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Abstract

Structured prediction tasks in machine learning
involve the simultaneous prediction of multiple
labels. This is often done by maximizing a score
function on the space of labels, which decom-
poses as a sum of pairwise elements, each de-
pending on two specific labels. The goal of this
paper is to develop a theoretical explanation of
the empirical effectiveness of heuristic inference
algorithms for solving such structured prediction
problems. We study the minimum-achievable ex-
pected Hamming error in such problems, high-
lighting the case of 2D grid graphs, which are
common in machine vision applications. Our
main theorems provide tight upper and lower
bounds on this error, as well as a polynomial-
time algorithm that achieves the bound.

1. Introduction

In recent years, an increasing number of problems in ma-
chine learning are being solved using structured predic-
tion (Collins, 2002; Lafferty et al., 2001; Taskar et al.,
2003). Examples of structured prediction include depen-
dency parsing for natural language processing, part-of-
speech tagging, named entity recognition, and protein fold-
ing. In this setting, the input X is some observation (e.g.,
an image, a sentence) and the output is a labeling Y, such
as an assignment of each pixel in the image to foreground
or background, or the parse tree for the sentence. The ad-
vantage of performing structured prediction is that one can
use local features to infer global structure. For example,
one could include a feature that encourages two neighbor-
ing pixels to be assigned to different segments (e.g., one
to foreground and one to background) whenever there is a
large difference in their colors. The feature vector can then
be used within an exponential family distribution over the
space of labels, conditioned on the input. The parameters
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are learned using maximum likelihood estimation, as with
conditional random fields (Lafferty et al., 2001), or using
structured SVMs (Altun et al., 2003; Taskar et al., 2003).

Both marginal and MAP inference in many of these model
families are well known to be NP-hard. Despite this, the
inference task seems to be much easier than the theoreti-
cal worst case. In particular, approximate inference algo-
rithms can be extremely effective, often obtaining state-of-
the-art results for these structured prediction tasks. Exam-
ples of heuristic MAP inference algorithms that work well
in practice include those based on linear programming re-
laxations and dual decomposition (Koo et al., 2010; Son-
tag et al., 2008), policy-based search (Daumé et al., 2009),
graph cuts (Kolmogorov & Rother, 2007), and branch-and-
bound (Sun et al., 2012).

Real-world instances presumably have structure not pos-
sessed by worst-case instances, making the corresponding
inference tasks relatively tractable. What would a theoreti-
cal explanation of this hypothesis look like? The first step
in tackling such a problem is to decide on a performance
measure for inference. In all of the applications above, per-
formance is naturally quantified as the discrepancy between
the correct “ground truth” labels Y and the predicted labels
Y. The most common performance measure, which we
also focus on here, is Hamming error (i.e., the number of
disagreements between Y and Y).

The current theoretical understanding of the minimum-
achievable Hamming error is limited. = What makes the
problem interesting and challenging is that it involves both
a statistical and a computational perspective. The statisti-
cal question is whether there exists any algorithm that can
predict the true labels with high accuracy, when ignoring
computational constraints. Of course, in practice we can-
not afford to wait arbitrarily long for each prediction, which
motivates the need to understand the computational and
statistical trade-offs for structured prediction. This is an
increasingly important question for machine learning, dis-
cussed in a different context in Chandrasekaran & Jordan
(2013) and other recent papers (see Section 3).

The goal of our paper is to initiate the theoretical study of
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structured prediction in terms of the possibility of obtain-
ing small Hamming error. Such an analysis must define a
generative process for the X, Y pairs, in order to properly
define expected Hamming error. We consider a simplified
model in which the observed X is a noisy version of lo-
cal observations of a binary labeling Y. In particular, X;
is a noisy version of the true Y; and for specific pairs i, 7,
X, ; is a noisy version of the indicator Z [Y; = Y;]. The
posterior for Y given X is then very similar to the data and
smoothness terms used for structured prediction in machine
vision (Geman & Geman, 1984).

Motivated by these machine vision applications, we high-
light the case where the 4, j pairs correspond to the edges
of a two-dimensional grid graph. The corresponding in-
ference task corresponds to a grid-structured Ising model
whose parameters are drawn randomly from this genera-
tive model. In addition to its relevance to real-world ap-
plications, the grid graph is particularly interesting because
it is one of the simplest settings where the statistical and
computational questions are non-trivial. In particular, both
MAP and marginal inference in planar Ising models with an
external field are well-known to be NP-hard and #P-hard in
the worst case (Barahona, 1982).

After presenting our generative model, we proceed to study
how well Y can be recovered from X. Optimal predic-
tion requires calculating marginals of an Ising model and
is intractable for worst case X. We introduce a polynomial
time algorithm, and analyze its expected Hamming error.
The algorithm is a two step procedure which ignores the
node evidence in the first step, solving a MaxCut problem
on a grid (which can be done in polynomial time), and at
a second step uses node observations to break symmetry.
Despite the simplicity of the algorithm, we show that it is
in fact optimal (up to constants) for a natural regime of the
problem parameters. Finally, our analysis is validated via
experimental results on 2D grid graphs.

Taken together, our results provide the first theoretical anal-
ysis for structured prediction using approximate inference.
In particular, we show that approximate inference can pro-
vide optimal results under natural modeling assumptions.

