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1 Positive-Probability Events

Let E1, E2 be two events — subsets of a common probability space. Suppose I tell you that
Pr[E1] ,Pr[E2] > 0. Does this imply that Pr[E1 ∩ E2] > 0? That is, if either A or B could
happen separately, is it the case that A and B could both happen?

Not necessarily. E.g., with a single coin flip, if E1 represents “heads” and E2 “tails,” then
Pr[E1] = Pr[E2] = 1

2
while Pr[E1 ∩ E2] = 0.

If E1 and E2 are independent, then sure, no problem:

Pr[E1 ∩ E2] = Pr[E1]︸ ︷︷ ︸
>0

·Pr[E2]︸ ︷︷ ︸
>0

> 0.

If Pr[E1] ,Pr[E2] > 1
2
, then the events must overlap and so Pr[E1 ∩ E2] > 0. Formally,

the Union Bound implies that

Pr[¬E1 ∪ ¬E2] ≤ Pr[¬E1]︸ ︷︷ ︸
<1/2

+Pr[¬E2]︸ ︷︷ ︸
<1/2

< 1, (1)

so the complementary event E1 ∩ E2 has positive probability.
The Lovász Local Lemma (LLL) states that as long as the events E1, . . . , Em are “not

too dependent” and that each individual event has reasonably large probability, there is a
positive probability that all m of the events occur simultaneously.

2 k-SAT

We focus on a canonical and illustrative special case of the LLL, the k-SAT problem.1 Recall
that a clause of a k-SAT formula is the disjunction of k literals, each of which is a variable or
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its negation. For example, x3∨¬x7∨x10∨¬x14 is a 4-SAT clause. We assume for convenience
that every clause involves k distinct variables. You’ve probably thought primarily about 2-
SAT and 3-SAT in the past; for this lecture, it’s good to think of k as being a larger constant,
say 8. We use m to denote the number of clauses and n the number of variables.

A few warm-up observations. Consider a single clause. It has k distinct variables. There
are 2k different truth assignments to these k variables. Observe that only one of them fails
to satisfy the clause — every variable has to be assigned incorrectly. (E.g., in the example
above, x3 = F , x7 = T , x10 = F , x14 = T .) The other 2k − 1 truth assignments satisfy the
clause. You can think of a k-SAT clause as forbidding one particular assignment to a k-tuple
of variables.

Fix a clause C. If we pick a truth assignment uniformly at random, then the probability
that C is not satisfied is 1/2k, so the probability that it is satisfied is exactly 1− 2−k. This
trivial observation has some interesting corollaries. First, by linearity of expectation, the
expected number of clauses satisfied by a random truth assignment is exactly (1 − 2−k)m.
In particular, there exists a truth assignment that satisfies at least a 1 − 2−k fraction of
the clauses. (Prove both these statements.) This is a lot of clauses for even modest values
of k. Satisfying lots of clauses of a k-SAT formula is trivial; satisfying all (or almost all)
of them is what’s hard. Second, suppose the number of clauses m is less than 2k. Then,
the Union Bound argument of (1) proves that all clauses are satisfied with probability at
least 1 −m2−k > 0. Thus, a k-SAT formula with less than 2k clauses is guaranteed to be
satisfiable.

3 Statement of the LLL for k-SAT

The LLL allows us to conclude satisfiability for k-SAT formulas for an arbitrarily large
number m of clauses. There must be a catch, since even 2k clauses is enough to force
unsatisfiability — just pick your favorite k variables and include all possible clauses for
them, ruling out the 2k possible truth assignments to them one-by-one. The idea is to
let the number of clauses grow arbitrarily large while keeping the “amount of dependence”
between the clauses bounded in the ballpark of 2k.

Precisely, obtain a graph G = (V,E) from a k-SAT formula as follows. The vertices V are
the clauses. There is an edge (i, j) ∈ E if and only if clauses i and j share a variable. If one
clause contains xi and another ¬xi, this still counts as sharing a variable. Thus, the degree
of a vertex corresponds to the number of overlapping clauses. Let d = 1 + maxv∈G deg(v);
the “+1” is because it’s convenient to think of a clause as overlapping with itself.

For the rest of this lecture, we’ll say that a k-SAT formula ϕ meets the LLL condition if
the parameter d is at most 2k−3 = 2k/8. We’ll prove the following.

