
CS168: The Modern Algorithmic Toolbox
Lecture #8: How PCA Works

Tim Roughgarden & Gregory Valiant∗

April 20, 2016

1 Introduction

Last lecture introduced the idea of principal components analysis (PCA). The definition of
the method is, for a given data set and parameter k, to compute the k-dimensional subspace
(through the origin) that minimizes the average squared distance between the points and
the subspace, or equivalently that maximizes the variance of the projections of the data
points onto the subspace. We talked about a couple of common use cases. The first is data
visualization, where one uses the top few principal components as a new coordinate axis
and plot the projections of all of the data points in this new coordinate system. We saw a
remarkable example using European genomic data, where such a plot showed that geographic
information is embedded in the participants’ DNA. The second use case discussed was data
compression, with the “Eigenfaces” project being a canonical example, where taking k in
the range of 100 or 150 is large enough to closely approximate a bunch of images (65,000-
dimensional data). Finally, we mentioned some of the primary weaknesses of PCA: it can get
tricked by high-variance noise, it fails to discover nonlinear structure, and the orthogonality
constraints on the principal components mean that principal components after the first few
can be difficult to interpret.

Today’s lecture is about how PCA actually works — that is, how to actually compute
the top k principal components of a data set. Along the way, we’ll develop your internal
mapping between the linear algebra used to describe the method and the simple geometry
that explains what’s really going on. Ideally, after understanding this lecture, PCA should
seem almost obvious in hindsight.

∗ c©2015–2016, Tim Roughgarden and Gregory Valiant. Not to be sold, published, or distributed without
the authors’ consent.

1

2 Characterizing Principal Components

2.1 The Setup

Recall that the input to the PCA method ism n-dimensional data points x1, . . . ,xm ∈ Rn and
a parameter k ∈ {1, 2, . . . , n}. We assume that the data is centered, meaning that

∑m
i=1 xi is

the all-zero vector. (This can be enforced by subtracting out the sample mean x̄ = 1
m

∑m
i=1 xi

in a preprocessing step.) The output of the method is defined as k orthonormal vectors
v1, . . . ,vk — the “top k principal components” — that maximize the objective function

1

m

m∑
i=1

k∑
j=1

〈xi,vj〉2︸ ︷︷ ︸
squared projection length

. (1)

But how would one actually solve this optimization problem and compute the vj’s?
Even with k = 1, there is an infinite number of unit vectors to try. A big reason for the
popularity of PCA is that this optimization problem is easily solved using sophomore-level
linear algebra. After we review the necessary preliminaries and build up your geometric
intuition, the solution should seem straightforward in hindsight.

2.2 Rewriting the Optimization Problem

To develop the solution, we first consider only the k = 1 case. We’ll see that the case of
general k reduces to this case (Section 2.6). With k = 1, the objective function is

argmax
v : ‖v‖=1

1

m

m∑
i=1

〈xi,v〉2. (2)

Let’s see how to rewrite variance-maximization (2) using linear algebra. First, we take
the data points x1, . . . ,xm — remember these are in n-dimensional space — and write them
as the rows of an m× n matrix X:

X =


x1

x2
...
xm

 .
Thus, for a unit vector v ∈ Rn, we have

Xv =


〈x1,v〉
〈x2,v〉

...
〈xm,v〉

 ,
2

so Xv is just a column vector populated with all the projection lengths of the xi’s onto
the line spanned by v. We care about the sum of the squares of these (recall (2)), which
motivates taking the inner product of Xv with itself:

v>X>Xv = (Xv)>(Xv) =
m∑
i=1

〈xi,v〉2.

Summarizing, our variance-maximization problem can be rephrased as

argmax
v : ‖v‖=1

v>Av, (3)

where A is an n × n matrix of the form X>X.1 This problem is called “maximizing a
quadratic form.”

The matrix X>X has a natural interpretation.2 The (i, j) entry of this matrix is the
inner product of the ith row of X> and the jth column of X — i.e., of the ith and jth
columns of X. So X>X just collects the inner products of columns of X, and is a symmetric
matrix. For example, suppose the xi’s represent documents, with dimensions (i.e., columns
of X) corresponding to words. Then the inner product of two columns of X measures how
frequently the corresponding pair of words co-occur in a document.3 The matrix X>X is
called the covariance or correlation matrix of the xi’s, depending on whether or not each of
the coordinates was normalized in a preprocessing step (as discussed in Lecture #7).

