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1 Introduction

These twenty lectures cover advanced topics in mechanism design. They assume familiarity
with some of the material covered in the instructor’s CS364A course — specifically, lectures
2-4 and 7-9.

Recall that mechanism design is the “science of rule-making.” The goal is to understand
how to design systems with strategic participants — autonomous decision-makers whose
objectives are generally different from the the designer’s — that have good performance
guarantees. For example, a mechanism designer might want to compute a socially efficient
allocation of scarce resources or raise significant revenue, while a mechanism participant only
cares about its own utility.

2 Course Outline

The plan is to cover the following five topics.

1. (6 lectures.) Welfare-maximization in combinatorial auctions: tractable special cases
and ascending implementations.

2. (4 lectures.) Welfare-maximization in combinatorial auctions: dominant-strategy ap-
proximation mechanisms for NP-hard cases.

3. (3 lectures.) Welfare-maximization in combinatorial auctions: better guarantees for
weaker solutions concepts (undominated strategies and Bayes-Nash equilibria).
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4. (4 lectures.) The price of anarchy in simple auctions.

5. (3 lectures.) Revenue-maximization in multi-parameter settings.

3 Review: The k-Vickrey Auction

Let’s recall a basic example from last quarter.

Scenario #1:
e k identical items (even k = 1 is interesting);
e cach bidder is unit demand, meaning it only wants one item:;
e cach bidder has a private valuation v; for a item.

The valuation of a bidder is its maximum willingness-to-pay for an item. It is private in the
sense that the seller and other bidders have no idea what it is.

We already know an excellent — awesome, even — auction for Scenario #1, the k- Vickrey
auction. This auction works as follows.

1. Each bidder submits a bid b;.
2. The top k bidders are awarded an item.
3. All winners pay the (k + 1)th highest bid.

Recall the second and third steps are the allocation rule (“who wins?”) and payment rule
(“at what price?”) of the auction. The auction is direct-revelation, in the sense that bidders
are effectively asked to report all of their private information up front.

Why is this a good auction? Because of its incentive, performance, and tractabil-
ity /simplicity guarantees.

1. (Incentive guarantee.) The k-Vickrey auction is dominant-strategy incentive com-
patible (DSIC). First, truthful bidding is a dominant strategy, guaranteed to maximize
a bidder i’s quasilinear utility v; - ;(b) — p;(b) over all b; for any fixed b_;. (Here,
x;(b) is 1 if ¢ wins and 0 if 7 loses.) We proved this property in Lecture #2 of CS364A
and won’t do it again here. Second, truthful bidding guarantees non-negative utility,
since the k-Vickrey auction charges each loser 0 and each winner a price less than its
bid.

2. (Performance guarantee.) For each valuation profile v, assuming truthful bids, the
k-Vickrey auction awards the k items to the bidders with the highest valuations and
hence maximizes the welfare > ", v; - z;(b) over all feasible allocations.

3. (Tractability guarantee.) The k-Vickrey auction runs in polynomial time. It is
“simple” in almost any reasonable sense of the word.



Looking ahead, we’ll strive to get as close as possible to the “holy grail” of these three
simultaneous guarantees, for as many different scenarios as possible. For the first several
lectures we’ll focus on special cases where we can get everything we want. Then we’ll move
on to more complex problems where we provably can’t get everything want, and we’ll explore
relaxations of the above three guarantees and trade-offs between them.

4 Ascending Implementations

Let’s illustrate an “ascending auction” by example. The following is more or less the “English
auction”, familiar from movies, art auction houses, and so on. The basic idea is to keep
raising the proposed selling price until the demand equals the supply. The parameter ¢ > 0
is an a priori fixed increment amount.

1. Initial the price p to 0.
2. The initial set Sy of “active bidders” is all bidders.
3. Fort=1,2,... =

(a) Ask each bidder of S;_; if it wants an item at the price p + €. Let S; be the set
of bidders that say “yes.”

(b) If |S;| < k, then halt. Sell an item to each bidder of S; at the price p. If there are
items leftover (i.e., k — [S¢| > 0), sell them to an arbitrary subset of the bidders
of S;_1\ S; at the price p.

(c¢) Otherwise, increment p by e.