Theorem 3.1 If ϕ meets the LLL condition, then ϕ is satisfiable. Moreover, a satisfying
assignment can be found in randomized polynomial time.

The existential statement is from a paper of Erdös and Lovász [2]. There has been a long
sequence of works that develop algorithmic versions (see [6]). Our goal here is to cover the
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1. Let x denote a random assignment, with each of the n variables set independently to
true or false (with 50/50 probability).

[We will modify the global variable x as the algorithm proceeds.]

2. While some clause C of ϕ is violated by x, Fix(C).

Figure 1: The algorithm Alg. The input is a k-SAT formula ϕ that meets the LLL condition.

1. Randomly reassign the k variables of ϕ contained in C to true or false (independently,
with 50/50 probability).

2. While some clause D of ϕ that shares a variable with C is violated by x, Fix(D).

[Possibly D = C, if we unluckily re-chose the variables assignments that violate C.]

Figure 2: The subroutine Fix(C). The input is a clause C of ϕ that is violated by the
current assignment x.

coolest proof of the lot, which is also one of the most recent, due to Moser and Tardos [4, 5].

4 The Algorithm

We analyze the randomized algorithm Alg in Figure 1, the workhorse of which is the sub-
routine Fix (Figure 2).2

Observe that Alg uses n random bits in the first step, to choose a random initial assign-
ment, and k fresh random bits every time the subroutine Fix is called.

We can visualize the execution of Alg via a recursion tree, as in Figure 3. It will be
useful to distinguish between the calls to Fix made by Alg— the first level of the recursion
tree — and recursive calls to Fix in the lower levels of the recursion tree.

As is clear from the stopping condition, the responsibility of an invocation to Fix(C) is
to modify the assignment x until the clause C and all the clauses overlapping with C are
satisfied.

Lemma 4.1 If the subroutine Fix(C) terminates, then it terminates with a variable assign-
ment in which C and all clauses that share a variable with C are satisfied.

The next lemma identifies a measure of progress made by terminating calls to Fix.

2It is audacious to propose such a simple algorithm for the legendary SAT problem. Perhaps it’s no
coincidence that Moser [4] was a graduate student when he proved the following results; a more seasoned
researcher might have dismissed the approach out of hand.

3



Alg

Fix Fix · · · Fix

Fix Fix Fix Fix Fix

Fix Fix

· · ·

≤ m level 1 calls

d ≤ 2k−3

Figure 3: Recursion tree representing the algorithm’s execution. Alg makes at most m calls
to Fix, and each call to Fix recursively makes at most 2k−3 additional calls to Fix. The
algorithm traverses the tree in depth first order.

Lemma 4.2 A call to Fix(C) that terminates does not change any clauses of ϕ from satisfied
to violated.

Proof: Suppose clause C∗ is satisfied by the current variable assignment when Fix(C) is
called. If C∗ shares a variable with C, then Lemma 4.1 implies that Fix(C) can only
terminate with a truth assignment that satisfies C∗. If C∗ shares no variables with C, then
randomly reassigning C’s variables cannot make C∗ violated. Inductively, calls to Fix(D)
by Fix(C) will also not make C∗ violated.3 In any case, C∗ is again satisfied by the resulting
truth assignment if Fix(C) terminates. �

We can now prove correctness of Alg, conditioned on termination.

Lemma 4.3 If the algorithm Alg terminates, then it terminates with a variable assignment
in which every clause of ϕ is satisfied.

Proof: Every call to Fix(C) by Alg— the level-1 nodes of the recursion tree in Figure 3 —
fixes a violated clause of ϕ without creating any new violated clauses (Lemma 4.2). Thus
these outer calls to Fix fix the clauses violated by the initial random assignment one by one,
and if all the calls terminate then the result is a satisfying assignment. �

The proof of Lemma 4.3 is essentially a monotonicity argument — the number of satisfied
clauses is strictly increasing with the number of outer calls to Fix(C) by Alg. But note
that the number of satisfied clauses is not strictly increasing throughout the algorithm —
when the variables of a violated clause C are randomly reassigned, many other clauses might
become newly violated.