2. Preliminaries

We consider the setting of predicting a set of N labels
Y =Yi,...,Yy, where Y; € {—1,+1}, from a set of
observations X. The observations X are assumed to be
generated from Y by the following process. The generative
process is defined via a graph G = (V, F) and two param-
eters, an edge noise p € [0, .5] and a node noise g € [0, .5].
For each edge (u,v) € E, the edge observation X, is
independently sampled to be Y, Y, with probability 1 — p
(called a good edge), and —Y,, Y,, with probability p (called

Y (all -1s) X V(X)

(a) Ground truth  (b) Observed evidence  (c) Approximate recovery

Figure 1. Statistical recovery on a grid graph. (a) Ground truth,
which we want to recover. (b) Noisy node and edge observations.
(c) Approximate recovery (prediction), in this case with average
Hamming error 2/16.

a bad edge). Similarly, for each node v € V, the node ob-
servation X, is independently sampled to be Y, with prob-
ability 1 — q (good nodes), and —Y,, with probability q (bad
nodes). The process is illustrated in Figure 1 (a,b). Thus,
the observed X provide noisy information about the labels
Y and their pairwise relations.

A labeling algorithm is a function A : {—1,+1}¥ x
{-1,+1}V — {~1,+1}V from graphs with labeled edges
and nodes (the observation X) to a labeling of the nodes V'
(the unobserved label Y). We measure the performance of
A by the expectation of the Hamming error (i.e., the num-
ber of mispredicted labels) over the observation distribu-
tion induced by Y. By the error of an algorithm, we mean
its worst-case (over Y') expected error, where expectation
is over the process generating the observations X from Y.
Formally, we denote the error of the algorithm given a value
Y = y by e, (A) and define it as:

ey(A) = Exjy—y [5 AX) =yl ] QY
The overall error is then:

e(A) = maxe,(A). @)

Y

Note that the definition above does not involve a genera-
tive model for Y. However, in the analysis it will be useful
to consider a model where Y is generated according to the
uniform distribution py (YY), resulting in a joint distribu-
tion:

p(X,Y) =pu(Y)p(X|Y) 3)

2.1. MAP and Marginal Estimators

Given the above definitions, our goal is to find an al-
gorithm A with low error e(A). It is easy to show
that the optimal strategy in this case is to label node Y;
with arg maxy, p(Y;|X) where the conditional is calcu-

lated from the joint p(X,Y).!

The optimality follows from the fact that this strategy is
Bayes optimal for the uniform distribution, and furthermore has
the same expected Hamming error for all Y. It is therefore mini-
max optimal (Berger, 1985).
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Unfortunately, the above strategy is not tractable in our case
since it requires the calculation of marginals of an Ising
model on a grid with an external field (Barahona, 1982).

Our labeling algorithm will be loosely based on the max-
imum likelihood (ML) estimator, which returns the label
argmaxy p(X,Y) This is equivalent to solving:

1-p 1—¢q

1
m}z}x Z iXuquY” log

uveE

1

+ -X,Y, 1o
“)

or simply maxy > cpXuwYuYs + 72 cv XuYu

where v = log l%qq /log 1%1’. We note that the ML esti-

mator is also NP hard to compute for 2D grid graphs (Bara-

hona, 1982).2 However when ¢ = 0.5 there is a polynomial

time algorithm for solving it (Hadlock, 1975), and we shall

make use of this in what follows.

Approximate Recovery: The interesting regime for struc-
tured prediction is when the node noise ¢ is close to 0.5.
In this regime there is no correlation decay, and correctly
predicting a label requires a more global consideration of
the node observations. The intriguing question — and the
question that reveals the importance of the structure of the
graph G — is whether or not there are algorithms with
small error when the edge noise p is a small constant. Pre-
cisely, for a family of graphs G, we say that approximate
recovery is possible if there is a function f : [0,1] — [0, 1]
with lim, o f(p) = O such that, for every sufficiently
small p and all N > Ny(p) for some constant Ny(p), the
minimum-possible error of an algorithm on a graph G € G
with N vertices is at most f(p) - N.

3. Related Work

Our goal is to recover a set of unobserved variables Y from
a set of noisy observations X. As such it is related to var-
ious statistical recovery settings, but distinct from those in
several important aspects. Below we review some of the
related problems.

Channel Coding: This is a classic recovery problem (e.g.,
see Arora et al., 2009) where the goal is to exactly recover
Y (i.e., with zero error). Here Y is augmented with a
set of “error-correcting” bits, and the complete set of bits
is sent through a noisy channel. In our model, X; ; is a
noisy version of the parity of Y; and Y;. Thus our setting
may be viewed as communication with an error correcting
code where each error-correcting bit involves two bits of
the original message Y, and each Y; appears in d; check
bits, where d; is the number of edge observations involving

2There are approximation results for such problems (e.g., Goe-
mans & Williamson, 1995). However the approximation is with
respect to the value of the maximized function, and not the Ham-
ming error. It is thus not applicable in our context.

i

Y;. Such codes cannot be used for errorless transmission
(e.g., see our lower bound in Section 5). As a result, the
techniques and results from channel coding do not appear
to apply to our setting.

Correlation Clustering (CC): In the typical setting of CC,
Y is a partition of N variables into an unknown number of
clusters and X,, , specifies whether Y,, and Y,, are in the
same cluster, with some probability of error as in Joachims
& Hopcroft (2005) or adversarially as in Mathieu & Schudy
(2010). The goal is to find Y from X. Our results apply to
the case of two clusters. The most significant difference
is that most of the CC works study the objective of mini-
mizing the number of edge disagreements. It is not obvi-
ous how to translate the guarantees provided in these works
to a non-trivial bound on Hamming error for our analysis
framework. Stable instances of CC were studied by Balcan
& Braverman (2009), who gave positive results when G is
the complete graph and stated the problem of understand-
ing general graphs as an open question.