The English auction stops as soon as the demand — the number of bidders who want an
item at the current price — becomes at most the supply. It is an indirect auction, in that it
never explicitly asks a bidder for its valuation, just a series of “yes/no” queries at different
prices.

There are many variants of this ascending auction. For example, the auction above does
not allow a bidder to re-enter after dropping out. Such rules are common in, for example,
simultaneous ascending auctions for selling wireless spectrum licenses. Art auctions, however,
typically do allow bidders to implicitly drop out and re-enter. These details don’t matter
much in Scenario #1, but some of them do matter in more complex settings.

Why bother with ascending implementations? The k-Vickrey auction is already a com-
pelling solution to welfare-maximization in Scenario #1, why do we need another? There
are a number of reasons.

1. Ascending auctions are easier for bidders. It is generally easier to answer simple queries
than to report a valuation. This point will become especially relevant in more complex
scenarios.



2. Less information leakage. The winner of an ascending auction does not reveal its
valuation, just the fact that it is at least the second-highest bid.

3. Transparency. The cause of a high selling price is generally more obvious in open
ascending auctions than in sealed-bid auctions.

4. Potentially more seller revenue. For example, ascending auctions encourage ‘bidding
wars.” There is also some supporting theoretical work on this point [1].

5. When there are multiple items, the opportunity for “price discovery.” A bidder has
the opportunity for mid-course corrections and to better coordinate with other bidders.
See Lecture #8 from CS364A for a detailed discussion of this point in the context of
spectrum auctions.

Given all of these potential benefits of ascending auctions, and their consequent popularity
in practice, it is important to have a theory of incentive-compatible iterative mechanism that
parallels the theory we’ve developed for direct-revelation mechanisms. This is the subject of
the next several lectures.

5 Analysis of the English Auction

We next argue that, in Scenario #1, the English auction enjoys the same incentive, perfor-
mance, and tractability guarantees as the k-Vickrey auction.

First, we define the analog of truthful revelation. In an iterative auction, sincere bidding
means that a player answers all queries honestly. In the English auction above, sincere
bidding simply means that a bidder ¢ answers “yes” to a query if and only if its valuation v;
is at least the proposed price p + €.!

Our first proposition states that the incentive guarantee of the English auction is essen-
tially as good as that of the k-Vickrey auction.

Proposition 5.1 In Scenario #1, in an English auction, sincere bidding is a dominant
strategy for every bidder (up to €).

Proposition 5.1 states that, no matter what the bidders other than ¢ do, no strategy by
bidder 7 can increase its payoff by more than e over sincere bidding. Thus, as € — 0, sincere
bidding approaches a dominant strategy.

The proof of Proposition 5.1 parallels the proof that the k-Vickrey auction is DSIC, and
we leave it as an exercise. The idea is that a deviation by a bidder either involves exiting
early or remaining active for extra iterations. These deviations correspond to underbidding
and overbidding, respectively, in a k-Vickrey auction. The former is never profitable and the
latter never increase the bidder’s payoff by more than e.

IFor clarity, we reserve the word “truthful” for direct-revelation mechanisms, and use “sincere” instead
for iterative mechanisms.



Proposition 5.1 may seem trivial now, but we’ll appreciate it more shortly. A word of
caution about iterative auctions: the action set of a player can be much richer than in
a direct-revelation mechanism. In particular, bidder behavior can be a function of what
happened earlier in the auction.? Proposition 5.1 shows that, at least in Scenario #1, this
rich action set doesn’t affect incentives in the English auction.

Our second proposition states that the performance guarantee of the English auction is
essentially as good as that of the k-Vickrey auction.

Proposition 5.2 In Scenario #1, if all bidders bid sincerely in an FEnglish auction, the
welfare of the outcome is within ke of the mazimum possible.

We again leave the proof as an exercise. The idea is that, with sincere bidding, the auction
correctly identifies the bidders with the k£ highest valuations, up to a discretization error
of e. Note that the auction terminates within v, /€ iterations, where v,y is the highest
valuation.

6 Bidders with Additive Valuations

6.1 The Setting

We now consider non-identical items. These arise naturally in many applications. The
original motivating application for combinatorial auctions was take-off and landing slots
at airports, which obviously vary in time and location. In the spectrum license auctions
discussed last quarter, licenses vary in geography and frequency. Assembling a vacation
package requires purchasing airfare, hotel rooms, and tour tickets. The lost goes on.

