consider in this course is the following.

• There is a set U of m non-identical goods.
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• Each bidder i = 1, 2, 3 . . . , n has a private valuation vi(S) for each bundle S ⊆ U of
goods that it might receive.1

– Assumption #1: vi(∅) = 0.

– Assumption #2: “free disposal,” meaning the monotonicity condition that vi(S) ≤
vi(T ) whenever S ⊆ T .

This is a very general model, certainly general enough to encompass the four scenarios we’ve
look at thus far. It will be come clear over the next several lectures that additional conditions
are required for interesting positive results.

The next section motivates the gross substitutes condition as one under which a natural
auction “works,” meaning terminates with a Walrasian equilibrium. Walrasian equilibria,
introduced first for unit-demand valuations in Lecture #2, have an analogous definition in
the general model, with the notion of a “favorite item” replaced with a “favorite bundle.”
Precisely, the demand Di(q) of a bidder i at a price vector q is the set of its favorite bundles:
argmax{vi(S) −

∑
j∈S q(j)}S⊆U , with the empty set allowed. An allocation (S1, . . . , Sn) is

a bundle Si ⊆ U for each bidder i such that each item j appears in at most one of these
bundles. A Walrasian equilibrium (WE) is a nonnegative price vector q on the items and an
allocation (S1, . . . , Sn) such that:

(WE1) Each bidder i is matched to a favorite bundle

S ∈ argmax

{
vi(S)−

∑
j∈S

q(j)

}
S⊆U

, (1)

with the empty set S = ∅ is allowed.

(WE2) An item j ∈ U is unsold only if q(j) = 0.

3 The Kelso-Crawford Auction

We next give an extension of the CK auction, by Kelso and Crawford (KC) [5], for non-unit-
demand bidders. It is important that such bidders can bid on more than one item at once,
and can also bid for new items even if some items are already assigned to them. Like in CK
auction, we disallow bid withdrawals — the only way a bidder can become unassigned to an
item is by some other bidder outbidding it.

Kelso-Crawford (KC) Auction:

1. Initialize the price of every item j to q(j) = 0.

2. For every bidder i, initialize the set Si of items assigned to i to ∅.
1This is a lot of private parameters. We’ll address complexity and representation issues when we need

to, in the next lecture.
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3. while (TRUE):

(a) Ask each bidder for their favorite subset of items not assigned to them, given the
items they already have and the current prices — an arbitrary set Ti in

argmax
T⊆U\Si

{vi(Si ∪ T )− qε(Si ∪ T )} ,

where
qε(Si ∪ T ) =

∑
j∈Si

q(j) +
∑
j∈T

(q(j) + ε).

(b) If Ti = ∅ for all bidders i, then halt with the current allocation (S1, . . . , Sn) and
prices q.

(c) Otherwise, pick an arbitrary bidder i with Ti 6= ∅:

i. Si ← Si ∪ Ti;

ii. for all k 6= i, Sk ← Sk \ Ti;

iii. for j ∈ Ti, q(j)← q(j) + ε.2

In the special case of unit-demand bidders, the KC auction is identical to the CK auction.
For bidders with general valuations, bidding sincerely in the KC auction can be a disaster.

Example 3.1 Suppose there are two items U = {A, B} and two bidders, with v1(S) = 3
if S = U and otherwise, and v2(S) = 2 is S 6= ∅ and 0 otherwise. The first bidder is
“single-minded” in that it only wants one good if it gets the other. The second bidder is
unit-demand.

What happens in the CK auction? Suppose in the first iteration we let the first bidder
bid. It wants both goods (at price 0). In the second iteration, the second bidder will take
one of the two goods, say the first one, bumping up its price to ε. In the third iteration,
the first bidder will take the good back, increasing the price to 2ε. The next two iterations
repeat this cycle with the second good, raising its price to 2ε. Every 4 iterations the price
of both goods go up by 2ε.