Recovery Algorithms in Other Settings: The high-level
goal of recovering ground truth from a noisy input has been
studied in numerous other application domains. In the over-
whelming majority of these settings, the focus is on max-
imizing the probability of exactly recovering the ground
truth, a manifestly impossible goal in our setting. This is
the case with, for example, planted cliques and graph par-
titions (e.g. Condon & Karp, 2001; Feige & Kilian, 2001;
McSherry, 2001), detecting hidden communities (Anand-
kumar et al., 2013), and phylogenetic tree reconstruction
(Daskalakis et al., 2006). We note that works on commu-
nity detection also typically use observations on a complete
graph (Massoulié, 2013; Mossel et al., 2013), whereas our
interest is in observations restricted to a given graph (e.g.,
planar). Another relevant line of work is Braverman &
Mossel (2008), who analyze sorting from noisy informa-
tion. They give polynomial-time algorithms for the ap-
proximate recovery of a ground truth total ordering given
noisy pairwise comparisons. Their approach, similar to the
present work, is to compute the maximum likelihood order-
ing given the data, and prove that the expected distance be-
tween this ordering and the ground truth ordering is small.

Recovery on Random Graphs: Two very recent works
(Abbe et al., 2014; Chen & Goldsmith, 2014) have ad-
dressed the case where noisy pairwise observations of Y
are obtained for edges in a graph. In both of these, the fo-
cus is mainly on guarantees for random graphs (e.g., Erdos
Renyi). Furthermore, the analysis is of perfect recovery (in
the limit N — o0) and its relation to the graph ensemble.
The goal of our analysis is considerably more challeng-
ing, as we are interested in the Hamming error for finite
N. Abbe et al. (2014) explicitly state partial (as opposed to
exact) recovery for sparse graphs with constant degrees as
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an open problem, which we partially solve in this paper.

Structured prediction: When learning a structured pre-
diction model (i.e., learning the score function s(X,Y)
used in inference), a natural question is how train and test
errors are related. Several works have provided general-
ization bounds for this setting (e.g., see Daniely & Shalev-
Shwartz, 2014). This analysis is very different from our
focus here, since they analyze the variance of the gener-
alization error and not its expected value (known as the
“bias”). Other works have considered learning with ap-
proximate inference (Finley & Joachims, 2008; Kulesza
& Pereira, 2007), but provide no theoretical insights into
whether real-world structured prediction tasks might result
in low error when using these.

Percolation: Some of the technical ideas in our study of
grid graphs in Section 5 are inspired by arguments in per-
colation, the study of connected clusters in random (often
infinite) graphs (e.g., see p. 286 in Grimmett, 1999). We di-
rectly adapt results from statistical physics to give precise
constants for our theoretical results.

4. Foreground-Background Segmentation

We begin with an empirical study of the structure of real-
world probabilistic inference problems. Whereas there has
been a wealth of empirical evidence that real-world infer-
ence tasks are easy to solve, there have been few investiga-
tions into why the corresponding inference tasks are easy.

We use the Weizmann horse dataset (Borenstein & Ull-
man, 2002) and consider the inference problems arising
from using a conditional random field (CRF) to perform
foreground-background segmentation. The data is shown
in Fig. 2, where each image is accompanied with its ground
truth segmentation. The parameters of the model were
learned by Domke (2013, Sec. 8.3) using 200 training im-
ages. The CRF is a pairwise Markov random field with bi-
nary variables for each pixel (foreground vs. background),
and is grid structured as in Fig. 1. The features used for
the pairwise potentials consist of edge filters and various
functions of the difference in colors between the pixels.

The MPLP algorithm (Sontag et al., 2008) was used for in-
ference, and provably found the MAP assignment for the
cases shown (via an optimality certificate). The Hamming
error between the recovered segmentations in (e),(j) and
true ones in (b),(g) is low (only 1.1%,1.6% wrong pixels).

Next, we turn to a more quantitative analysis of the infer-
ence problems that arise in this model. Denote by Z an
input image. Then the learned model results in a set of im-
age dependent weights Buv = fuv(Z; 9)7 Bu = fu(Z; 9)
where 6 are the learned parameters and f is a linear func-
tion of features of Z and 6. The posterior of the CRF is

then:

Pr(Y(Z) ccexp( Y BuVuVu+ Y BuYu) (5

wweE ueV

The above is similar to (4), with (,,, 3, replacing
0.5X .y log I_Tp, 0.5X, log 1—;(1 Of course in the CRF we
are not observing a X,,, X, directly, but the weights 3
play the same role of providing information on the value of
Y (singleton and pairwise).’

The above equivalence can be used to infer the p, ¢ noise
levels that correspond to a given CRF and image ensemble.
To estimate g simply find the fraction of times where Y,, =
sgnf,, and similarly for p. This is illustrated in Figure 2.
In (a,f) we consider two of the images from the test set.

Figure (c,h) shows pixels for which sgn(3,Y,) = —1,
separating into cases where Y; = —1 (red) and Y; =
1 (blue). Similarly Figure (d,i) shows pixels for which
sgn (B, YuY,) = —1 (ignoring cases where |3| is below
a threshold), shown in red for Y, Y, = 1 and blue other-
wise. These can be used to calculate the corresponding p, q
which turn out to be p = 0.03 and ¢ = 0.2.

The example above demonstrates several principles which
motivate our analysis: first, inference problems on grid
graphs that arise from practical statistical recovery seem to
be solvable in practice and with low Hamming error. Sec-
ond, the node noise turns out to be considerably larger than
the edge noise. Indeed, we will show that recovery for low
edge noise is indeed possible using an even simpler algo-
rithm than MPLP.