In light of the above non-monotonicity, why should any given call to Fix ever terminate?
Indeed, Lemma 4.3 implies that if we feed an unsatisfiable k-SAT formula into the algorithm

3The actual truth assignments to the variables of C∗ might be different before and after the call to
Fix(D), however — do you see why?
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Alg, it will run forever. There’s no reason to think that it won’t run forever also on satisfiable
instances. The surprising result is that it terminates with high probability — quickly, even
— on k-SAT formulas that meet the LLL condition. This implies that every such formula is
satisfiable.

Theorem 4.4 For every k-SAT formula that meets the LLL condition, the algorithm Alg
terminates (with a satisfying assignment) in polynomial time with high probability.

5 Proof of Theorem 4.4

Here is a trivial observation. If a function f : A → B is injective — i.e., if it is invertible
on its range f(A) — then |B| ≥ |A|. Our proof of Theorem 4.4 follows from this counting
principle. Your instructor is not aware of any other non-trivial running time analyses that
boil down to this principle.

Let ϕ be a k-SAT formula with m clauses that meets the LLL condition. We also assume
that m ≥ 2k, since otherwise the formula is trivially satisfiable (see Section 2). For a
parameter T , suppose that the probability that Alg finds a satisfying assignment within T
calls to the subroutine Fix is zero. We prove that this is possible only if T is small; hence,
if T is not too small, there is a positive probability that Alg finds a satisfying assignment
within T calls to Fix, and in particular ϕ is satisfiable.

We now describe the sets A and B and the invertible function f . Recall that Alg uses
n random bits to choose an initial truth assignment, and k fresh random bits every time
Fix(C) is called, to randomly reassign the k variables in the clause C. If we abort Alg after
T calls to Fix, then Alg uses a total of n + kT random bits. We take the set A to be all
possible choices of these random bits — the 2n+kT bit-strings of length n+ kT .

Next we describe the function f , using an algorithm — the output of f is the output of
this algorithm. Looking ahead, invertibility of f will correspond to the computation of this
algorithm being “reversible.” The input to f is a triple (x0,y0, ε), where x0 is the initial
variable assignment (n bits), y0 is a reservoir of kT bits to be used during the first T calls
to Fix, and ε denotes the empty string. Note that after all the random bits x0,y0 needed
by Alg have been fixed up front, Alg is a deterministic algorithm. The output of f is a
triple (xT , ε, zT ), where xT is the current truth assignment of Alg after T calls to Fix, ε is
the empty string, and zT is a transcript of Alg’s execution, detailed below.

The primary responsibility of the transcript is to keep track of the recursion tree (Figure 3)
induced by the algorithm’s execution — which Fix call invoked which other Fix call, and for
which clause. Each call to Fix consumes k new random bits and appends some annotating
bits to the transcript. It’s easy to see how this works with an outer call to Fix(C), by Alg.
If the current triple is (x,y, z), we modify it to (x′,y′, z′) as follows. Since this call to Fix(C)
uses k fresh random bits to reassign the k variables in the clause C, y′ is just y with the
leading k bits removed. Similarly, x′ is obtained from x by overwriting the k variables of
C with the values of these random bits. Finally, we append to the transcript z a total of
dlog2me + 1 bits; the first bit is a “1” (indicating that we’re pushing a new Fix record on

5



the program stack) and the remaining dlog2me bits are a binary encoding of the index of
the clause C.

We’ll be more clever in logging recursive calls to Fix — indeed, this is the crucial point
where the LLL condition is used. Suppose Fix(D) is called recursively by Fix(C). By the
definition of Fix, this only happens when C and D share a variable. The key idea is: rather
than recording D’s index in the list of all clauses, we only record D’s index within the subset
of clauses that share a variable with C. Formally, we again obtain y′ from y by removing the
leading k bits, x′ from x by overwriting the values of the k variables in D with the values
of these k bits, and we append k − 2 < dlog2me bits to the transcript z, a “1” followed by
a binary encoding of D’s index in the list of (at most 2k−3, by the LLL condition) clauses
that share a variable with C.

One extra detail completes the definition of f : when a Fix record is popped off of the
program stack, a “0” is appended to the transcript z (x and y remain unchanged).

Here are the two important lemmas.

Lemma 5.1 The function f is invertible. Equivalently, for every final truth assignment xT

and transcript zT , there is at most one choice for an initial assignment x0 and a reservoir
y0 of kT bits such that f(x0,y0, ε) = (xT , ε, zT ).