Eventually, the price of both goods exceeds 3
2
. At this point, the first bidder would prefer

to drop out of the auction. Recall that the KC auction does not allow bid withdrawals,
however, so this option is not available. The first bidder has to choose between owning both
goods at a price slightly higher than 3

2
(for slightly negative utility) or one good at this

price (for utility roughly −3
2
); the former option is obviously better. So, the cycle continues

until the price of both goods reaches 2, at which point the second bidder gives up. The KC
auction concludes with the first bidder getting both goods, at a total price of roughly 4, for
a utility of roughly -1.

2Unless j was previously unassigned (so i is the first bidder on it), in which case the price can stay at 0.
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Remark 3.2 The dilemma faced by the first bidder in Example 3.1 occurs frequently in
real auctions, such as auctions for wireless spectrum licenses, and is known as the “exposure
problem.” The first bidder’s preferences exhibit “complements” or “synergies” between the
goods, and the KC auction offers no way of expressing this fact. In real-world auctions,
bidders vulnerable to the exposure problem tend to bid very conservatively to avoid the
disastrous outcome in Example 3.1. The design of richer auction formats that allow for the
expression of complements — without introducing new opportunities for harmful strategic
behavior — has been a central concern of the economics literature on combinatorial auctions
over the past 10+ years.

It is obvious in Example 3.1 that sincere bidding is not any kind of best response. But
the same issue applies even in our last scenario, multi-unit auctions with downward-sloping
valuations (due to demand reduction). Something more serious is going on in Example 3.1:
even assuming sincere bidding, the auction does not result in a Walrasian equilibrium (since
bidder 1 gets negative utility).

4 The Gross Substitutes Condition

A red flag was raised in Example 3.1 when the price of both items reaches 3
2
: the first bidder

wanted to relinquish one of its goods — that is, no preferred bundle of D1(q) included
the item already assigned to it — but this was forbidden by the auction format. Such an
event would seem to preclude convergence to a WE. What conditions on a valuation would
guarantee that such an event could not occur? Informally, if a bidder i is assigned to the
items Si at some point in the KC auction — meaning i bid on them at some point in the
past — then bidder i should still want them, in the sense that there is a preferred bundle
at the current prices that includes all of Si. The gross substitutes condition is simply the
precise articulation of this idea.

Definition 4.1 (Gross Substitutes) A valuation vi defined on item set U satisfies the
gross substitutes (GS) condition if and only if the following condition holds. For every price
vector p, every set S ∈ Di(p), and every price vector q ≥ p, there is a set T ⊆ U with

(S \ A) ∪ T ∈ Di(q),

where A = {j : q(j) > p(j)} is the of items whose prices have increased (in q relative to p).

In Definition 4.1, S should be thought of as the items that i wants at some iteration at the
prices p, S\A as the items that have since been reassigned to other bidders (at higher prices),
and T as the new goods that i wants at the current prices q, given that it still possess the
items at S ⊆ A at the original prices p. Asserting that (S \A)∪T is a preferred bundle (i.e.,
lies in Di(q)) is tantamount to saying that i does not want to relinquish any of the items
S \ A that it still retains. Conversely, any failure of the GS condition is an opportunity for
the KC auction to go awry: if bidder I bids on the items S at prices p, is outbid by other
bidder on the items of S ∩ A, and has no set T available so that (S \ S) ∪ T is a preferred
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Figure 1: The hierarchy of the scenarios we’ve studied so far.

bundle at the new prices q, then the KC auction’s preclusion of bid withdrawals prevents
bidder i from acquiring a preferred bundle, which in turn rules out convergence to a WE.

The valuation of the first bidder in Example 3.1 does not meet the GS condition. For
example, at the price vector (1, 1) the bidder’s favorite bundle is U , while at the price vector
(3, 1), the bidder’s favorite bundle is ∅, even though the price of the second item has not
increased.