5. Inference in Grid Graphs

This section studies grid graphs. We devote a lengthy treat-
ment to them for several reasons. First, grid graphs are
central in applications such as machine vision (see Section
4). Second, the grid is a relatively poor expander (Hoory
et al., 2006) and for this reason poses a number of inter-
esting technical challenges. Third, our algorithm for the
grid and other planar graphs is computationally efficient.
Finally, our grid analysis yields matching upper and lower
bounds of ©(p?N) on the information-theoretically opti-
mal error.

5.1. Upper Bound

We study the algorithm A given in Algorithm 1, which has
two stages. The first stage ignores the node observations
and computes a labeling Y that maximizes the agreement
with respect to edge observations only, i.e.

3In the CRF, Buv, fu are edge and node dependent. In our
model (4) the p and q are constants. This is just to simplify the
analysis, and can be changed.
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Figure 2. Weizmann horse dataset. See discussion in Section 4. Note that the MAP inference is found using the MPLP algorithm (Sontag
et al., 2008), and is the exact MAP assignment in this case (via optimality certificates). It is different from the true segmentation, as the
CRF model does make some errors. See text for explanation of bad edges and nodes.

Algorithm 1 A(X) for inference in grids.

input Edge and node observations X
1Y < argmaxy Y, cp XuwYuYo
2: it Y, oy XoY, < 0then

32 Y+« -Y
4: endiAf
output Y
Y XuwYuYo.
e argmax 37 X, (©6)

uwveE

Note that Y and —Y agree with precisely the same set of
edge observations, and thus both maximize Eq. 6. The sec-
ond stage of algorithm A outputs Y or —Y’, according to a
“majority vote” by the node observations. Namely, it out-

puts =Y if . X,Y, <0, and Y otherwise.

When the graph G is a 2D grid, or more generally a pla-
nar graph, this algorithm can be implemented in polyno-
mial time by a reduction to the maximum-weight match-
ing problem (see Fisher, 1966; Hadlock, 1975; Barahona,
1982). We shall prove the following theorem, which shows
that approximate recovery on grids is possible.*

Theorem 5.1 A achieves an error e(A) = O(p>N).

Analysis of First Stage: We first show that after the first
stage, the expected error of the better of Y, —Y is O(p®N).
We then extend this error bound to the output of the second
stage of the algorithm.

We begin by highlighting a simple but key lemma char-
acterizing a structural property of the maximizing assign-
ment of Eq. 6, i.e. the MAP assignment without node ob-

*Big-O notation describes the behavior as p goes to zero.

servations. Recall from Section 2 that an edge is good if
Xuw = Y,Y,, and bad otherwise. The intuition is that if
the maximizing assignment is wrong on some connected
region of the grid, there must be many bad edge observa-
tions on the boundary of this region. Since the probability
p of a bad edge observation is assumed to be small, this
tells us that it is highly unlikely that there can be a large
region of the graph for which the maximizing assignment
disagrees with the ground truth.

We use §(S) to denote the boundary of S C V, i.e. the set
of edges with exactly one endpoint in .S.

Lemma 5.2 (Flipping Lemma) Let S denote a maximal
connected subgraph of G with every node of S incorrectly
labelled by Y. Then at least half the edges of 0(S) are
bad.’

Proof: First, note that the output label Y satisfies
Xuvf/uf/v = 1 (or equivalently X, = Yuffv) on at least
half the edges of 6(S). Otherwise, flipping ¥ of all nodes
in .S would strictly increase the objective in (6), contra-
dictig the optimality of Y. On the other hand, since S is
maximal, for every edge e € §(S) exactly one endpoint of
e is correctly labeled. Namely, for each such e = uv we
have: Y, Y, # ?uf’v. The above two statements are only
compatible if at least half the edges of §(.S) are bad. B

Call aset S bad if at least half its boundary 6(.5) is bad. The
Flipping Lemma motivates bounding the probability that a
given set is bad, and then bounding the Hamming error by
enumerating over sets S. This approach can be made to
work only if the collection of sets S is chosen carefully —
otherwise, there are far too many sets and this approach
fails to yield a non-trivial error bound.

SResult holds for Y, since only relies on Yy maximizing (6).
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Figure 3. Examples of type 1, 2, 3, and 6 regions, left-to-right.

For any subset S of V, denote by G[S] the subgraph of G
induced by S. Thus, G[S] is the subset of edges in G whose
endpoints are in S. Let C denote the subsets S C V such
that the induced subgraph G[S] is connected. We classify
subsets S of C into 6 categories depending on whether S
contains (see Figure 3):

1. No vertices on the perimeter of G
2. Vertices from exactly one side of the perimeter of G

3. Vertices from exactly two sides of the perimeter of GG,
and these two sides are adjacent

4. Vertices from exactly two sides of the perimeter of G,
and these two sides are opposite

5. Vertices from exactly three sides of the perimeter of G
6. Vertices from all four sides of the perimeter of G.

Let C.¢ denote the set of all S C V' from one of the first 5
categories. For a set § € C.¢, we define a corresponding
filled in set F(S). An illustration of the filling in proce-
dure is given in the supplementary. Consider the connected
components C1, ..., Cy of G|V \ S] for such a subset S.
Call such a connected component 3-sided if it includes ver-
tices from at least three sides of the grid G. We define
F'(S) as the union of S with all the connected components
of G[V \ S] except for a single 3-sided one. Observe that
F(S) 2 S, and F(S) is not defined for type 6 components
S. Let F = {F(S) : S € C<g} denote the set of all such
filled-in components.