2.3 Solving (3): The Diagonal Case

To gain some understanding for the optimization problem (3) that PCA solves, let’s begin
with a very special case: where A is a diagonal matrix

λ1 0
λ2

. . .
0 λn

 (4)

with sorted nonnegative entries λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 on the diagonal.
There is a simple geometric way to think about diagonal matrices. An n×n matrix maps

points in Rn back to points in Rn — the matrix “moves Rn around,” in effect. For example,
the matrix (

2 0
0 1

)
1We are ignoring the 1

m scaling factor in (2), because the optimal solution v is the same with or without
it.

2Recall that this matrix also appeared in the normal equations, the closed-form solution to the ordinary
least squares problem (Lecture #6).

3So after centering such an X, frequently co-occurring pairs of words correspond to positive entries of
X>X and pairs of words that almost never appear together are negative entries.

3

x

y

1 2

1

−1−2

−1

Figure 1: The point (x, y) on the unit circle is mapped to (2x, y).

moves each point (x, y) of the plane to the point (2x, y) with double the x-coordinate and the
same y-coordinate. For example, the points of the circle {(x, y) : x2+y2 = 1} are mapped to
the points {x2

22
+ y2 = 1} of the ellipse shown in Figure 1. More generally, a diagonal matrix

of the form (4) can be thought of as “stretching” Rn, with the ith axis getting stretched by
the factor λi, and the unit circle being mapped to the corresponding “ellipsoid” (i.e., the
analog of an ellipse in more than 2 dimensions).

A natural guess for the direction v that maximizes v>Av with A diagonal is the “direc-
tion of maximum stretch,” namely v = e1, where e1 = (1, 0, . . . , 0) denotes the first standard
basis vector. (Recall λ1 ≥ λ2 ≥ · · ·λn.) To verify the guess, let v be an arbitrary unit vector,
and write

v>(Av) =
(
v1 v2 · · · vn

)
·


λ1v1
λ2v2

...
λnvn

 =
n∑
i=1

v2i λi. (5)

Since v is a unit vector, the v2i ’s sum to 1. Thus v>Av is always an average of the λi’s, with
the averaging weights given by the v2i ’s. Since λ1 is the biggest λi, the way to make this
average as large as possible is to set v1 = 1 and vi = 0 for i > 1. That is, v = e1 maximizes
v>Av, as per our guess.

2.4 Diagonals in Disguise

Let’s generalize our solution in Section 2.3 by considering matrices A that, while not diag-
onal, are really just “diagonals in disguise.” Geometrically, what we mean is that A still
does nothing other than stretch out different orthogonal axes, possibly with these axes being
a “rotated version” of the original ones. See Figure 2 for a rotated version of the previous

4

x

y

1

1

−1−2

−1

−2

Figure 2: The same scaling as Figure 1, but now rotated 45 degrees.

example, which corresponds to the matrix(
3
2

1
2

1
2

3
2

)
=

(
1√
2
− 1√

2
1√
2

1√
2

)
︸ ︷︷ ︸
rotate back 45◦

·
(

2 0
0 1

)
︸ ︷︷ ︸
stretch

·
(

1√
2

1√
2

− 1√
2

1√
2

)
︸ ︷︷ ︸

rotate clockwise 45◦

. (6)

So what’s a “rotated diagonal” in higher dimensions? The appropriate generalization of
a rotation is an orthogonal matrix.4 Recall that an orthogonal matrix Q is a square matrix
where the columns are a set of orthonormal vectors — that is, each column has unit length,
and the inner product of two different columns is 0. A key property of orthogonal matrices
is that they preserve length — that is, ‖Qv‖ = ‖v‖ for every vector v. We review briefly
why this is: since the columns of Q are orthonormal vectors, we have

Q>Q = I,

since the (i, j) entry of Q>Q is just the inner product of the ith and jth columns of Q. (It
also follows that QQ> = I. This shows that Q> is also an orthogonal matrix, or equivalently
that the rows of an orthogonal matrix are orthonormal vectors.) This means that the inverse
of an orthogonal matrix is simply its transpose. (For example, see the two inverse rotation
matrices in (6).) Then, we have

‖Qv‖2 = (Qv)>(Qv) = v>Q>Qv = v>v = ‖v‖2,
4In addition to rotations, orthogonal matrices capture operations like reflections and permutations of the

coordinates.