Scenario #2:
e A set U of m non-identical items.
e Fach bidder 7 has a private valuation v;; for each item j.
e Each bidder i has an additive valuation, meaning its value for a bundle S C U of items
is
v;(S) == Zvij’
jes

Scenario #2 is incomparable to scenario #1. Note that with additive valuations, bidders
want as many items as possible. The additivity assumption means that a bidder’s value for
an item is independent of what other items it receives. Thus, there are no “substitutes”
— redundancies between items, or “complements” — synergies between items. Additive
valuations are seldom realistic, but they are a good segue into more complex settings.

2To specify the action precisely, we need to define exactly what information is available to bidders —
the current price, the number of currently active bidders, the identities of the currently active bidders, etc.
We’ll be more formal about this as needed in forthcoming lectures.



The direct-revelation DSIC solution to scenario #2 is straightforward: just run a separate
Vickrey auction for each of the m items. Additivity of valuations and payments implies that
the incentive and performance guarantees of the Vickrey auction carry over. This mechanism
is simple and runs in polynomial time.

6.2 Parallel English Auctions Are Not DSIC

The analogous ascending implementation is to run a separate English auction for each of the
items — in parallel, say. That is, the auction maintains a set S;; of active bidders for each
item j in iteration ¢. Each iteration, for each item j on which it is active, a bidder is asked
whether it would still want item j at a price € higher than before. The jth constituent auction
halts when there is only one active bidder remaining — if the final two or more bidders exit
simultaneously, an arbitrary one of them is awarded the item at the last accepted price.

Warning:  Sincere bidding is not a dominant strategy with parallel English auctions.
That is, sincere bidding is not a best response with respect every set of actions that the
other bidders might take. With parallel English auctions, the rich action space of iterative
auctions rears its ugly head.

Example 6.1 To see the issue, consider two bidders and two items, with v1; = 3, v13 = 2,
v91 = 2, and w9y = 1. If both bidders bid sincerely, the first bidder will win both items
at prices of 2 and 1, respectively. Consider the following alternative action by the second
bidder:

e If bidder 1 bids on item 1 in the first iteration, then keep bidding on both items forever
(or up to a price of 3, say).3

e Otherwise, bid sincerely until the auction terminates.

If bidder 1 bids sincerely, then it certainly bids on item 1 in the first iteration (at a price
of €). This triggers the second bidder’s threat of bidding forever, which causes bidder 1
to lose both items and receive utility 0. On the other hand, if bidder 1 abandons item 1
immediately, it at least wins the second item at a price of 1, for a utility of 1. Thus, for this
action by bidder 2, sincere bidding is not a best response for bidder 1.

In almost all iterative auctions we’ll discuss, similar examples show that sincere bidding
is not a dominant strategy — Proposition 5.1 is quite unusual in this regard. Obviously, this
does not mean that iterative auction are bad, or that sincere bidding is implausible. The
example above merely illustrates that the rich auction space of iterative auctions necessitates
a different incentive guarantee — a suitable analog of DSIC for iterative auctions. Informally,
we want to formalize the following guarantee: sincere bidding is always a best response
provided other participants also bid sincerely. This guarantee is attractive because when a
bidder reasons about whether to bid sincerely or not, it does not need to other other bidders’

3Even if bidder 2 cannot directly observe whether or not bidder 1 bids for item 1 in the first iteration, it
can infer this from what happens in the auction in the second iteration.



valuations — just that, whatever those valuations might be, the other bidders are bidding
sincerely with respect to them. The example above does not rule out such a guarantee,
since the second player’s behavior does not correspond to sincere bidding with respect to
any valuation.

6.3 EPIC Mechanisms

We next define a new equilibrium concept, weaker than a dominant-strategy equilibrium.
The standard Nash equilibrium concept is not appropriate because it is defined for full-
information games — games where all players’ preferences are common knowledge. In most
auction settings, a player has to reason about its action with no or incomplete information
about other players’ preferences (i.e., valuations).