Let H denote the Hamming error of our algorithm on a ran-
dom input. We introduce a simpler-to-analyze upper bound
on H. In particular, define a new random variable 7" by

7= IFl*1pis bad )
FeF

The next two Lemmas will imply that H < T with prob-
ability 1. First, we show that enumerating over filled in
regions can only be an overestimate of the error.

Lemma 5.3 If 51,55 are disjoint and not type 6, then
F(S1), F(S2) are distinct and not type 6.

Proof: Since F(.S) excludes a 3-sided component, it cannot
be type 6. Also, for a set S that is not type 6, §(F'(5)) is
a non-empty subset of §(.S). Thus, the non-empty set of
endpoints of §(F(.S)) that lie in F'(S) also lie in S. This
implies that if F((S7) = F(Ss), then SN Sy # (). A

Next we show for each mislabeled region, its filled in re-
gion is bad. This applies to whichever of Y, —Y does not
have a type-6 set of mislabeled vertices (there is at most
one type-6 set in the connected components of mislabeled
vertices, so at least one of Y, —Y has this property). Let
B denote the mislabeled vertices of such a labeling, and
let By, ..., By denote the connected components (of types

1-5) of G[B].

Lemma 5.4 For every B;, the filled-in set F'(B;) is bad.

The proof of Lemma 5.4 is an extension of the Flipping
Lemma; see supplementary material for the details.

We now upper bound the easier-to-analyze quantity 7. The
proofs for the next three Lemmas can be found in the sup-
plementary. The first is straightforward to prove, and it
provides an upper bound on the probability that a set S is
bad, as a function of its boundary size |§(S)|.

Lemma 5.5 For every set S with |6(S)| = 1, it holds that
Pr(S is bad) < (3,/p)".

Our probability bound is naturally parameterized by the
number of boundary edges. Because of this, we face two
tasks in upper bounding 7T'. First, T counts the number of
nodes of bad filled-in sets F' € F, not boundary sizes. The
next lemma states that the number of nodes of such a set
cannot be more than the square of its boundary size.

Lemma 5.6 Forall F € F: (1) |F| < |6(F)
a type-1 region, then |F| < -|6(F)|%.

2, (2)if F is

The second task in upper bounding 7' is to count the num-
ber of filled-in sets F' € JF that have a given boundary size.
We do this by counting simple cycles in the dual graph.

Lemma 5.7 Let i be a positive integer. (a) If i is odd or 2,
then there are no type-1 sets I' € F with |§(F')| = i; (b) If

.. .4.21—2
i is even and at least 4, then there are at most Y23 =

/ 2i
2.3%~
N 7

® type 1 sets F € F with [0(F)| = i; (c) If i is
at least 2, then there are at most 2/ N - 3:=2 type 2-5 sets
F € Fwith |§(F)| = i.

A computation (see supplementary) now shows that
E[T] < ¢p®N + O(pvV'N) (8)

for a constant ¢ > 0 that is independent of p and N.
The intuition for why this computation works out is that
Lemma 5.7 implies that there is only an exponential num-
ber of relevant regions to sum over; Lemma 5.6 implies
that the Hamming error is quadratically related to the (bad)
boundary size; and Lemma 5.5 implies that the probabil-
ity of a bad boundary is decreasing exponentially in ¢ (with
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base 3,/p). Provided p is at most a sufficiently small con-
stant (independent of V), the probability term dominates
and so the expected error is small.

In the supplementary, we show that the constant cin (8) is 8
for p < 0.017. To derive the constant, we use results from
statistical physics on the connectivity constant of square
lattices (Clisby & Jensen, 2012; Madras & Slade, 1993),
and explicit computations of the number of self-avoiding
polygons (which correspond to our filled in regions) of a
particular boundary length and area (Jensen, 2000).

Analysis of Second Stage: Our analysis so far shows that
the better of Y, —Y has small error with respect to the
ground truth Y. In the second phase, we use the node labels
to choose between them via a “majority vote.” Straight-
forward Chernoff bounds imply that, provided g is slightly
below % the better of Y, —Y is chosen in the second stage
with high probability. This implies that the approximate re-
covery bound of the original algorithm without node labels
carries over to the two-phase algorithm with node labels,
which proves Theorem 5.1. The formal proof of the second

stage appears in the supplementary.

5.2. Lower Bound

In this section, we prove that every algorithm suffers worst-
case expected error Q(p?N) on 2D grid graphs, matching
the upper bound for the 2-step algorithm in Theorem 5.1.

Theorem 5.8 Every algorithm A must have error e(A)
which is Q(p?N).

We use the fact that marginal inference is minimax optimal
for Eq. 2 (see Section 2.1). The expected error of marginal
inference is independent of the ground truth (by symme-
try), so we can lower bound its expected error for the case
Y; = 1 for all . Also, its error only decreases if it is given
part of the ground truth.

Consider an alternating black and white coloring of the
nodes of the grid, like a chess board. Suppose we give the
inference algorithm the true labels of all the black nodes.
Call a white node ambiguous if exactly two of the four in-
cident edges are labeled “+1” in X. A white node is am-
biguous with probability 6p?(1 — p)? > 5p? for p < 0.078.

For an ambiguous node, marginal inference would predict
the label corresponding to the node observation, which is
wrong with probability q. Hence, the expected (over the in-
put) error of marginal inference is at least % -5p? - ¢, which
proves our result. The full proof is in the supplementary.

5.3. Empirical Study

Our theoretical analysis suggests that statistical recovery
on 2D grid graphs can attain an error that scales with p2.

0.2 :
—NMarginals
= 0.15 —Cycle LP
w —Two-Step
2 —Local LP
g 041
S
©
T0.05
O0 0.05 0.1
Edge Noise

Figure 4. Average Hamming error for different recovery algo-
rithms. Data is generated from a 20 x 20 grid with node noise
q = 0.4 and variable edge noise p. The true Y is the assignment
of all —1. Results are averaged over 100 repetitions.