All four scenarios that we’ve studied thus far are special cases of gross substitutes valua-
tions (Figure 1). With non-identical items and additive valuations, GS holds because a bidder
want an item if and only if its valuation for that item is at least its price, independent of its
values and the prices for other items. With non-identical items and unit-demand bidders, we
effectively proved the GS condition when we proved that the CK auction converges to an ap-
proximate WE: if an item is a bidder’s favorite and only the prices of other items go up, then
the item remains the bidder’s favorite. Multi-unit auctions with downward-sloping valua-
tions correspond, in the present language, to a symmetric valuation function (which depends
on S only through |S|) with decreasing differences (vi(|S|+1)−vi(|S|) ≤ vi(|S|)−vi(|S|−1)).
Such valuations satisfy the GS condition because, intuitively, losing items only makes the
retained items more valuable. For a new example, define a k-unit valuation as one with the
form

vi(S) = max
T⊆S : |T |≤k

∑
j∈T

vij, (2)

where the vij’s are bidder i’s valuations for single items. That is, given a bundle S of items,
the bidders throws up all but its k favorites. Such a valuation remains GS if a concave
nondecreasing function is applied to the sum in (2); see the exercises.

We next make precise the intuition that the GS condition is the one under which the KC
auction converges to a WE.

Theorem 4.2 If all bidders have gross substitutes valuations and bid sincerely, then the
Kelso-Crawford auction terminates at a mε-Walrasian equilibrium.3

3In a δ-approximate WE, unsold items have price 0 and every bidder gets a bundle that yields utility
within mε of its preferred bundles.
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Proof: Unsold items have price 0 by the same argument used in the CK auction for unit-
demand bidders: since bidders only relinquish an item when outbid by another bidder, an
item goes unsold only if no bidder even bid on it, in which case its final price is 0.

With GS valuations, we claim the KC auction maintains the following invariant:

for every bidder i, Si is contained in a set of Di(q
ε), where qε(j) equals q(j) for j ∈ Si

and (q(j) + ε) for j /∈ Si.

That is, no bidder ever wants to withdraw its bids for the items it possesses. The base case,
where Si = ∅ for each i, is trivial.

For the inductive step, consider bidder i. If i is chosen to bid in this iteration, then the
inductive hypothesis ensure that there is a set Ti ⊆ U \ Si such that Si ∪ Ti ∈ Di(q

ε. Thus,
after this iteration i will possess a set in Di(q

ε). Otherwise, let Ai be the last set of items
that i bid on. By the inductive hypothesis, Bi was a preferred bundle at the prices at the
time. In the subsequent iterations, including the current one, the items reassigned from i to
other bidders have had their price increased, while the prices of the items in Si have stayed
the same. By the definition of the GS condition, Si belongs to a set of Di(q

ε), completing
the inductive step.

By the invariant and the KC auction’s stopping rule, at termination Si ∈ Di(q
ε) for every

bidder i. Since the final prices q differ from qε by at most ε on each good, the KC auction
terminates with an mε-WE. �

Taking the limit as ε→ 0 gives the following remarkable consequence of the KC auction.

Corollary 4.3 If valuations v1, . . . , vn satisfy the gross substitutes condition, then there ex-
ists a Walrasian equilibrium.

Proof: (Sketch.) Consider a sequence of 1
N

-WE for N = 1, 2, 3, . . ., which exists by The-
orem 4.2. Some allocation (S1, . . . , Sn) repeats infinitely often. The corresponding price
vectors lies in a compact set, bounded by the valuations, so they have an accumulation
point. This point, together with (S1, . . . , Sn), is a Walrasian equilibrium. �

Thus far we’ve been taking for granted the existence of Walrasian equilibrium. In many
cases, however, WE do not exist.

Example 4.4 Recall Example 4.4, with two items U = {A, B} and two bidders, with
v1(S) = 3 if S = U and otherwise, and v2(S) = 2 is S 6= ∅ and 0 otherwise. We claim that
there is no Walrasian equilibrium in this instance. One way to see this is to first note that the
First Welfare Theorem from Lecture #2 — stating that only welfare-maximizing allocations
participate in WE — continues to hold for the general valuation model of Section 2. The
first bidder gets both goods in such an allocation. For q to be a corresponding WE price
vector, the total price of the two items must be at least 3. But then there is an item with
price less than 2, in which case the second bidder does not receive a preferred bundle.
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Example 4.4 absolves the KC auction in Example 3.1 — the reason it failed to compute a
WE is because none exist.