5

showing that Qv and v have same norm.
Now consider a matrix A that can be written A = QDQ> for an orthogonal matrix Q

and diagonal matrix D as in (4) — this is what we mean by a “diagonal in disguise.” Such
a matrix A has a “direction of maximum stretch” — the (rotated) axis that gets stretched
the most (i.e., by λ1). Since the direction of maximum stretch under D is e1, the direction
of maximum stretch under A is the direction that gets mapped to e1 under Q> — which is
(Q−1)>e1 or, equivalently, Qe1. Notice that Qe1 is simply the first column of Q — the first
row of Q>.

This direction of maximum stretch is again the solution to the variance-maximization
problem (2). To see this, first plug in this choice v1 = Qe1 to obtain

v>1 Av1 = v>1 QDQ>v1 = e>1 Q
>QDQ>Qe1 = e>1 De1 = λ1.

Second, for every unit vector v, Q>v is also a unit vector (since Q is orthogonal), so
v>QDQ>v is an average of the λi’s, just as in (5) (with averaging weights given by the
squared coordinates of Q>v, rather than those of v). Thus v>Av ≤ λ1 for every unit vector
v, implying that v1 = Qe1 maximizes v>Av.

2.5 General Covariance Matrices

We’ve seen that when the matrix A can be written as QDQ> for an orthogonal matrix
Q and diagonal matrix D, it’s easy to understand how to maximize the variance (2): the
optimal solution is to set v equal to the first row of Q>, and geometrically this is just the
direction of maximum stretch when we view A as a map from Rn to itself. But we don’t want
to solve the problem (2) only for diagonals in disguise — we want to solve it for an arbitrary
covariance matrix A = X>X. Happily, we’ve already done this: recall from linear algebra
that every matrix A of the form X>X can be written as A = QDQ> for an orthogonal
matrix Q and diagonal matrix D as in (4).5

Summarizing, we’ve shown the following:

when k = 1, the solution to (2) is the first row of Q>, where X>X
>

= QDQ> with Q
orthonormal and D diagonal with sorted diagonal entries.

2.6 Larger Values of k

The solution to the variance-maximization problem (1) is analogous, namely to pick the k
orthogonal axes that are stretched the most by A. Extending the derivation above gives:

5If you look back at your notes from your linear algebra class, the most likely relevant statement is that
every symmetric matrix can be diagonalized by orthogonal matrices. (The proof is not obvious, but it is
covered in standard linear algebra courses.) For some symmetric matrices A, the corresponding diagonal
matrix D will have some negative entries. For symmetric matrices of the form A = X>X, however, all of
the diagonal entries are nonnegative. Such matrices are called “positive semindefinite.” To see this fact,
note that (i) if A = X>X, then v>Av = (Xv)>Xv ≥ 0 for every v; and (ii) if A = QDQT with the ith
diagonal entry of D negative, then taking v = Qei provides a vector with v>Av < 0 (why?).

6

for general k, the solution to (1) is the first k rows of Q>, where X>X = QDQ> with
Q orthonormal and D diagonal with sorted diagonal entries.

Note that since Q is orthonormal, the first k rows of Q> are indeed a set of k orthonormal
vectors, as required in (1).6 For a matrix A = X>X, these are called the top k principal
components of X.

2.7 Eigenvectors and Eigenvalues

Now that we’ve characterized the top k principal components as the first k rows of Q> in
the decomposition X>X = QDQ>, how can we actually compute them? The answer follows
from a reinterpretation of these vectors as eigenvectors of the covariance matrix X>X.

Recall that an eigenvector of a matrix A is a vector v that is stretched in the same
direction by A, meaning Av = λv for some λ ∈ R. The value λ is the corresponding
eigenvalue. Eigenvectors are just the “axes of stretch” of the geometric discussions above,
with eigenvalues giving the stretch factors.7

When we write A = X>X as A = QDQ>, we’re actually writing the matrix in terms
of its eigenvectors and eigenvalues — the rows of Q> are the eigenvectors of A, and the
diagonal entries in D are the corresponding eigenvalues. To see this, consider the ith row of
Q>, which can be written Qei. Since Q>Q = QQ> = I we have, AQei = QDei = λiQei.
Hence the ith row of Q> is the eigenvector of A with eigenvalue λi. Thus:

PCA boils down to computing the k eigenvectors of the covariance matrix X>X that
have the largest eigenvalues.