Furthermore, we showed that this error is achieved using
the two-step algorithm in Section 5. Here we describe a
synthetic experiment that compares the two-step algorithm
to other recovery procedures. We consider a 20 x 20 grid,
with high node noise of 0.4 and variable edge noise lev-
els. In addition to the two-step algorithm we consider the
following:®

e Marginal inference — predicting according to p(Y;|X).
As mentioned in Section 2 this is the optimal procedure.
Although it is generally hard to calculate, for the graph
size we use it can be done in 20 minutes per model using
the junction tree algorithm.

e Local LP relaxation — Instead of calculating p(Y;|X) one
can resort to approximation. One possibility is to calcu-
late the mode of p(Y'| X)) (also known as the MAP prob-
lem). However, since this is also hard, we consider LP
relaxations of the MAP problem. The simplest such re-
laxation assumes locally consistent psuedo-marginals.

e Cycle LP relaxation — A tighter version of the LPs uses
cycle constraints instead of pairwise. In fact, for planar
graphs with no external field (as in the first step of our
algorithm) this relaxation is tight. It is thus of interest to
study in our context. For both the cycle and local relax-
ations we use the code from Sontag et al. (2012).

Fig. 4 shows the expected error for the different algorithms,
as a function of edge noise. It can be seen that the two
step procedure almost matches the accuracy of the optimal
marginal algorithm for low noise levels. As the noise in-
creases the gap grows. Another interesting observation is
that the local relaxation performs significantly worse than
the other baselines, but the cycle relaxation is close to opti-
mal. The latter observation is likely to be due to the fact that
with high node noise and low edge noise, the MAP prob-
lem is “close” to the no node-noise case, where the cycle
relaxation is exact. However, an analysis of the Hamming

We also tried hill climbing, but results were poor.
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error in this case remains an open problem. Finally, Fig. 4
is in agreement with our theoretical results, which predict
that for low edge noise the two step procedure is optimal.

6. Extensions

Other Planar Graphs: Our main theorem in Sec. 5 uses
properties of grids beyond planarity, but is robust in that
it applies to all planar graphs that share two key features
with grids. The first property, which fails in “thin” planar
graphs like a path but holds in many planar graphs of inter-
est, is the following weak expansion property: (P1: Weak
expansion.) For some constants c1,co > 0, every filled-in
set [’ € F satisfies |F| < ¢1|d(F)|®. (Filled-in sets can
be defined analogously to the grid case.) The second key
property is: (P2: Bounded Dual Degree.) Every face of G,
except possibly for the outer face, has a constant number
of boundary edges. Our proof of Theorem 5.1 shows that
every family of planar graphs meeting (P1) and (P2) admits
computationally efficient approximate recovery.

Expander Graphs:  Another widely studied class of
graphs is the family of d-regular expanders (Hoory et al.,
2006). Recall that a d-regular graph with N nodes is an
expander with constant ¢ > 0 if, for every set S C V with
5(S)| > c¢-d-|S|. We next show that the
family G of d-regular expanders with constant ¢ allows ap-
proximate recovery with f(p) = 3p/c.

The algorithm is the same as in Sec. 5 (it is not computa-
tionally efficient for expanders). As in Sec. 5, analyzing
the two-stage algorithm reduces to analyzing the better of
the two solutions produced by the first stage. We therefore
assume that the output Y of the first stage has error H at
most N/2.

Fix a noise parameter p € (0, 2) a graph G € G with
N sufficiently large, and a ground truth. Chernoff bounds
imply that for all sufficiently large N, the probability that
|B| > 2p|E| = pdN is at most 1/N?. When |B| > pdN,
we can trivially bound the error H by N/2. When |B| <
pdN, we bound H from above as follows.

Let S denote the nodes of V' correctly classified by the first
stage Y and (1, ..., Cy the connected components of the
(misclassified) nodes of the induced subgraph G[V \ S].
Since H < N/2, |C;| < N/2 for every i. Using H =

i

, we have

1< 2 &
Hs g2 10Ol < 552 16

where the first inequality follows from the expansion con-
dition, the second from Lemma 5.2, and the third from the
fact that the §(C;)’s are disjoint (since the C;’s are maxi-
mal). Thus, when |B| < pdN, H < %pN. Overall, we

2
i) N Bl < —I|Bl, ©

have E[H] < 3pN/c for N sufficiently large, as claimed.

7. Discussion

Structured prediction underlies many empirically success-
ful systems in machine vision and NLP. In most of these
(e.g., see Koo et al., 2010; Kappes et al., 2013) the infer-
ence problems are intractable, and approximate inference
is used instead. However, there is little theoretical under-
standing of when structured prediction is expected to per-
form well, how its performance is related to the structure
of the score function, which approximation algorithms are
expected to work in which setting, etc.

Here we present a first step in this direction, analyzing the
error of structured prediction for 2D grid models. One key
finding is that a two-step algorithm attains the information
theoretically optimal error in a natural regime of parame-
ters. What makes this setting particularly interesting from
a theoretical perspective is that exact inference (marginals
and MAP) is intractable due to the intractability of planar
models with external fields. It is thus surprising and en-
couraging that a tractable algorithm achieves optimal error.

Our positive results easily extend to many variations of our
generative model. The reason is that our proofs only use the
fact that the probability that a boundary §(S) consists of at
least half bad edges decays exponentially in the boundary
size |0(S)| (Lemma 5.5). As such, our results apply to a
much broader class of generative models, which may ex-
plain our observations for foreground-background segmen-
tation. We can also obtain an analysis that is closer to CRF
models, by allowing variable edge and noise probabilities.