More generally, the gross substitutes condition is in some sense the frontier for the guar-
anteed existence of WE. The following result takes some work to prove, and we won’t do so
here.

Theorem 4.5 ([4]) If vi is a valuation that does not satisfy the GS condition, there are
unit-demand (and hence GS) valuations v−i such that v admits no Walrasian equilibrium.

The KC auction naturally motivated the gross substitutes condition, and Theorem 4.5
gives evidence that it is a fundamental concept. It is not merely the boundary beyond which
the KC auctions fails to work (meaning does not converge to a WE), but the boundary
beyond which WE do not generally exist.4 Over the next couple of lectures we’ll see a very
different sense in which GS valuations are a frontier of tractability: they are essentially the
most general valuations for which we can compute a welfare-maximizing allocation (and
hence implement the VCG mechanism) in polynomial time.

5 EPIC Ascending Auctions

To clarify, we’ve said nothing so far about incentive-compatibility. Recall that even in the
special case of scenario #4 — multi-unit auctions with downward-sloping valuations — we
gave an explicit example in which the VCG payments were strictly smaller than all WE
prices, to prevent incentives for demand reduction. This contrasted with scenario #3 —
unit-demand bidders — where VCG payments coincided with the smallest WE price vector.
Since a welfare-maximizing EPIC auction must simulate the VCG outcome — both its
allocation and its payments (recall Lecture #1) — sincere bidding cannot be an EPNE in
the KC auction in general.

5.1 An Impossibility Result

Can we get the VCG outcome with GS valuations using an ascending auction? Perhaps
surprisingly, the answer is no.

Theorem 5.1 ([4]) There is no ascending auction for which sincere bidding yields the VCG
outcome for every profile of gross substitutes valuations.

We emphasize that Theorem 5.1 is not about information, not computation — it says
that restricting an auction to ascending price trajectory precludes it from learning all of the
valuation information necessary to compute correctly the VCG payments. In this sense, gen-
eral gross substitutes valuations are harder than the previous four scenarios that we studied.
The exercises outline the three-bidder, four-item example used to prove Theorem 5.1.

4If some unit-demand valuations are disallowed, then it is possible to guarantee the existence of WE a
bit beyond gross substitutes valuations [3, 8].
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Theorem 5.1 depends on exactly what is permitted as an “ascending auction.” In Theo-
rem 5.1, an ascending auction is one that maintains a price vector on items at all times, and
these item prices can only increase over time. Interaction with bidders takes place solely via
demand queries. The final allocation and payments is a function of the entire history of the
auction. Thus, if two valuation profiles yield to the same histories — the same answers to
all demand queries — then the same allocation and payments are computed for these two
profiles. All of the ascending auctions we’ve seen in the course satisfy this definition.

5.2 Allowing Multiple Ascending Price Trajectories

There have been two proposals for enlarging the auction design space to elude the impos-
sibility result in Theorem 5.1. In the first, Ausubel [1] shows how to compute the VCG
outcome using n + 1 ascending price trajectories. This is in the spirit of allowing n + 1
welfare-maxmization computations to compute the VCG outcome and payments in a direct-
revelation mechanism. The auction in [1] runs one ascending auction with all bidders present,
and one with each bidder excluded in turn. Each of these n + 1 auctions can be thought
of as an extension of the clinching auction for identical goods (Lecture #4), where the new
complication is that the demand for a good can go up or down over the course of the auction
(when demand goes up, items are “unclinched” and a refund at the current price is given as
compensation). Despite these complications, the demand query information from the differ-
ent trajectories can be stitched together at the end of the auction to reconstruct the VCG
allocation and payments. This auction is an impressive proof of concept — auctions that
compute only a Walrasian equilibrium (like the KC auction) can be extended to compute
VCG prices while using only item prices — but is fairly complex and does not resemble most
auctions that are used in practice.

5.3 Ascending Auctions with Package Bidding

The second proposal is to allow “package bidding,” meaning prices on bundles of item in
addition to on individual items [2, 7]. The most permissive model is to allow a price pi(S)
for each bidder-bundle pair. This is richer than the auctions we’ve been looking at so far in
two ways: prices can be non-linear (meaning the price for a bundle need not be the sum of
its item prices) and non-anonymous (meaning different prices for different bidders).