You will often see the sentence above given as the definition of the PCA method; after this
lecture there should be no mystery as to where the definition comes from.

Are the top k principal components of X — the k eigenvectors of X>X that have the
largest eigenvalues — uniquely defined? More or less, but there is some fine print. First,
the set of diagonal entries in the matrix D — the set of eigenvalues of X>X — is uniquely
defined. Recall that we’re ordering the coordinates so that these entries are in sorted order.
If these eigenvalues are all distinct, then the matrix Q is also unique (up to a sign flip in each
column).8 If an eigenvalue occurs with multiplicity d, then there is a d-dimensional subspace
of corresponding eigenvectors. Any orthonormal basis of this subspace can be chosen as the
corresponding principal components.

6An alternative way to arrive at the same k vectors is: choose v1 as the variance-maximizing direction
(as in (2)); choose v2 as the variance-maximizing direction orthogonal to v1; choose v3 as the variance-
maximizing direction orthogonal to both v1 and v2; and so on.

7Eigenvectors and eigenvalues will reappear in Lectures #11–12 on spectral graph theory, where they are
unreasonably effective at illuminating network structure. They also play an important role in the analysis
of Markov chains (Lecture #14).

8If A = QDQ> and Q̂ is Q with all signs flipped in some column, then A = Q̂DQ̂> as well.

7

3 The Power Iteration Method

3.1 Methods for Computing Principal Components

How does one compute the top k principal components? One method uses the “singular
value decomposition (SVD);” we’ll talk about this in detail next lecture. (The SVD can
be computed in roughly cubic time, which is fine for medium-size but not for large-scale
problems.) We conclude this lecture with a description of a second method, power iteration.
This method is popular in practice, especially in settings where one only wants the top few
eigenvectors (as is often the case in PCA applications). In Matlab there are optimized and
ready-to-use implementations of both the SVD and power iteration methods.

3.2 The Algorithm

We first describe how to use the power iteration method to compute the first eigenvector
(the one with largest eigenvalue), and then explain how to use it to find the rest of them. To
understand the geometric intuition behind the method, recall that if one views the matrix
A = X>X as a function that maps the unit sphere to an ellipsoid, then the longest axis of
the ellipsoid corresponds to the top eigenvector of A (Figures 1 and 2). Given that the top
eigenvector corresponds to the direction in which multiplication by A stretches the vector
the most, it is natural to hope that if we start with a random vector v, and keep applying
A over and over, then we will end up having stretched v so much in the direction of A’s top
eigenvector that the image of v will lie almost entirely in this same direction. For example,
in Figure 2, applying A twice (rotate/stretch/rotate-back/rotate/stretch/rotate-back) will
stretch the ellipsoid twice as far along the southwest-northeast direction (i.e., along the first
eigenvector). Further applications of A will make this axis of stretch even more pronounced.
Eventually, almost all of the points on the original unit circle get mapped to points that are
very close to this axis.

Here is the formal statement of the power iteration method:

Algorithm 1
Power Iteration

Given matrix A = X>X:

• Select random unit vector u0

• For i = 1, 2, . . . , set ui = Aiu0. If ui/||ui|| ≈ ui−1/||ui−1||, then return
ui/||ui||.

Often, rather than computing Au0,A
2u0,A

3u0,A
4u0,A

5u0, . . . one instead uses repeated
squaring and computes Au0,A

2u0,A
4u0,A

8u0, (This replaces a larger number of matrix-
vector multiplications with a smaller number of matrix-matrix multiplications.)

8

3.3 The Analysis

To show that the power iteration algorithm works, we first establish that if A = QDQ>,
then Ai = QDiQ> — that is, Ai has the same orientation (i.e. eigenvectors) as A, but all
of the eigenvalues are raised to the ith power (and are hence exaggerated—e.g. if λ1 > 2λ2,
then λ101 > 1000λ102).

Claim 3.1 If A = QDQ>, then Ai = QDiQ>.