Our work opens the door for a number of new research di-
rections, with both theoretical and practical implications.
For instance, for grid models, our two step procedure uses
both node and edge evidence, but it is clear that for small
q, improved procedures are possible. In particular, the ex-
periments in Section 5.3 show that decoding with cycle LP
relaxations results in empirical performance that is close
to optimal, even for large p. More generally, an exciting
direction is to understand the statistical and computational
properties of structured prediction for complex tasks such
as dependency parsing (Koo et al., 2010) and non-binary
variables (as in semantic segmentation). In these cases, it
would be interesting to understand how the structure of the
score function affects both the optimal expected accuracy
and which algorithms can achieve it.
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A. Missing Proofs

Proof of Lemma 5.4: We first claim that Y agrees with the
data on at least half the edges of §(F'(B;)). The reason is
that flipping the label of every vertex of F'(B;) increases
the agreement with the data by the number of disagreeing
edges of 0(F(B;)) minus the number of agreeing edges of
d(F(B;)), and this difference is non-positive by the opti-
mality of Y.

On the other hand, since B; is maximal, every neighbor of
B; is correctly labeled in Y. Since the neighborhood of
F(B,) is a subset of B;, this also holds for F(B;). Thus,
Y disagrees with Y on every edge of §(F(B;)).

We conclude that at least half the edges of §(F(B;)) are

~

bad. It is easy to see that the proof works for —Y, since it
also maximizes Eq. 6 l

Proof of Lemma 5.5: By the definition of a bad set we have
that Pr[S is bad] is equal to the probability that at least half
of §(S) are bad edges. Since |§(S)| = ¢ this is the proba-
bility that at least % edges are bad. Since these events are
IID, we can bound it via:
Pr| S22 4 | < (L)t < ot < R
j 2

(10)
where Z; is the indicator event of the j-th edge being bad.
The first inequality is a union bound on all events where a
specific set of size % is bad, and the other edges can take
any value. l

Proof of Lemma 5.6: If F is a type 4 or 5 set, then |§(F')| >
/N and the bound is trivial. If F'is a type 1 set, let U be the
smallest rectangle in the dual graph (Diestel, 1997) which
contains F. Let k, m denote the side lengths of U. Then:
|F| < km < 2k + 2m)? < £|6(F)[. (To be clear,
km < 55 (2k+2m)? because 4k +8km+4m? — 16km =
(2k — 2m)? > 0.) Similarly for type 2 sets we have |F'| <
km < min {(2k + m)?, (k + 2m)?} < |6(F)|>. Finally
for type 3 sets: |F| < km < (k+m)? < |§(F)|*>. &

Proof of Lemma 5.7: Recall that, by construction, a filled-
in set F' € F is such that both G[F| and G[V \ F] are
connected. In a planar graph such as G, this translates to an
elegant characterization via the dual graph G. Recall that
the dual graph has a vertex per face in G edges crossing
the edges in G. Then it it easy to see that a set §(F) is
a boundary of a filled in set if and only if the dual edges
corresponding to the edges & (F) form a simple cycle in G¢
(e.g., see Section 4.6 of Diestel, 1997). Note that the dual
graph G is just an (n — 1) x (n — 1) grid, with one vertex
per “grid cell” (i.e., face) of GG, plus an extra vertex z of

degree 4(v/N — 1) that corresponds to the outer face of G.
The type-1 sets of F are in dual correspondence with the
simple cycles of G that do not include z, the other sets of
F are in dual correspondence with the simple cycles of G¢
that do include z. The cardinality of the boundary |§(F)|
equals the length of the corresponding dual cycle.

Part (a) follows from the fact that G \ {z} is a bipartite
graph, with only even cycles, and with no 2-cycles.

For part (b), we count simple cycles of G¢ of length 4 that
do not include z. There are at most NV choices for a starting
point. There are at most 4 choices for the first edge, at most
3 choices for the next (i — 2) edges, and at most one choice
at the final step to return to the starting point. Each simple
cycle of G\ {2} is counted 2i times in this way, once for
each choice of the starting point and the orientation.

For part (c), we count simple cycles of G of length 4 that
include z. We start the cycle at z, and there are at most
4+/N choices for the first node. There are at most 3 choices
for the next ¢ — 2 edges, and at most one choice for the final
edge. This counts each cycle twice, once in each orienta-
tion. l

Additional details for Theorem 5.1 Here we prove
Equation (8) in the main text.

Let /1 C F denote the type-1 sets of F. Recall that the
random variable 7' is defined as:

T= Z‘F"lpisbad (In
FeF

Then from linearity of expectation:
E[T] = ) |F|-Pr[F is bad] (12)
FcF

Next, we sum by size of |§(F")
rest of F.

ET] = > >
i=2 FeF, : |§(F)|=2i
> X

J=2 FEF\F1:|6(F)|=j

, separating into J; and the

|F| - Pr[F is bad] +(13)
|F| - Pr[F is bad] (14)

Now use Lemmas 5.5 and 5.6 to bound both the size of | F|
and the probability that it is bad:

;2

Er < Y Y ZZ-(?N/;;)Q%L (15)
i=2 FeF, : [6(F)|=2i
>

=2 FEF\F1 :|6(F)|=j

i*-3yp)y  (16)
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Finally, we use Lemma 5.7 to bound the number of sets in
F with a given size, yielding:

E[T] < iN 2 3;1 2% (3vp)* + (17)
ZQ\F-s-j—2~j2.(3¢;5)j (18)
j=2

- 226 81p)’ +\FZ
= N(¢p*) +O(pVN), (19)

for a constant ¢ > 0 that is independent of p and N, and
assuming p < 1/81.