Formally, consider n bidders with sets of possible private valuations Vi,...,V,,. Let
Ay, ..., A, be the sets of possible actions — again, in iterative auctions, actions can be
history-dependent and so these sets are quite rich. A strategy s; is a function from V; to A;
— 80 a strategy specifies what a bidder does as a function of what it wants. For example,
sincere bidding in an iterative auction is a strategy — not an action, but a function from
valuations to actions — since a bidder’s honest answer to a query (e.g., “do you want an item
at price p?”) depends on its valuation. The range of a sincere bidding strategy comprises
only particularly simple, history-independent actions.

A strategy profile (sy,...,s,) is an ex post Nash equilibrium (EPNE) if, for every bidder
i and valuation v; € V;, the action s;(v;) is a best-response to every action profile s_;(v_;)
with v_; € V_;. That is, bidder 7 is confident that s;(v;) is a best response knowing only that
the other bidders use the strategies s_;, and without knowing their actual valuations. In the
context of iterative auctions, “all players bid sincerely” corresponds to a strategy profile, so
one can discuss whether or not it is an EPNE.

Stronger than an EPNE is a dominant-strategy equilibrium (DSE), where for every bidder
i and valuation v;, the action s;(v;) is a best response to every action profile a_; of A_;,
whether of the form s_;(v_;) or not. Thus, in a DSE, each bidder is confident that its
strategy is a best response without knowing anything at all about others’ actions. For
example, Proposition 5.1 shows that, in scenario #1, sincere bidding by all bidders is a DSE
(up to €).

Example 6.1 shows that, in scenario #2, sincere bidding in parallel English auctions is
not a DSE. It is, however, an EPNE.

Proposition 6.2 In Scenario #2, in parallel English auctions, sincere bidding by all bidders
is an ex post Nash equilibrium (up to me).

We leave the proof as an exercise. The idea is that, when bidders have additive valuations
and bid sincerely, the different English auctions can be analyzed separately. Proposition 5.1
then carries over to each of the m single-item auctions.

We'll call a mechanism ex post incentive compatible (EPIC) if sincere bidding is an ex
post Nash equilibrium in which all bidders always receive nonnegative utility. Proposition 6.2
implies that, in scenario #2, parallel English auctions is an EPIC mechanism.

7



7 Where We’re Headed

Our goal in the next several lectures is to identify scenarios where we can achieve best-
possible incentive, performance, and tractability guarantees via ascending auctions:

1. (Incentive guarantee.) EPIC. Again, this means that sincere bidding is an ex post
Nash equilibrium that guarantees all bidders nonnegative utility.

2. (Performance guarantee.) If all bidders bid sincerely, then the outcome of the
auction maximizes the welfare.

3. (Tractability guarantee.) The auction should be “simple.” At the very least, with
sincere bidding, it should terminate in a reasonable number of iterations.*

After we identify tractable special cases where we can achieve all three of these goals, we’ll
study more complex settings where compromises are required, and will study the trade-offs
between them.

8 Necessary Conditions for EPIC Welfare-Maximization

This section outlines some simple necessary conditions for an ascending auction to satisfy the
incentive and performance guarantees of Section 7. These conditions will guide our auction
designs in all of the scenarios to follow.

8.1 EPIC vs. DSIC Implementations

Because every DSE is an EPNE, every DSIC mechanism is EPIC. We’ve now seen a natural
ascending auction that is EPIC but not DSIC. In a direct-revelation mechanism, however,
the two concepts coincide. The reason is that, in such a mechanism, every available action
is consistent with the truthful revelation of a possible private valuation — every bid might
well be the bidder’s actual valuation. (Cf., Example 6.1.) It follows that truthful revelation
in a direct-revelation mechanism is a DSE if and only if it is EPNE.

We emphasize that the EPIC guarantee, while technically weaker than the DSIC guar-
antee we're used to, is still very strong. It asserts that sincere bidding a universal (over v_;)
best response for bidder 7, assuming only that other bidders bid sincerely. Lots of auctions
don’t have this property — in a first-price auction, for example, a bidder is not content
knowing only other bidders’ strategies (e.g., knowing that its opponent always shades its
bid by 20%) — also knowing others’ valuations would be extremely useful in formulating a
bid. We’ll adopt as the EPIC condition as the strongest incentive guarantee that we can
generally hope for in an iterative auction.