Lemma 5.2 The length of the final transcript zT is always at most m(dlog2me+2)+T (k−1).

Before proving these two lemmas, let’s see why they imply Theorem 4.4.

Proof of Theorem 4.4: An input to the function f is n bits x0 and kT bits y0. Thus,
there are exactly 2n+kT inputs. Since f is invertible (Lemma 5.1) it has exactly 2n+kT

outputs. On the other hand, every output of f is described by the n bits xT and the at most
m(dlog2me+ 2) + T (k − 1) bits of zT (Lemma 5.2). Hence,

2n+kT ≤ 2n+m(dlog2 me+2)+T (k−1);

taking logarithms (base 2) and rearranging, we obtain

T ≤ m(dlog2me+ 2). (2)

Summarizing, Alg fails to terminate on a formula satisfying the LLL condition within
T calls to Fix with probability 1 only if (2) holds. Thus, there is a positive probability that
Alg terminates within m(dlog2me+ 2) + 1 calls to Fix; in particular, ϕ is satisfiable.

The exact same argument shows that Alg fails to terminate on a formula satisfying the
LLL condition within T calls to Fix with probability at least 2−c only if T ≤ m(dlog2me+
2)+c. (You should check this.) Thus, Alg terminates (with a satisfying assignment) on such
a formula within O(m logm) Fix calls, and hence in polynomial time, with high probability.
�

We now prove Lemmas 5.1 and 5.2.
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Proof of Lemma 5.1: Fix a final truth assignment xT and transcript zT . We give a deter-
ministic algorithm that reconstructs the unique initial assignment x0 and reservoir y0 of kT
bits that leads to this output of f (or determines that no such input exists). This algorithm
will reverse the steps of the algorithm that defines f , one by one.

The first observation is that the recursion tree (Figure 3) of algorithm Alg is uniquely
defined by the transcript zT , including the identify of the clause C passed to each call to
Fix. This is essentially depth-first search, like tracing through a program step-by-step with
a debugger. At the beginning of the transcript, Alg is at the root of the recursion tree.
The first bit of the transcript should be a “1;” otherwise zT is not a possible output of f .
The subsequent dlog2me bits describe the identify of the clause C that corresponds to the
first call to Fix. If the next bit is a “0,” then this call to Fix makes no recursive calls, and
control returns to the root node of the recursion tree. If the next bit is a “1,” then this
indicates a recursive call Fix(D) by Fix(C). The next k− 2 bits encode the index of clause
D in the list of clauses that share a variable with C. Given that we know C at this point
of tracing through the transcript zT , we can uniquely identify the clause D. Continuing this
process reconstructs the entire recursion tree corresponding to the first T Fix calls.

Given the recursion tree, we reconstruct x0 and y0 from xT and zT by undoing the
Fix calls one by one. First, from the recursion tree, we can identify the clause C on which
the T th call to Fix was made. The key observation is: Fix is only called on violated clauses,
and a clause has a unique violating assignment. For example, if the T th Fix call was on
the clause x3 ∨ ¬x7 ∨ x10 ∨ ¬x14, then we know that prior to the call the truth assignment
xT−1 had x3 = F , x7 = T , x10 = F , and x14 = T . The upshot is we can reconstruct the
state before the T th call to Fix: we prepend the values of the variables of C in xT to the
(currently empty) reservoir yT , and reconstruct xT−1 from xT by overwriting the variables
of C with the unique truth assignments that cause C to be violated. Iterating back through
all the Fix calls in this way, we recover the original truth assignment x0 and reservoir y0. �

Proof of Lemma 5.2: Bits are added to the transcript z only when a Fix record is pushed
onto or popped off of the program stack. Lemma 4.2 implies that every call to Fix(C) by
Alg — a level-1 node of the recursion tree in Figure 3 — fixes a violated clause without
creating any new violated clauses. Thus, there are at most m such calls to Fix. Each such
call contributes dlog2me+ 1 bits to z when the corresponding record is pushed on the stack;
if the call terminates before Alg is aborted, it contributes another bit when its record is
popped off the stack. By definition, there are at most T recursive calls to Fix. Each of these
contributes at most (k − 2) + 1 = k − 1 bits to z. Summing over all of these contributions
to z proves the lemma. �
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