For example, the following ascending auction is in the spirit of the Crawford-Knoer
auction for unit-demand bidders, with bidder-bundle pairs (i, S) playing the previous role of
items j.

• While there are new (non-empty) bids:

– The seller computes the allocation (S1, . . . , Sn) maximizing its revenue
∑n

i=1 pi(S)
and the current prices.

– For each bidder i with Si = ∅, pick Si ∈ argmaxS⊆U{vi(S) − (pi(S) + ε)} and
increment pi(S) by ε (making it more attractive to the seller next iteration).
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The first property of this ascending auction with package bidding is that, assuming sincere
bidding, it terminates at an analog of a Walrasian equilibrium, an (approximate) competitive
equilibrium. This means that the allocation maximize’s the seller revenue at the current
prices (which holds here by definition) and that each bidder receives a utility-maximizing
bundle (up to ε). The reasoning for the latter property parallels that of why the CK auction
converges to a Walrasian equilibrium with unit-demand bidders — a bidder receives a bundle
that it bid on (as its favorite) at some point, and since then the prices of other bundles have
only gone up. There is a First Welfare Theorem for competitive equilibria, meaning that the
corresponding allocation must be welfare-maximizing.5 The fact that the ascending auction
above terminates with a welfare-maximizing allocation (up to nε) does not contradict the
many intractability results for welfare-maximization with general valuations. Indeed, the
auction is exponential, “squared”: it can require an exponential number of iterations to
make non-trivial progress (there are exponentially many prices to maintain), and in each
round the seller’s revenue-maximization problem in generally NP-hard.

The first property ensures that, whatever the valuations, the auction above converges
to the VCG (i.e., welfare-maximizing) allocation. But we’ve seen many occasions (e.g.,
scenarios #4 and #5) where this property is much easier to obtain than also computing
the VCG payments. So what payments does the auction above terminate with? Its second
property is that, if the valuations satisfy the gross substitutes condition, then the ascending
auction above terminates with the VCG allocation and payments (up to ε terms). The
gross substitutes condition is very close to a necessary condition for this property as well
(see [6]). In other words, we have identified yet another property — convergence to of natural
package bidding auctions to the VCG outcome — for which gross substitutes valuations
are essentially the frontier of attainability. We can think of general and gross substitutes
valuations as playing analogous roles with bundle prices that gross substitutes and unit-
demand valuations play with item prices (for the properties of guaranteed existence and
coincidence with the VCG outcome, respectively). See Figure 2.

5.4 Ascending Auctions in Practice

We discussed the practice of ascending auctions as some length last quarter, but we recap
here a few relevant points. One approach, used frequently in the 1990s, is just run a Kelso-
Crawford-style auction, which is essentially a bunch of simultaneous ascending auctions.
There can be big trouble when there synergies between items, due to the “exposure problem,”
and even with substitutes valuations are vulnerable to demand reduction (in both theory
and practice). In their defense, they are simple to understand, and despite their flaws often
work reasonably well.

There has been an increasing profusion of proposals over the past 10-15 years about
exactly how to incorporate package bidding in combinatorial auctions. An increasing number

5Let p and (S1, . . . , Sn) form a competitive equilibrium and let (S∗
1 , . . . , S∗

n) be welfare-maximizing. By
the second condition of competitive equilibria,

∑n
i=1[vi(Si) − pi(Si)] ≥

∑n
i=1[vi(S∗

i ) − pi(S∗
i )]. By the first

condition,
∑n

i=1 pi(Si) ≥
∑n

i=1 pi(S∗
i ). Putting these together implies that

∑n
i=1 vi(Si) ≥

∑n
i=1 vi(S∗

i ) and
hence (s1, . . . , Sn) is also welfare-maximizing.
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Figure 2: The analogy between item prices and bundle prices, along with the role of Gross
Substitutes.

of real-world combinatorial auctions use some form of package bidding. That said, it is a
trickly problem and there is currently no consensus on the best way to do it.
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