4At the very least, the running time should be pseudopolynomial, meaning polynomial when all of the
numbers provided in the input are polynomially bounded. For example, an English auction for a single item,
as we have described it, requires a pseudopolynomial number of iterations to terminate: v(z)/ € iterations,
where v(?) is the second-highest valuation.



Designing EPIC iterative mechanisms is only harder than designing DSIC direct-revelation
mechanisms, in the following sense. Given an EPIC iterative mechanism M, we can apply
the Revelation Principle (see Lecture #4 of CS364A) to it. For example, applying the
Revelation Principle to English auction in scenario #1 yields the k-Vickrey auction. This
produces an equivalent mechanism — meaning the outcome of direct revelation in M’ is the
outcome of sincere bidding in M — that is EPIC (see the Exercises). Since M’ is a direct-
revelation mechanism, the observation above implies that it is in fact DSIC. Thus, a DSIC
direct-revelation mechanism with good properties (like high welfare) is a logical prerequisite
to an EPIC iterative mechanism with the same good properties. Designing the former is a
useful “sanity check” before trying to design the latter.

8.2 Uniqueness of Payments and the VCG Mechanism

Recall the VCG mechanism from last quarter. This is a direct revelation mechanism that
can be defined in very general mechanism design settings. The allocation rule is to choose
the outcome that maximizes welfare with respect to the reported bids. The payment of a
bidder ¢ is its “externality” — the welfare other to others caused by i’s participation in the
mechanism.

The point of this section is that a necessary condition for an ascending auction to be
EPIC and welfare-maximizing is that sincere bidding always yields the VCG allocation and
payments. This fact follows from two observations. The first is that, as above, applying the
Revelation Principle to an EPIC welfare-maximizing mechanism yields a direct-revelation
DSIC welfare-maximizing mechanism, with the same mapping from valuations to allocations
and payments. The second, proved below, is that the VCG mechanism is the unique DSIC
welfare-maximizing mechanism (up to an additive constant).

More generally, consider an allocation rule x that has a finite range A.5 We regard a
valuation v; as a vector indexed by A. We assume that each set V; C R4 of possible valuations
for bidder 4 is connected.® We prove that, for each i and v_;, all payment functions p;(v;, v_;)
that satisfy the DSIC condition are the same, up to an additive constant. This implies that
the VCG mechanism is the only DSIC welfare-maximizing mechanism in which p;(0,v_;) is
always 0.

Fix i and v_;. Write z(-) and p(-) for x;(-,v_;) and p;(-, v_;), respectively. Let A denote
the (finite) range of x and suppose x and p satisfy the DSIC condition. We immediately
have that p(v) = p(v') whenever z(v) = z(v") — if p(v) < p(v'), for example, a bidder with
true valuation v would have an incentive to misreport v. For a € A, it is therefore well
defined to write p, for the payment p(v) made under every declaration v with z(v) = a. We
can assume that |A| > 2.

Call two outcomes a,b € A close if for every € > 0 there are valuations v,, v, with
v — ]l < € x(ve) = a, and z(v,) = b. We can use the DSIC condition to pin down

5More general results are possible, but this version is good enough for our purposes.
6This assumption holds in our applications, and is mathematically necessary. For example, in a single-
item auction with only integer valuations, the second-price rule is not unique: marking up the sale price by

% whenever there is a unique highest bid gives an alternative DSIC auction.



Py — Pa as follows:
Eja(a') - pg Z ya(b) — Db

v Vv
truthful report v false report vy

and
vp(b) —pp > vp(a) = pa,
N—— ——
truthful report vy, false report vq
implying that
po = pa € [14(b) — vi(a), ul(b) — vl(a)].
gvi(b):;(a)+2e

Since a and b are close, we can take € | 0, implying that there is at most one possible value
for Py — Da-

For an arbitrary pair a,b of outcomes, connectedness of V; implies that we can find
a sequence a = g, 0dy,0ds,...,0,—1,a; = b such that a;,a;;, are close for every 3.7 By
transitivity, there is at most one possible value for p, — p, for each a,b € A. Thus, all
payment functions p(-) that satisfy the DSIC condition with z(-) differ only by an additive
constant.

References

[1] P. R. Milgrom and R. J. Weber. A theory of auctions and competitive bidding. Econo-
metrica, 50(5):1089-1122, 1982.
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