Proof: We prove this via induction on i. The base case, i = 1 is immediate. Assuming that
the statement holds for some specific i ≥ 1, consider the following:

Ai+1 = Ai ·A = QDiQ>Q︸ ︷︷ ︸
=I

DQ> = QDiDQ> = QDi+1Q>,

where we used our induction hypothesis to get the second equality, and the third equality
follows from the orthogonality of Q. �

We can now quantify the performance of the power iteration algorithm:

Theorem 3.2 With probability at least 1/2 over the choice of u0, for and t ≥ 1,

|〈Atu0,v1〉| ≥ 1− 2
√
n

(
λ2
λ1

)t
,

where v1 is the top eigenvector of A, with eigenvalue λ1, and λ2 is the second-largest eigen-
value of A.

This result shows that the number of iterations required scales as logn
log(λ1/λ2)

. The ratio

λ1/λ2 is an important parameter called the spectral gap of the matrix A. The bigger the
spectral gap, the more pronounced is the direction of maximum stretch (compared to other
axes of stretch). If the spectral gap is large, then we are in excellent shape. If λ1 ≈ λ2, then
the algorithm might take a long time (or might never) find v1.

9

For example, if t > 10 logn
log(λ1/λ2)

then |〈ut,v1〉| > 1 − 2e−20 > 0.99999, and so ut is
essentially pointing in the same direction as v1.

The “with probability 1/2” statement in Theorem 3.2 can be strengthened to “with
probability at least 1− 1/2100” by repeating the above algorithm 100 times (for independent
choices of u0), and outputting the recovered vector u that maximizes ‖Au‖.

Proof of Theorem 3.2: Let v1,v2, . . . ,vn denote the eigenvectors of A, with associated
eigenvalues λ1 ≥ λ2 ≥ · · · . These vectors form an orthonormal basis for Rn. Write the
random initial vector u0 =

∑n
j=1 cjvj in terms of this basis. We claim that, with probability

9If λ1 = λ2, then v1 and v2 are not uniquely defined — there is a two-dimensional subspace of eigenvectors
with this eigenvalue. In this case, the power iteration algorithm will simply return a vector that lies in this
subspace, which is the correct thing to do.

9

at least 1/2, |c1| > 1/2
√
n. This follows straightforwardly from a computation, using the fact

that we can choose a random unit vector by selecting each coordinate independently from a
Gaussian of variance 1/n, and then normalizing (by a factor that will be very close to 1).

Given that |c1| > 1/2
√
n,

|〈Atu0,v1〉| =
c1λ

t
1√∑n

i=1(λ
t
ici)

2
≥ c1λ

t
1√

c21λ
2t
1 + nλ2t2

≥ c1λ
t
1

c1λt1 + λt2
√
n
≥ 1− 2

√
n

(
λ2
λ1

)t
.

�

3.4 Computing Further Principal Components

Applying the power iteration algorithm to the covariance matrix X>X of a data matrix
X finds (a close approximation to) the top principal component of X. We can reuse the
same method to compute subsequent principal components one-by-one, up to the desired
number k. Specifically, to find the top k principal components:

1. Find the top component, v1, using power iteration.

2. Project the data matrix orthogonally to v1:
x1

x2
...
xm

 7→


(x1 − 〈x1,v1〉v1)
(x2 − 〈x2,v1〉v1)

...
(xm − 〈xm,v1〉v1)

 .
This corresponds to subtracting out the variance of the data that is already explained
by the first principal component v1.

3. Recurse by finding the top k − 1 principal components of the new data matrix.

The correctness of this greedy algorithm follows from the fact that the k-dimensional
subspace that maximizes the norms of the projections of a data matrix X contains the
(k − 1)-dimensional subspace that maximizes the norms of the projections.

3.5 How to Choose k?

How do you know how many principal components are “enough”? For data visualization,
often you just want the first few. In other applications, like compression, the simple answer is
that you don’t. In general, it is worth computing a lot of them and plotting their eigenvalues.
Often the eigenvalues become small after a certain point — e.g., your data might have 200
dimensions, but after the first 50 eigenvalues, the rest are all tiny. Looking at this plot might
give you some heuristic sense of how to choose the number of components so as to maximize
the signal of your data, while preserving the low-dimensionality.

10

	Introduction
	Characterizing Principal Components
	The Setup
	Rewriting the Optimization Problem
	Solving (3): The Diagonal Case
	Diagonals in Disguise
	General Covariance Matrices
	Larger Values of k
	Eigenvectors and Eigenvalues

	The Power Iteration Method
	Methods for Computing Principal Components
	The Algorithm
	The Analysis
	Computing Further Principal Components
	How to Choose k?