The factor ¢ can be improved as follows. First, we use the
tighter upper bound of (2ep)*/? for the probability that a
region of boundary size ¢ is bad (see Lemma 5.5). We
then replace the upper bound on the number of regions of
each type in Lemma 5.7 with tighter results from statisti-
cal physics. In particular, the number of type-1 sets with
boundary size i can be upper bounded by Ny’ (Eq. 3.2.5
of Madras & Slade, 1993), where p is the so-called con-
nective constant of square lattices and is upper bounded by
2.65 (Clisby & Jensen, 2012). The number of type 2—5 sets
with boundary length ¢ can similarly be upper bounded by
4v/N, uie"ﬂ for the same value of p and for some fixed
constant x > 0 (Hammersley & Welsh, 1962).

Next, we recognize that the term in (19) which is linear in
N can be attributed to the type-1 regions. We expand the
sum in (13) over type-1 regions into two terms: one term
that explicitly enumerates over type-1 regions whose cor-
responding simple cycle in G is of length i = 2 to 100,
and a remainder term. The sum in the first term can be
computed exactly as follows. For each value of 4, the prob-
ability that the region is bad is simply >, _, ()Pt -
p)*~*. We can then use the bound Y_ o 7, .55y = | F| <

Za °/ iﬁ acg. i, where ¢, ; is the number of distinct cycles
in an infinite grid of length ¢ and area a (up to translation).
These cycles also go by the name of self-avoiding poly-
gons in statistical physics, and the numbers ¢, ; have been
exhaustively computed up to ¢ = 100 (Jensen, 2000). Fi-
nally, the infinite sum in the remainder can be shown to be
upper bounded by 5126°1 /(1—b)3 for b = 2ep(2.65)%. The
resulting function can then be shown to be upper bounded
by 8 Np? for p < 0.017, yielding a constant ¢ = 8 as men-
tioned in the main text.

Formal Analysis of Second Stage Our starting point is
E[Hy] < N - cp?, where Hy is the Hamming error of the
better of ¥ and —Y. To calculate the error of the second
stage, we need to consider the probability that it chooses
the better of the two.

Markov’s
1 2
wrNep

First,
Pr |:H 0 >

inequality implies that

< k‘pz, where k is a free parameter.

For the second stage, let B’ be the set of wrong node obser-
vations. Chernoff bounds imply that, for sufficiently large
N, Pr[|B'| > (1+6)Ng] < . Observe that if the sum
of the number of bad node observations and number of mis-
classified nodes for the better of Y and —Y is less than
N/2, the two phase algorithm would choose the better of
Y and —Y. Hence with probability 1 — kp? — < the al-

gorithm would choose the better of Y and —Y, pr0v1ded
le?zJ\fcp2 +(146)Ng< % or equivalently,

c 1

For small § and k£ > this inequality would

m’
be satisfied and the better of Y and —Y would be chosen.
Thus,

IA

E[H] 1 Nep? + (kp? + N (20)

N2)
N-((c+1)p? + kp?) < N -Cp? (21)

N

for N > Ny(p,q) where H is the error of the 2-step algo-
rithm. (in the second inequality we use N > %.)

Full proof of lower bound In the main paper, we give a
proof sketch of the lower bound, Theorem 5.8. Here, we
include a full proof of the fact that every binary classifi-
cation algorithm suffers worst-case (over the ground truth)
expected error Q(p?N).

Let G = (V, E) denote an n x n grid with N = n? ver-
tices. LetY : V — {—1,41} denote the ground truth.
We consider the case where Y is chosen at random from
the following distribution. Color the nodes of G with black
and white like a chess board. White nodes are assigned bi-
nary values uniformly and independently. Black nodes are
assigned the label +1.

Given Y, input is generated using the random process de-
scribed in Sec. 2.

Consider an arbitrary function from inputs to labelings of
V. We claim that the expected error of the output of this
function, where the expectation is over the choice of ground
truth Y and the subsequent random input, is Q(p?N). This
implies that, for every function, there exists a choice of
ground truth Y such that the expected error of the function
(over the random input) is Q(p?N).

Given Y, call a white node ambiguous if exactly two of the
edges incident to itself are labeled “+1” in the input. A
white node is ambiguous with probability 6p?(1 — p)? >
5.1p? for p < 0.078. Since there are N/2 white nodes,
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and the events corresponding to ambiguous white nodes are
independent, Chernoff bounds imply that there are at least

57172]\, ambiguous white nodes with very high probability.

Let L denote the error contributed by ambiguous white
nodes. Since the true labels of different white nodes are
conditionally independent (given that all black nodes are
known to have value +1), the function that minimizes E[L]
just predicts each white node separately. The algorithm
that minimizes the expected value of L simply predicts that
each ambiguous white node has true label equal to its input
label. This prediction is wrong with constant probability,
so E[L] = Q(p?N) for every algorithm. Since L is a lower
bound on the Hamming error, the result follows.

B. Ilustration of Filled In Sets

Recall that for every subset .S we defined a corresponding
filled in set F'(S). The figures on the next page illustrate the
transformation from a subset S to the filled in set F'(.5).
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Figure 5. An example of type 1 set and corresponding filled-in set (left) and an example of type 2 set and corresponding filled-in set
(right).

Figure 6. An example of type 3 set and corresponding filled-in set (left) and an example of type 4 set and corresponding filled-in set
(right).

Figure 7. An example of type 5 set and corresponding filled-in set (left) and an example of type 6 set.



